
Analysing and Exploiting Transitivity to Coevolve Neural
Network Backgammon Players

Mete Çakman
Dissertation for Master of Science in Artificial Intelligence and Gaming

Universiteit van Amsterdam
August 1, 2008

i

Abstract

This thesis investigates using coevolution for training neural networks to

play the game of backgammon. We analyse the usefulness of coevolution in

this domain, compare results of “round robin”, “fitness sharing”, and “hall

of fame” coevolution techniques, and make a thorough analysis of the tran-

sitivity and rank distribution of individuals in a single evolving population.

We find that the backgammon domain is highly transitive, and that 50%

of the time during coevolution a newly evolved individual will be the worst

member of the population, with the other 50% evenly distributed over all

other population ranks. We attempt to exploit this analysis through three

new fitness evaluation schemes. “Binary rank placement” uses a binary

search to calculate individuals’ ranks, “single evaluator” uses a single in-

dividual taken from the evolving population to evaluate fitness levels, and

“losers first” assesses individuals against the worst in the population first,

aborting evaluation if the match is lost in order to prevent wasting fitness

tests. We find that only the losers first scheme provides an increase in effi-

ciency. Finally, we use the losers first method to try to evolve more sophis-

ticated nonlinear network structures, in an attempt to outperform previous

work using coevolution for optimisation in the backgammon domain. We

discover that the domain can be exploited for more efficient fitness evalua-

tion, yet are unable to evolve superior nonlinear solutions with the current

experimental setup.

ii

Acknowledgements

Many thanks to my supervisor, Shimon Whiteson, whose energy and at-

tention kept me motivated and interested in my work, week after week,

and whose observations and suggestions were vital to the direction of this

thesis.

Many thanks also to Gerry Tesauro for his assistance and invaluable C code.

Thanks to Rogier Koppejan for his easy to read, use, and maintain NEAT

implementation in C++.

Thanks to my study-partner-in-crime Corrado Grappiolo for sharing the

same boat, and providing hours of conversational distractions.

Finally, all of this was made possible by the wonderful people at NUFFIC,

who provided me with a scholarship to study here in Amsterdam.

All experiments in this thesis were run on the computer cluster facilities

kindly provided by the SARA Computing and Networking Services here in

the Netherlands.

Title page image and backgammon layout in Chapter 3 taken from Wikipedia.

iii

Contents

Abstract ii

Acknowledgements iii

List of Figures vi

1 Introduction 1

2 Background 3
2.1 Neural Networks . 3
2.2 Evolutionary Computation . 4
2.3 Steady-State Evolution . 5
2.4 Coevolution . 5

3 Backgammon 7
3.1 Rules of the Game . 7
3.2 Technical Details . 8
3.3 Strategy . 8
3.4 Artificial Intelligence in Backgammon 9
3.5 Using Neural Networks for Backgammon Play 10

4 Coevolution for Backgammon 11
4.1 Population Size Comparisons . 11
4.2 Fixed Evaluation vs. Coevolution . 12
4.3 Coevolutionary Strategies . 12

4.3.1 Fitness Sharing . 13
4.3.2 Hall of Fame . 13

4.4 Experimental Setup . 14
4.5 Results . 15

5 Transitivity Analysis 18
5.1 Champion Tournament Grid . 18
5.2 Plateau Analysis . 19

6 Efficient Evaluation in Transitive Games 22
6.1 Binary Rank Placement . 22
6.2 Single Evaluator . 22
6.3 Losers First . 23
6.4 Results . 25
6.5 Analysis . 28

7 Nonlinear Optimisation 29
7.1 Experimental Setup . 29
7.2 Results . 31

iv

8 Discussion 33
8.1 Related Work . 33
8.2 Directions for Future Research . 34

Appendix: Algorithm Parameters 36

References 37

v

List of Figures

2.1 Artificial neuron . 3
2.2 Feed-forward artificial neural network 4
3.1 Backgammon layout and direction of play 7
4.1 Population size test . 15
4.2 Fixed evaluation vs coevolution . 16
4.3 Comparison of coevolution methods . 16
5.1 Round robin grids with different numbers of games per match 19
5.2 First-previous and second-previous generation champion tests 20
6.1 Distribution of rank placements of new individuals 23
6.2 Comparison of k values for the single evaluator scheme 25
6.3 Comparison of number of games per opponent for binary rank placement 26
6.4 Comparison of number of games per opponent for single evaluator . . . 26
6.5 Comparison of losers first, round robin, single evaluator and binary rank

placement . 27
7.1 Comparison of large population sizes, 1 and 10 games per opponent . . 31
7.2 Nonlinear network evolution . 32

vi

1 Introduction

Backgammon is a game for two players involving skill and luck that has been a focus
for studies in artificial intelligence (AI) since the late 1970’s. Computer programs
have been taught to play using human knowledge databases, hill-climbing optimisation
algorithms, evolutionary computation, and reinforcement learning techniques, yet our
understanding of why some techniques work better than others remains incomplete. In
this thesis, we investigate using evolutionary computation methods for optimisation in
the backgammon domain, comparing and analysing different strategies and exploiting
our results to develop more efficient methods of evolution of backgammon players.

Previous research efforts using AI in the backgammon domain include Tesauro’s
TD-Gammon program [18], Pollack & Blair’s hill-climbing optimisation algorithm [10],
and Darwen’s work in evolutionary computation [2], all of which involved training
neural networks to evaluate backgammon play. Tesauro used temporal difference (TD)
learning, a form of learning which predicts future returns in order to update current
value estimations, to create a formidable backgammon player that learnt to play at
a master level, surpassing previous backgammon programs and displaying strategies
that have improved on expert human play [18]. Pollack & Blair achieved surprising
results using a näıve hill-climbing optimisation algorithm which, despite playing a
good intermediate level game, suffers from a low plateau in skill level. Darwen used
coevolution to train neural networks, by evolving players whose fitness evaluations
are based on competition with other networks of the same evolving population, and
compared his results with those of Tesauro. Darwen achieved a high standard of play,
surpassing TD-learning for simple linear network structures, yet failed to evolve any
nonlinear structure necessary for more advanced play, apparently due to infeasible
computation times [2]. Darwen did not look at methods for more efficient coevolution
to try to surpass these limitations, however the work done by Pollack & Blair suggests
that the backgammon domain is highly conducive to coevolutionary strategies, and
Tesauro demonstrates that neural networks are capable of playing backgammon at a
master level.

This thesis investigates coevolution in the backgammon domain, analysing the do-
main and attempting to more efficiently evolve game strategies in order to surpass the
limitations observed by Darwen. The thesis consists of three main parts – an initial
investigation into the usefulness of coevolution for training backgammon players and a
comparison of coevolutionary strategies, followed by an analysis of domain transitivity
(a domain is intransitive if cycles of expertise exist such that agent A beats agent B,
agent B beats agent C, but agent C beats agent A), and finally the implementation
and analysis of new fitness evaluation strategies for more efficient coevolution.

In our first experimental chapter we investigate the usefulness of evolution for op-
timising backgammon players, comparing different population sizes to compare true
evolution with Pollack & Blair’s hill-climbing optimisation, a pared down form of evo-
lution with a population size of just 2. We examine the benefits of coevolution, where
individuals are evaluated on an evolving set of tests, over evolution, which uses a fixed
fitness evaluation. We then compare coevolutionary strategies using round robin tour-
naments, as used by Darwen, to fitness sharing and hall of fame techniques, designed
to maintain diverse teaching sets for better evolution in the presence of intransitivities.

1

The results of the more advanced strategies of fitness sharing and hall of fame show
no improvement over the round robin approach. Because these methods are designed
for better coevolution in intransitive domains, our next chapter investigates whether the
domain is in fact transitive, despite intransitivities found in the backgammon domain
by Pollack & Blair. We discover that these intransitivities do not exist in the true
domain, but are caused by noise in the fitness evaluation used by Pollack & Blair,
which explains why no improvement was gained through fitness sharing and hall of
fame techniques.

The final experimental chapters use this knowledge to investigate new strategies
for reducing the number of evaluations required for coevolution in the backgammon
domain. “Binary rank placement” uses a binary search to find correct rankings within
a population, and we discover that this fares worse than round robin due to the in-
herent noise in the backgammon fitness evaluation. “Single evaluator” uses a single
backgammon player from within the population to test fitness values. However, inferior
teacher selection capability causes it to be less efficient as well. Finally, we analyse the
distribution of fitness rankings for the round robin strategy and discover that new in-
dividuals are unhelpful to evolution 50% of the time. We exploit this with the “losers
first” strategy by testing against the worst ranked player first, halting evaluation if
the match is lost. This increases optimisation speed for coevolution of backgammon
players. Our final experiments use the losers first strategy for coevolution of more com-
plex nonlinear neural networks. However, computational limitations prevent us from
achieving better results with these networks.

This thesis is structured as follows. Chapter 2 gives background on the AI tools
used in this paper – neural networks and evolutionary computation, describing steady-
state evolution and coevolution. Chapter 3 introduces the game of backgammon and
discusses previous work using AI in the backgammon domain. Chapter 4 describes the
initial experiments performed – population size tests, coevolution versus fixed evalu-
ation, and a comparison of different coevolutionary strategies. A deeper analysis of
domain transitivity is presented in Chapter 5, and in Chapter 6 our experiments in
more efficient evaluation are described with results and analysis. Chapter 7 presents
final experiments using our losers first method for both linear and nonlinear network
structures. Chapter 8 concludes with a discussion of results and a final comparison to
related work, as well as directions for future work.

2

2 Background

This chapter describes the fundamentals of the tools used in this paper: neural net-
works and evolutionary computation, describing the steady-state approach as well as
coevolution principles.

2.1 Neural Networks

Neural networks are perhaps the oldest surviving tools of the field of artificial intelli-
gence, dating back to the 1940’s when “cybernetics,” as it was called then, became a
hot topic of mathematical research. Studies showed that the human brain resembled
a network of electrical “neurons” which fired electrical pulses in a digital fashion, and
could be modelled with electrical circuits. As computers developed in the 1950’s it
became possible to implement these simple models of the brain, and in 1951 Marvin
Minsky and Dean Edmonds created the first neural net computer, the SNARC. Neural
networks suffered a complete loss of attention in the 70’s due to proofs showing that
even simple functions such as XOR could not be approximated with single layer net-
works, and that finding optimal weights for multi-layer networks is NP-hard1. However,
in the 1980’s they began to make a comeback with work in fields other than computer
science, namely physics and psychology, and the use of the backpropagation algorithm
for training multi-layer networks [12]. This led to their first successful commercial
applications in the 90’s, in tasks such as handwriting and speech recognition [7, 12].

Neural networks are linked networks of artificial neurons, attempting to model the
behaviour of the human brain. An artificial neuron is a node in such a network which
accepts multiple input values, and has a single output. A neuron will first multiply
each input value by a corresponding input weight value, sum the results, and finally
pass this sum through some threshold function providing the final output value of the
neuron, as demonstrated in Figure 2.1. For example, a basic threshold function might
sets its output to 1 or -1 depending on whether the input value exceeds some threshold
limit.

Figure 2.1: Artificial neuron, with N inputs, and a general threshold-
ing function.

A neuron thus outputs a function of its inputs, determined by its thresholding
function and its input weights. It is the weight values attributed to each input which
gives a neuron, and thus a network of neurons, its ability to adapt, using for example
learning algorithms which modify those weights.

1Ironically demonstrated by Minsky himself [6].

3

A neural network may be acyclic or recurrent depending on the application. One
of the most widely used network structures is a fully connected feed-forward network
consisting of a layer of input neural nodes, one or more layers of hidden nodes2, and a
final output node layer (see Figure 2.2.)

Figure 2.2: Feed-forward network of artificial neurons, all connections
go from left to right.

Such a feed-forward network is able to represent any mathematical nonlinear func-
tion to arbitrary accuracy [7], meaning that theoretically any mathematical solution
can be represented using a neural network. Of course, in practice this is not always
the case, as the more complex the problem, the more complex the network necessary
and the more weights which require optimisation, creating higher dimensional optimi-
sation problems. However, neural networks are able to represent complex spaces of
highly nonlinear functions, and as such are useful when learning functions of an un-
known form a priori [7]. For this reason they are used in this paper as move evaluator
functions for playing backgammon (Section 3.5 describes the use of neural networks as
move evaluators in more detail).

2.2 Evolutionary Computation

For training neural networks to play backgammon this thesis uses evolutionary compu-
tation (EC). EC is a form of optimisation loosely based on the theory of evolution. The
basic premise of evolutionary theory is that individual organisms live in populations
and have a basic genetic code (genotype) that dictates how their actual appearance
and functionality will be represented within their environment (phenotype). In each
new generation, parents pass on combinations of their genetic material in varying ra-
tios to their offspring and occasionally genetic mutations will occur. Between each
generation, individuals must survive to maturity before they are able to pass on their
genes. This way stronger individuals with successful genes will pass theirs on, while
weaker individuals will not - thus ensuring the population keeps strong and beneficial
genes in the gene-pool, and quickly sheds its unhelpful ones, a notion Charles Darwin
termed “survival of the fittest.”

When couched in these general terms it is easy to see how this process could be
modelled as an adaptive algorithm to learn to solve a given problem, provided the
potential solutions be expressed in terms of genotypes and phenotypes, that the corre-
sponding functions of genetic crossover (breeding between 2 or more individuals) and

2So named as they are not visible to the user from a black-box perspective.

4

mutation are adequately defined, and that their fitness level can be evaluated against
the problem at hand.

Because of the randomised mechanisms of mutations and parent selection, EC pro-
vides a method for searching a multi-dimensional solution-space which, though often
expensive in terms of time and/or computational effort, is much less likely to get per-
manently stuck in local maxima than deterministic search methods [7].

As a relevant example, EC can be used to train neural networks. In the case of pure
weight evolution, as used in this thesis, we start with a population of networks with
identical structures and randomly generated initial weight values, encode those weight
values to a genotype code, and proceed to appraise each network in light of the problem
to be solved. Those that perform better are given a higher fitness value, and thus have
a higher chance of being allowed to mate. Once all networks have been evaluated, some
percentage of the population is discarded, while the remainder are used to create new
offspring by genetic recombination and occasional mutation of those weight genotypes.
This process of evaluation is repeated until a satisfactory solution is found.

2.3 Steady-State Evolution

The more traditional genetic algorithm is based on generations of individuals – eval-
uating an entire generation of individuals at a time, then evolving an entirely new
generation and repeating. Thus, with a population size of 200, 200 evaluations would
be performed, then a whole new population of 200 individuals selected and bred from
the best performing individuals. However, in this thesis steady-state evolution is used,
in which each evolutionary step consists of removing just one, typically worst, individ-
ual from the population, and breeding one from the remaining population, thereafter
evaluating the new individual and moving on to the next step. This allows the same
process of evolutionary computation to be carried out in smaller increments, making
it possible to gauge progress on an individual scale.

2.4 Coevolution

Most experiments in this thesis are based on coevolution, whereby fitness is evalu-
ated using other members of the same population, or members of another population
evolving in the same problem domain, rather than by a fixed evaluation function [2].

Coevolution provides certain benefits over fixed evaluation evolution. Fixed evalu-
ation functions are fine for evolving networks to approximate a known function such as
XOR, but multiplayer games pose different problems to simple function approximation.
Firstly, by what benchmark do we judge our players? Do skill levels at a given game
approach a limit, or can an expert player always learn something to become better
than other experts? The evaluation function in effect becomes the teaching force in
the algorithm, examining its students and demanding that they score higher in the
given test material. If a teacher is of a low calibre, his students, having surpassed him
in skill, will reach a permanent plateau in their skill level, being able to satisfy their
examiner 100% of the time and no longer receiving any pressure to become better. If
on the other hand a teacher is of too high a calibre, he will be unfit to teach beginner

5

students who will have no idea how to begin to pass his tests, and thus will not be
distinguishable from one another as good or bad students.

It is obvious that graded levels of examination are necessary to guide students
from complete ignorance to steadily higher skill levels. Coevolution provides what is
known as incremental evolution [20], in which solutions to large and complex problems
are solved in portions of gradually increasing difficulty. Because testers for fitness
evaluation are always taken from an evolving population in the same domain, testing
difficulty is maintained at a level appropriate to the learners at all times.

A second problem is that multiplayer games often consist of multiple objectives to
be solved in order to be a successful player. Because the challenge in a multiplayer
game is set by the current opponent, being a good player means being able to de-
feat a wide variety of other players with different strategic strengths. For example,
in backgammon one opponent may be particularly good at defensive strategies while
another may focus purely on offensive strategies. These differing opponents are con-
sidered different objectives of the game, and a skilful player knows how to solve each
different objective by having superior strategies in each case. Coevolution is able to
provide a set of opponents of varying skill that test on a variety of objectives per fitness
evaluation, training players to solve multiple objectives. This means that coevolution
is more suited to multiplayer games than using a fixed evaluation function.

Thus, coevolution allows a population the ability to “bootstrap” itself up from
beginner to expert level, by ideally maintaining a diverse set of test opponents, or
teaching set, at an appropriate yet ever-increasing challenge level - without the need
for any human expert knowledge.

There are however many typical problems involved in achieving successful coevolu-
tion. Cycles known as intransitivities can appear whereby individual A beats individual
B, and B beats individual C, but C beats A, causing the population to cycle through
different strategies without making further progress. This is possible in coevolution
as the evaluation criteria is constantly changing, causing learners to focus on different
criteria over time and making it possible to forget earlier learnt strategies [3]. Also,
members of the population with weak overall skill but which pose interesting chal-
lenges in specific strategic areas may not survive long enough to encourage growth in
those areas, thus leading learners to miss some evaluation criteria, a condition known
as focusing [3]. More advanced algorithms for coevolution, including fitness sharing
and hall of fame techniques, are used to work around these issues and promote higher
quality evolution, and are discussed further in Chapter 4.

6

3 Backgammon

Backgammon is an ancient game of skill and luck, in which two players compete to
be the first to bear all of their pieces from the board. Backgammon is at least one
thousand years older than chess [18], with ancestral roots in ancient Mesopotamia and
Persia.

Backgammon is known as a Tables Game, played on a board divided into 4 quad-
rants each with 6 long triangles, known as points, numbered 1 to 24 around the board
on which the pieces of each player are set up symmetrically. The players take turns
rolling two dice and moving their pieces around the board in opposite directions. Game
play is made significantly more complex and interesting through offensive and defensive
tactics – first, it is possible to land on a solitary opponent piece and send it back to
the far end of the board, which must be re-entered on the board before play by the
opponent can recommence. Second, pieces may be stacked on any point and left to
prevent the opponent from moving, as no player may occupy a point already occupied
by two or more enemy pieces.

Thus the game contains two sub-games - one in which the players’ pieces are scat-
tered and may race, attack or defend, and one in which all pieces have been moved
such that attack is no longer possible, corresponding to a simpler race-state game.

Figure 3.1: Backgammon layout and direction of play

3.1 Rules of the Game

The initial setup of the game is as in Figure 3.1; each player has two pieces on his
24-point, three on his 8-point, and five on his 13- and 6-points. Pieces are traditionally
coloured black and white or black and red. Players move in opposite directions from
point 24 to point 1, and must move all pieces first into their home quadrant, points 6
to 1 inclusive, before they may begin moving pieces off the board [9].

Play alternates with each player rolling two dice at the beginning of his turn. Upon
rolling, a player moves his pieces according to the numbers on the two dice, moving
one piece for each die. The same piece may be moved for both dice values but must
be moved for each die separately. For example, if a dice roll shows 3 & 4 (denoted 3-4)
one piece may move 3 and then 4, but not 7 all at once – if the opponent is blocking

7

the points for both the 3 and the 4 moves then that final 7 move cannot be made. If a
player rolls doubles of any number, e.g. 3-3, that player must make four moves of that
number. If any moves cannot be made, the player must move as much as possible. So
for a 3-4 roll, the player must move the 4 if possible, otherwise just the 3.

Players can block each other from making a move by forming walls of two or more
pieces on any point. No player may occupy such a point blocked off by their opponent,
and thus it no longer forms part of the legal moves for that turn, even if the dice dictate
movement to that point.

If a piece is sitting solitary on any point, it is vulnerable to attack. In the case that
a player lands one or more pieces on a solitary piece of his opponent, the opponent
must move that piece to the bar in the middle of the board. Before any further moves
may be made by that opponent, he must place that piece back on the board during his
next turn, requiring a die roll allowing re-entrance onto a point not already blocked by
his enemy. So, a dice roll of 3-4 would allow that piece to return to either point 22 or
21, following which the remaining die roll may be played as usual. A player may not
make any other moves unless all his pieces are off the bar.

3.2 Technical Details

Further to the basic rules are several technical points concerned with more serious
tournament play and gambling.

If a player wins the game while his opponent has yet to bear off any pieces, the win
is known as a gammon and counts for two wins/losses respectively. If the opponent has
any pieces on the bar or still in the quadrant of points 24 to 19 when the other player
wins, that win is called a backgammon and constitutes a triple win/loss respectively
[9]. Backgammons are extremely rare in practice [18].

In addition to the normal game rules, a “doubling cube” is often used. This is a
cube with the numbers 2, 4, 8, 16, 32, and 64 on it, which at the start of the game
is placed in the centre of the board. Before rolling the dice, a player whose turn it
is may propose to double the stakes of the current game, whereby the opponent can
either accept or resign the game. If accepted, the opponent sets the cube down with
the current stakes value face-up, keeping it until he decides to double again.

In major tournament play various extra technical rules and details have been used,
none of which are relevant to this work.

3.3 Strategy

Backgammon has a well-established theory of move strategies generally employed by
more advanced players, including a running game, priming game, and duplication (in
ascending order of complexity) [5]. A running game involves trying to move as quickly
as possible to the end of the board. A priming game involves building consecutive
obstructing walls, known as primes, to impede the opponent’s pieces trapped behind
that wall. A wall covering 6 consecutive points cannot be passed by any opponent
pieces. Duplication involves placing one’s pieces in order to limit the usefulness of the
dice to the opponent, e.g. by positioning pieces such that the opponent has to roll a 2
to hit any of them.

8

3.4 Artificial Intelligence in Backgammon

The game of backgammon has been used for many years as a tool in the study of AI.
Backgammon poses an interesting challenge for AI, as it requires great levels of skill
and sophistication to play at an expert level, yet at the same time is impossible to know
for sure who will win the game at most given moments of play, due to the probabilistic
element introduced through dice rolls.

Early attempts at backgammon learning programs used evaluation functions with
large numbers of hand-crafted features based on expert human knowledge. In 1977
Hans Berliner created BKG, a static evaluation function created by hand without
the use of any machine learning techniques [1, 15]. Despite being hand-made, BKG
proved that human expertise at backgammon could be expressed using static evaluation
functions. Then in 1987 Neurogammon was presented by Tesauro & Sejnowski, which
used the backpropagation algorithm to train multi-layered neural networks on training
sets of move evaluations made by expert human players [15]. This network was a
fair player and won the Computer Olympiad in backgammon in 1989 [16], but did
not play at a master’s level. Following this, Tesauro published TD-Gammon in 1992
[18] which trained neural networks using temporal difference (TD) learning, a learning
method based on updating the value estimate of a current move based on expected
returns, and self-play, whereby a single move-evaluating network is trained by playing
itself at many games of backgammon. By increasing the number of hidden layers
in TD-Gammon’s networks, implementing certain expert knowledge features into the
system, and running for longer training periods, Tesauro was able to create a formidable
backgammon player that not only came close to defeating top masters of the game,
but demonstrated superior strategies not previously understood or valued by human
experts.

Following Tesauro’s work in TD-Gammon, Pollack & Blair presented a paper claim-
ing that Tesauro’s success in backgammon with self-play learning was not as earth-
shattering as it appeared, due to their results that a simple näıve hill-climbing algo-
rithm could come close to achieving similar results to TD-Gammon [10]. They argued
that the success of TD-learning and hill-climbing came more from the basic dynam-
ics of the backgammon domain and learning environment than the self-play learning
algorithm itself.

Tesauro later responded in kind to Pollack & Blair [19], pointing out several weak-
nesses in their argument. First, he argued that the relative difference in benchmarked
skill-levels of hill-climbing versus TD self-play was more significant than Pollack &
Blair had assumed, resembling the difference between an average human player and a
world class champion player. Second, he argued that this weakness in the hill-climbing
approach is due to an inability to extract nonlinear solutions, despite the existence of
hidden nodes in their neural network structures.

Following this clash came the first work in coevolution in the backgammon domain,
by Paul Darwen [2]. Darwen compared coevolution to Tesauro’s TD-learning, and
approached the backgammon learning problem in two stages, first attempting to coe-
volve for the purely linear case of a network with 0 hidden nodes, and then attempting
to coevolve more complex nonlinear solutions for structures including hidden nodes.
He discovered that by using a population of 200 individuals and very long training

9

times (in the order of 80 million games, compared with TD-Gammon’s 1.5 million)
he could evolve networks to a plateau slightly surpassing TD-learning for the linear
case. However, his work on nonlinear networks did no better than the linear case, and
his subsequent analysis of network weights showed that indeed, no nonlinear structure
was being evolved. Darwen states that nonlinear solutions may require infeasibly large
numbers of games to learn the same skills as TD-Gammon, due to the ”all-or-nothing
death-or-survival” [2] approach of coevolution, and the vastly larger weight search space
caused by hidden layers.

This previous research provides the background for this thesis. TD-Gammon proves
that neural networks can be trained to play backgammon at a master level. Pollack &
Blair’s results indicate that the backgammon domain is ideal for coevolutionary learn-
ing, although suffers from apparent intransitivities [10, Section 3.3]. Their hillclimbing
algorithm also obtains a skill plateau considerably lower than that of coevolution or
TD-learning [2, 18]. Darwen’s results indicate that coevolution is useful in the backgam-
mon domain and does very well for linear network structures, but cannot be used to
learn nonlinear structure, possibly due to computational limitations.

3.5 Using Neural Networks for Backgammon Play

Neural networks used to play a game of backgammon typically take up the function
of “move evaluators”, whereby their input state is a representation of a state of the
game of backgammon, and their output a value proportional to the chance of winning
the game from that game state. More complex representations such as Tesauro’s TD-
Gammon networks use up to five output values, one showing the probability of winning
the game, two showing the probabilities of winning and losing a gammon, and another
two showing probabilities of winning and losing a backgammon.

Each time the network chooses a move a list of legal moves is made based on the
game state, the rules of play, and the current roll of the dice. Each move is considered in
turn by evaluating the state of the game after that move would be made, and assigning
each move in the list a score, being a combination of the networks probability of winning
from that state, and its probabilities of winning/losing a gammon or backgammon.
Finally the move with the best score is chosen, and it is the next player’s turn. This
is possible in the backgammon domain because we have a partial model of the game
– although we don’t know what the game state will be for the beginning of our next
turn, we do know exactly what state the game will be in after we make our current
move (and before the opponent makes his next move). This in-between state is known
as an afterstate [14]. The best neural network to play backgammon is the one most
accurately able to predict its chances of winning from any afterstate, and therefore
make moves which maximise the chance of winning throughout the entire game.

10

4 Coevolution for Backgammon

We begin by asking whether coevolution is helpful in training backgammon players.
The level of success of Pollack and Blair’s hill-climbing algorithm [10] is surprising
as hill-climbing is a pared down form of evolution with a population size of just 2,
raising the hypothesis that true evolution with a larger population will not provide any
benefit. We test this by comparing the results of using different population sizes for
coevolution. We also test to see if the incremental evolution provided by coevolution is
necessary, by comparing coevolution to evolution using a fixed fitness evaluation. Then
we use fitness sharing and hall of fame coevolution techniques to try to achieve better
results than those attained by the basic round robin tournament as used by Darwen
[2].

All experiments in this work use the NeuroEvolution of Augmenting Topologies
(NEAT) algorithm for evolution, presented by Stanley & Miikkulainen [13]. This algo-
rithm was developed for evolving network topologies as well as weights, however in this
work topological mutations were switched off and only weights were optimised. NEAT
was first used in this thesis for investigating topological as well as weight optimisation,
however early results were not promising and topological optimisation was abandoned
in favour of other lines of investigation. Algorithm parameters used in this work are
presented in Appendix 8.2.

To provide some metric of how successful our backgammon players are, the bench-
mark player Pubeval was used. Pubeval is a linear backgammon move evaluator func-
tion created by Tesauro, trained on a lexicon of expert human backgammon knowledge
and released to public domain in 1993 [17]. Pubeval plays at an intermediate human
level and has been used as a benchmark by many backgammon learning programs,
including those of Darwen [2], Pollack & Blair [10], and Tesauro [18]. Pubeval is thus
ideal for benchmarking our work in order to compare experimental results to each
other as well as to others’ works. Benchmarking against Pubeval involves periodically
sampling a champion from the evolving population, and using it to play a number
of games of backgammon against Pubeval. These scores are then graphed to give an
external view on how evolution is proceeding – the score of these games has no bearing
on fitness values, and does not change the evolutionary process at all.

4.1 Population Size Comparisons

Population size affects coevolutionary learning strategies in two ways. A larger popula-
tion size can mean a broader range of different teaching set opponents for an individual
to be tested against, and it can mean a wider search as the algorithm moves through
the search space. Pollack & Blair’s results indicate that fair backgammon players can
be trained using a basic hill-climbing algorithm, which is a form of evolution with a
population size of 2, and thus a search width of just one solution. We investigate
whether search width is important for optimisation in the backgammon domain by
comparing evolution with varying population sizes.

For this purpose we use a full round robin tournament coevolution strategy, as
used by Darwen [2]. In round robin coevolution, individuals are evaluated against all
other individuals in the same population, and their final fitness score is the average

11

score received. For backgammon, these scores are the result of playing a number of
backgammon games against each of the other individuals; an average score represents
the proportion of games won by that individual.

Modifications were made to the algorithm for steady-state evolution. Initially a
normal round robin tournament is played amongst all initial population members to
calculate their fitness values. Then, each time a new individual is evolved it is tested
against all other existing members and the results of each game are used to calculate the
new fitness value of both players. Furthermore, fitness values must only be taken from
scores achieved against individuals still in the population, meaning when an individual
has been removed its score history is no longer useful to those that played it. To this
end, an N × N matrix, where N is the population size, is maintained with scores
between individuals. Every time an individual is removed, its replacement is assigned
the same matrix indices, and its entries updated to reflect the scores against the new
individual. Then, at the end of every round, each population member’s fitness is re-
calculated from the matrix.

4.2 Fixed Evaluation vs. Coevolution

Incremental evolution, provided by coevolution, provides evolution with fitness evalu-
ation criteria that evolve along with the skill level of the population. In order to test
whether incremental evolution is useful for training backgammon players, we compare
coevolution to evolution with a fixed evaluation criterion.

For fixed fitness evaluation the benchmark player Pubeval was used as the fitness
evaluator. The fixed evaluation test involves playing each individual against Pubeval
for a series of backgammon games, averaging the scores to get a fitness value between
0 and 1.

For comparison to coevolution the resulting players were also externally bench-
marked using Pubeval. This is different to using Pubeval as a fitness evaluator. As a
fitness evaluator, Pubeval is an active part of evolution, and the scores against Pubeval
are used directly as fitness values. However, during benchmarking, a champion net-
work plays Pubeval for a larger number of games simply to ascertain its score against
Pubeval, which does not affect fitness values or evolution in any way.

4.3 Coevolutionary Strategies

Coevolution entails a constantly changing set of evaluators, which can cause intran-
sitivities as described in Section 2.4. Pollack & Blair demonstrate the existence of
intransitivities between later generational champions [10, Figure 5] which may be pre-
venting coevolution from further optimisation in the backgammon domain.

In order to deal with the presence of intransitivities it is helpful to maintain a diverse
set of opponents for fitness evaluation. This helps to prevent the changing evaluation
criteria from focussing too much on particularly successful strategies, reducing the
probability of cyclic behaviour [3]. Rosin & Belew [11] present methods for maintaining
diverse sets of opponents in coevolution and thus better cope with the intransitivities
seen in the domain, so we compare the use of two of their methods to the round robin
strategy already used, to see if they train better backgammon players.

12

The coevolutionary algorithms compared are single-population round robin tour-
nament coevolution, double-population fitness sharing coevolution, and fitness sharing
using a hall of fame.

4.3.1 Fitness Sharing

Fitness sharing coevolution involves two genetically distinct competing populations for
coevolution, each population being used to evaluate the other. However, rather than
simply using the average score or “simple fitness” value as in round robin coevolution,
fitness sharing aims to take into account similarities of individuals within a population.
An individual is rewarded if it is able to beat an opponent from the other population
that few others can. Likewise, if an individual beats an opponent that everyone else
in the population also beats, then that score does not contribute as much to its final
fitness value. This way, the teaching set of opponents is diversified and important
genetic innovations are more likely to be retained in the population [11].

Each round, a new individual’s fitness is set to 0 and it is tested against each member
of the opposing population. For each opponent j that it defeats, its fitness value is
incremented by 1

Nj
, where Nj is the number of individuals from the same population

also able to defeat opponent j. So the shared fitness for an individual who manages to
defeat opponents with the set of indices X is:

∑
j∈X

1

Nj

Fitness sharing for steady-state evolution requires a slight algorithmic modification,
as with the round robin strategy. First, the two initial populations play a normal fitness
sharing tournament against each other. Then, for each population an individual is bred
and tested against the other population, storing scores as 1

Nj
in an N by N matrix

similar to steady-state round robin, where both populations are of size N . All fitness
values are then re-evaluated from the matrix at the end of the evolutionary round.

4.3.2 Hall of Fame

One of the main problems with coevolution is a phenomenon known as coevolutionary
forgetting [4]. Because coevolution deals with finite population sizes, often individuals
from past generations who provide good evaluation criteria are lost and have to be
rediscovered again later. This can cause cyclic effects in strategy learning, slowing or
stopping the coevolution process. In order to prevent forgetting it may be necessary
to use a coevolutionary memory [8] – the hall of fame (HoF) being one such tool.

A HoF is simply a list of past generation champions – in the steady-state case,
population champions sampled at even intervals. During evaluation, a sample of these
past champions is used in addition to the tester population. This saves potentially
useful genetic material for future generations to be tested against. A steady-state im-
plementation incurs slightly more computational cost than regular evolution because
every time a new HoF sample is taken, all individuals in the current populations must
be tested against the new HoF sample, maintaining identical teaching sets for all pop-
ulation members.

13

4.4 Experimental Setup

For the neural networks to efficiently represent backgammon move selectors, we use a
basic linear version of the representation used by Tesauro’s TD-Gammon [18], with 198
input nodes, no hidden nodes, and 1 output node representing probability of winning.
The input nodes are a hand-crafted representation of the board state, describing the
current positions of all the player’s and opponent’s pieces on the board, off the board,
and on the bar.

Throughout all experiments the simplest version of backgammon is used. No dou-
bling cubes are considered, nor is a gammon or backgammon rewarded or penalised.
Games are played to the end, whereby the winner receives 1 point, the loser 0. Because
evaluations are based on the results of multiple games, an individual’s final fitness score
is averaged to always be a value between 0 and 1 indicating proportion of games won.

The population test uses full round-robin strategy with population sizes 2, 3, 5, 15,
and 141, with respectively 140, 70, 35, 10, and 1 game(s) per opponent in order to have
a total of 140 games per fitness evaluation in all 5 cases. Each test in this experiment
was run to a total of 8 million games.

The fixed evaluation test was run using 15 population size and 140 games per
evaluation against Pubeval, also to 8 million games.

The experimental setup used to compare coevolution strategies of round robin,
fitness sharing, and HoF involves steady-state coevolution with populations of size
15, using 11 games per opponent3, and running for a total of 10 million games per
experiment. For the fitness sharing plus hall of fame model, a hall of fame with a
maximum sample size of 5 is used to supplement the size 15 population.

All experiments were run 10 times and averaged to get the final graphed results
and confidence intervals.

For all benchmarking, Pubeval was used to test champion networks sampled every
200 evaluations. The score against Pubeval is averaged over 1000 games.

3Odd numbers are used for games-per-opponent parameters in most of the experiments in this
thesis. This is simply a nicety making it impossible to have any tie results of 50%.

14

4.5 Results

The results of the population test can be seen in Figure 4.1. By raising the population
size the skill plateau becomes noticeably higher until size 15. After 15, increasing the
population size has less impact on the plateau, at least within the 8 million game
period played here. Population size 141 appears to still be learning after 8 million
games. 95% confidence intervals for these results can be seen in Table 1, sampled every
2 million games. Larger populations are far more consistent than lower populations,
with confidence intervals greater than 50% of the mean for a population of 2, and only
5% for a population of 141.

Figure 4.1: Population size test comparing population sizes 2, 3, 5,
15 and 141.

Population Size 2 3 5 15 141
2× 106 games 68.5% 27.4% 11% 9.1% 5.7%
4× 106 games 54% 22.1% 15% 10.4% 4.8%
6× 106 games 45.8% 20.4% 17.3% 8.1% 5.1%
8× 106 games 46.8% 19.8% 11.7% 7.8% 5%

Table 1: 95% confidence intervals for the population size test sampled
at 2, 4, 6 and 8 million games. Confidence intervals are expressed as
percentage of the mean value at the sampling point.

15

Figure 4.1 demonstrates that population size is important for optimisation in the
backgammon domain, and therefore that evolution with a sufficient population size is
more effective than hill-climbing. This is encouraging, as Pollack & Blair successfully
trained backgammon players using a hill-climbing algorithm, achieving a plateau of 0.4
against Pubeval [10].

Figure 4.2: Comparison of fixed evaluation evolution using Pubeval
and the dynamic teacher selection of coevolution.

Figure 4.3: Comparison of round robin, fitness sharing, and fitness
sharing + HoF.

Figure 4.2 shows evolution using Pubeval as a fixed fitness evaluation. We compare
to the least successful results for coevolution obtained in the population test, demon-
strating that it performs far worse than all coevolution results obtained so far, plateau-
ing immediately at just under 0.04. 95% confidence intervals for the fixed evaluation

16

strategy were between 90-105% of the mean, with a maximum score of 0.079 during
benchmarking. These results show that we need coevolution to provide incremental
evolution for evolving backgammon players – by using fitness tests of steadily increas-
ing difficulty coevolution far outperforms evolution, which gets stuck very quickly on
a low skill plateau.

Figure 4.3 shows the results of the coevolution strategy comparisons. The round
robin approach was able to beat pubeval 40% of the time after 2 million games, getting
to 43% after a further 8 million games. The fitness sharing and hall of fame models learn
slightly slower at first, which is not surprising given the extra numbers of games played
per generation. However, neither of these approaches succeed in scoring a higher score
than the normal round robin tournament. 95% confidence intervals remain between
8-11% for all three strategies.

Pollack & Blair’s results in [10] indicate the presence of intransitivities in the
backgammon domain, and so we expect to achieve better results than round robin
coevolution by using fitness sharing and hall of fame techniques, designed to diversify
teaching sets to better cope with intransitivities. However, the results of Figure 4.3
demonstrate that there is in fact no improvement. We therefore go on in the next
chapter to investigate the hypothesis that the backgammon domain is actually not in-
transitive, because there was no improvement to coevolution by using methods designed
to deal with intransitivities.

17

5 Transitivity Analysis

The fitness sharing and hall of fame strategies are designed for coevolution in an intran-
sitive domain [11], and given the evidence that intransitivities exist in the backgammon
domain [10] we expect them to provide an improvement over simple round robin tour-
nament coevolution. However, the results of Chapter 4 show that there is in fact no
improvement. In this chapter we investigate the hypothesis that we found no improve-
ment because the backgammon domain is transitive, and therefore that coevolution in
the backgammon domain is not being impeded by intransitivities.

5.1 Champion Tournament Grid

In order to examine this hypothesis we need some way of inspecting the domain for
evidence of intransitivities. Rosin & Belew [11] demonstrate the use of a grid displaying
results of a tournament amongst generational champions in order to visualise champion
progress during learning. Each generation the population champion is saved, and at the
end of coevolution the champions are tested against all other champions in a full round
robin tournament. A grid is set up with rows and columns corresponding to population
champions going from left to right and top to bottom. Results of each contest are shown
as a black dot if the row-champion won, or a white dot if it lost. As both columns and
rows represent the same list of champions, this grid is symmetric about the diagonal.
In this way it is possible to detect intransitivities. In transitive domains where every
generation outperforms the previous, we should see a black triangle in the lower-left
diagonal half of the grid, and a white triangle in the upper-right. In the presence
of intransitivities the grid colouration should become mixed, with white dots in the
lower-right black triangle and vice-versa.

We ran a further round robin experiment for 20,000 evaluations, saving champions
periodically every 100 evaluations and later running a full round robin tournament
between these champions.

Figure 1(a) shows the results of our first experiment using 30 games per match.
Below this is the benchmarked result of each champion, played against Pubeval for
1000 games each. The grid colouration is very mixed, which indicates the presence of
intransitivities. However, the backgammon domain is not deterministic – the luck of
the dice can sometimes mean that a poor player beats a more advanced player, and
thus results of these backgammon matches may be affected by noise. To investigate
if this is the case, further experiments were run using higher numbers of games per
match, as seen in Figures 5.1(b) and 5.1(c). We see by using 200 games per match that
the grid resolves into a pattern of three sections in Figure 5.1(c) – a leftmost section of
almost complete blackness indicating strictly improving players, followed by a section
of light black and white mixing, and finally a triangle of heavy black and white mixing
in the bottom right corner. Using more games per match than 200 ceases to have a
noticeable effect on the grid’s appearance.

The two vertical lines traced on the Pubeval results beneath Figure 5.1(c) demarcate
these three sections. The steepest part of the learning curve corresponds almost exactly
to the darkest section of the grid, following which comes a section of slower learning,
and finally a noisy plateau in skill corresponding to the final mixed black and white

18

(a) 30 games per match (b) 90 games per match (c) 200 games per match

Figure 5.1: Round robin grids with different numbers of games per
match. The high level of black and white mixing in (a) seems to indi-
cate intransitivities, while (b) and (c) show by increasing the games
per match that apparent early intransitivities are caused by noise in
the fitness evaluations.

section of the grid.
Unfortunately a question still remains. The lower-right grid section of mixed black

and white colouration could be demonstrating that the plateau is caused by intransitiv-
ities amongst later generations, whereby cycling strategies cause evolutionary progress
to slow down or stop and therefore champions get beaten by previous generations. How-
ever, it is clear from Figure 5.1(c) that this black and white mixing is only occurring at
the phase of evolution when benchmarked skill against Pubeval is not increasing very
quickly. During such a phase of evolution, champions are clearly not outperforming
their ancestors to a large degree, and we expect the outcome of a game between such
similar individuals to be very unpredictable for a stochastic game such as backgammon.
This would therefore provide such a mixed colouration to the grid, even in a purely
transitive domain.

It is clear from Figure 5.1(c) that there are no intransitivities between champions
in the first grid section, as shown by the solid black coloured left edge to the grid.
However, it is still not clear whether intransitivities exist between later champions,
during the last sections of evolution. We therefore need a final test to investigate
intransitivities during periods of low evolutionary improvement.

5.2 Plateau Analysis

We devised a final experiment to investigate intransitivities between later generational
champions. If there are intransitivities occurring, individual champions would still see
an improvement over each other per generation. That is, for a skill plateau in a purely

19

transitive domain there will be no local or global improvements in skill, while for a
plateau caused by cycling strategies in an intransitive domain we will still see constant
local improvements between neighbouring generations. In order to test this, we first
made each champion play the champion from the previous generation, playing 10,000
games per match to be certain of minimal interference due to the noise inherent in the
fitness evaluation process. Then, each champion also played the champion from two
generations previous. This way, if the domain is transitive, we will see the results of
these matches converge to 0.5 (a tied match), with both first-previous champion and
second-previous champion results following each other closely. If the plateau is caused
by intransitivities however, we expect to see the first-previous results converge to a
value slightly greater than 50%, and to find cycles within the data whereby champion
A defeats champion B, B defeats C, and C defeats A. Figure 5.2 shows the results.

Figure 5.2: First-previous and second-previous generation champion
tests.

The results of these matches do indeed converge to 50%, and both first-previous
and second-previous tests follow each other very closely. A deeper inspection was made
of the raw data to search for cycles that may not have shown up on the graph. These
could be identified by first scanning for an individual A that beats the first-previous
champion B but loses to the second-previous champion C, and then examining whether
B beats C or not. If cycles with very small win/loss margins in the order of 1-2% are
present, they may not be clearly visible on the graph. However, no cycles at all can be
identified, even with such small win/loss margins.

There is now strong evidence indicating that there are no intransitivities amongst
generational champions of coevolution in the backgammon domain. Though Pollack &
Blair demonstrated apparent cycles of expertise in later champions [10], it is clear from
Figure 5.1 that with too few games per match, results are unreliably noisy. As their
work involved at most 8 games per fitness evaluation, it is clear that their observed
cycles are not the result of intransitivities, but noise effects corrupting the optimisation
process. This explains why fitness sharing and hall of fame techniques provided no

20

benefit to coevolution of backgammon players, because these methods only improve
coevolution in the presence of intransitivities.

We see in Chapter 4 that coevolution benefits from having a large population size,
however we know now that the backgammon domain is strongly transitive, meaning
that maintaining a diverse teaching set of opponents is not important to successful
evolution. This shows that in the backgammon domain, population size is important
to coevolution for a broad search, but not for a diverse teaching set, as described in
Section 2.4.

These results also help to illustrate Tesauro’s TD-Gammon success [18]. Tesauro
used self-play to train his networks, whereby a network learns from games played
against itself, meaning the population size is effectively just 1. Although Tesauro used
reinforcement learning rather than evolutionary computation, the transitivity of the
backgammon domain still helps explain why the self-play technique works so well.

Thus we are left with an interesting challenge: can this domain transitivity be
exploited for better coevolution strategies, taking less computational effort and out-
performing the limitations discovered by Darwen [2] for optimising nonlinear network
structures?

21

6 Efficient Evaluation in Transitive Games

In order to exploit the domain transitivity discovered in the previous chapter, three
new fitness evaluation strategies are proposed. “Binary rank placement” exploits rank
transitivity using a binary search to play only a subset of the population during fitness
evaluations. “Single evaluator” uses a network from the evolving population to test all
other networks, with their respective fitnesses based purely on that one match. Single
evaluator is based on the hypothesis that, as the domain is transitive, a diverse teaching
set is unnecessary for coevolution. Finally we analyse the probability distribution of
new individuals’ fitness rankings during the round robin scheme, and discover that
50% of the time a new individual is ranked worst, and thus is unhelpful to evolution.
This motivates the “losers first” scheme that tests a new individual first against the
worst player in the population, aborting the fitness evaluation if the match is lost and
discarding the newcomer immediately.

In this chapter we compare these strategies to the initial round robin results, and
look at the effects of changing the number of games played per evaluation.

6.1 Binary Rank Placement

The binary rank placement scheme uses a binary search to find a new individual’s rank
within the population. Because of the evidence for domain transitivity we assume that
the ranking order of a population is strictly acyclic in the sense that if a newcomer
beats some population member, it is certainly superior to all lower ranked members as
well.

In the first round, a full round-robin tournament is played between all individuals
to get initial fitness values. These values are translated into the ranked position of
each population member, from 1 to population size N . Whenever a new individual is
introduced to the population it begins by playing a match against the middle-ranked in-
dividual, and the population is divided into two sub-populations. Should the newcomer
win its match, it goes on to play the middle-ranked individual from the upper (higher
fitness valued) half-population, otherwise it plays that from the lower half-population.
This process is incrementally repeated until the newcomer’s correct position in the
ranking order has been discovered, either by losing to the worst player, winning to
the best player, or by having won and lost to a neighbouring combination of players.
Any networks ranked lower than the newcomer move down one rank, and the worst
individual is removed in preparation for the next generation.

This form of binary search thus ensures a newcomer only need play O(log(N))
opponents in its fitness evaluation, instead of O(N).

6.2 Single Evaluator

Coevolution provides both incremental evolution and potentially diverse teaching sets
to the evolutionary process, as described in Section 2.4. Single evaluator ranking makes
the extreme assumption that, as the domain is highly transitive, it is possible to get
an accurate fitness evaluation of an individual based on a single match against one

22

opponent, rather than a potentially diverse set of opponents – provided incremental
evolution still occurs.

Single evaluator starts with a full round-robin tournament to ascertain fitness values
of the initial population. The best individual is promoted to “teacher”, and fitness
values of all members of the population are set to be their score against this individual.
Thereafter, each newcomer plays the teacher for one match to get its fitness score.

Because incremental evolution is important for evolving in the backgammon do-
main, this teacher network must be upgraded consistently to allow coevolution to pro-
ceed. Thus, when a teacher is defeated by some proportion of games k, it is replaced
by the individual that defeated it. When a teacher is replaced, all population members
must be retested against the new teacher in order for their fitness values to correctly
relate to newcomers’ fitness values. This is an extra and non-optimal computational
cost, as these extra games do not add anything to the knowledge of the system. Also,
hand-picking this parameter k places responsibility for effective incremental evolution
on the experimenter, rather than allowing coevolution to automate it.

6.3 Losers First

Finally, we investigate the distribution of the rank of new individuals to the population,
combining this with the knowledge of domain transitivity to devise our third fitness
evaluation strategy, losers first.

Figure 6.1: Distribution of rank placements of new individuals.

To calculate this distribution a series of 5 full round robin experiments was run,
each with a population size of 30 and a large value of 101 games per match to reduce
noise in the rank placements. Each experiment was run for 50,000 evaluations. The
results can be seen in Figure 6.1, with 95% confidence intervals. We can see that, while
ranks from best to second-worst have quite an even distribution of around 0.02, 50%
of the time the new individual ranks worst. This reflects the danger of using random

23

mutations in evolution. Clearly, half of the time these mutations are disastrous, driving
a newcomer below the skill level of the worst population member.

This suggests that we can avoid a lot of wasted games by first ascertaining if a
new individual is the worst, and if so aborting further evaluation and removing the
individual from the population ready for the next evaluation.

In the losers first scheme, each time a new individual is introduced it plays its
first match against the worst ranked population member. If it loses, it is immediately
removed from the population and a new individual is generated and tested. This is
reasonable due to the evidence of transitivity, because if an individual is worse than
the worst ranked network in a population, it is also worse than the other members of
that population. If the individual wins however, it continues playing a full round robin
tournament against the remaining population members in order to calculate its fitness
value.

Note that the losers first form of fitness evaluation is only possible using steady-
state evolution, whereby the worst member of the population can be identified before
each fitness test. (In generational evolution, all individuals in a population are tested
in parallel.)

24

6.4 Results

Before testing the single evaluator strategy, we compare it with different values of k,
the score at which a teacher is replaced. Values of 0.65, 0.7, and 0.75 are compared as
these seem intuitively good choices for k, neither too close to a draw at 0.5, nor too
difficult to achieve. The results of this test can be seen in Figure 6.2.

Figure 6.2: Comparison of k values for the single evaluator scheme,
demonstrating parameter sensitivity. These experiments use 30 pop-
ulation size and 51 games per opponent.

These results indicate that 0.7 is a good choice for the following experiments. Per-
formance is worse for a k of 0.65, as this causes the teacher to be replaced too often,
which each time necessitates rematches and wastes games. 0.75 is apparently too high
and doesn’t replace the teacher often enough, causing a low skill plateau in the same
way as the fixed evaluator results in Figure 4.2.

Before testing the binary rank placement and single evaluator schemes, it is nec-
essary to investigate the effect of using different numbers of games per opponent for
fitness evaluations. The reason for this is that both schemes use a significantly lower
number of opponents per fitness evaluation. For example, with a population size of 15
and 11 games per opponent, round robin and losers first use 154 games per complete
fitness evaluation, single evaluator uses just 11, and binary placement uses a maxi-
mum of 44. Results in Chapter 5 demonstrate that noise is a fundamental issue with
backgammon fitness evaluations, and thus using more games per opponent may be
necessary.

First we examine the binary rank placement scheme, testing it at 15 population
size using 11, 41, 81, and 101 games-per-match.

As seen in Figure 6.3, raising the number of games per opponent gives an im-
provement in the plateau level with 101 games per opponent giving a score of around
42% by 10 million games, similar to the round robin scheme. Note that in this and
following graphs in this chapter, we refer to population size and games-per-opponent

25

Figure 6.3: Comparison of games-per-match for the binary rank place-
ment scheme.

parameter settings using the form (P,G), where P = population size and G = games-
per-opponent.

Following this the single evaluator scheme was tested, also using 15 population size,
with 11, 31, 41, and 81 games-per-match.

Figure 6.4: Comparison of games-per-match for the single evaluator
scheme.

Figure 6.4 shows that increasing the games per opponent to 41 raises the skill
plateau, however by increasing it further to 81 we see a decrease in skill level. This is
because extra unnecessary games are being played per match, making the algorithm
slower. So there appears to be an optimal choice of games per opponent, trading off
between speed and correctness of fitness evaluation.

26

Finally, the comparison of losers first, round robin, single evaluator and binary rank
placement can be seen in Figure 6.5.

Figure 6.5: Comparison of losers first, round robin, single evaluator
and binary rank placement.

The losers first strategy provides a clear gain in optimisation speed. It plateaus at
a slightly higher level than round robin, achieving almost 45% against Pubeval, and it
reaches that plateau much faster.

Binary rank placement fares the worst, with a slower learning curve and a plateau
equal to the single evaluator scheme. It is unable to surpass round robin however. This
indicates that the gain achieved by playing fewer opponents is outweighed by the extra
games necessary for correct evaluation per opponent.

The single evaluator scheme optimises comparably well to the round robin scheme,
starting with a steeper learning curve but soon tailing off to achieve a plateau of 1-
2% worse than round robin. This is due to the k parameter introduced by the single
evaluator scheme. We see from Figure 6.2 that results are sensitive to this parameter,
and Chapter 4 demonstrates that incremental evolution provided by coevolution is
very helpful to the optimisation process (Figure 4.2). By hand-picking the criteria for
incremental evolution, rather than allowing coevolution to provide it automatically, we
are introducing a source of error to the system, causing enough loss of accuracy to
render this strategy less efficient than round robin.

27

6.5 Analysis

The binary rank placement results in Figure 6.3 show a major problem with binary
rank placement. The stochastic nature of backgammon, which can in rare cases allow
a beginner to beat a more advanced player, means that fitness evaluation is funda-
mentally noisy. Reliable fitness testing must use an appropriate number of games per
opponent, as can be seen in the tournament grids of Figure 5.1, where 30 games per
opponent is clearly unreliable in light of the results of using 200 games per opponent.
In the round robin case, an individual’s rank in the population is not determined until
the end of all evaluation games. However, in the binary rank placement scheme it is
important to have some clear idea of an individual’s relative rank placement after every
individual. This means that though there is a gain in dropping the number of oppo-
nents played from O(N) to O(log(N)), the necessary increase in games per opponent
outweighs this.

For the single evaluator scheme, we see from Figure 6.5 that the best results obtained
for a population size of 15, using 41 games per opponent, are almost as good as the
round robin case with 11 games per opponent, indicating that optimisation can proceed
well without a diverse set of opponents. However, by increasing the games played with
single evaluator to just 81 we see a dramatic drop in learning speed, while the round
robin scheme is learning well at 154 games per evaluation! In order to understand
this it is important to note the sensitivity of the system to the k parameter, which
dictates how often the teacher network will be replaced. This creates a new source
for inefficiency, because the dynamic incremental evolution capability of coevolution is
lost – something already proven to be necessary for coevolution in Section 4.2. Thus,
when k is too low this causes teachers to be replaced too often, requiring constant
re-evaluations and wasting many valuable computational cycles, while when k is too
high we get a too-low plateau, a similar effect to the fixed evaluator evolution results in
Figure 4.2. These effects can be seen in Figure 6.2, where 0.75 seems to be already too
high, while 0.65 is too low. Because of this loss of coevolution’s automatic incremental
evolution, the single evaluator scheme is less efficient than simple round robin.

Despite their inability to outperform round robin, the binary rank placement and
single evaluator results indicate that the important bottleneck to coevolution in the
backgammon domain is not the number of opponents used in fitness evaluations, but
the number of games. In other words, a diverse teaching set is not required, however
it is very important to carefully deal with the noise inherent in the fitness tests.

Our final results indicate that we are able to get faster learning than the round
robin scheme using the losers first strategy. This is due to successfully exploiting both
the newcomers’ rank distribution, which shows that 50% of the time our newcomer is
unhelpful to evolution, and the domain transitivity, which means that if a newcomer is
worse than the worst population member, it is worse than each of the other members
of the population as well.

Darwen predicts that the number of games needed to evolve nonlinear structure
using coevolution for backgammon players is infeasibly high [2]. In the final chapter
we run longer experiments in the order of 20 million games each using the losers first
strategy for both linear and nonlinear network structures, to see if losers first can evolve
superior players in the nonlinear case within a feasible time-frame.

28

7 Nonlinear Optimisation

Finally, we use the losers first strategy for evolving nonlinear network structures to see
if we are now able to outperform linear network structures.

We can achieve more efficient steady-state coevolution with losers first, however we
need to choose appropriate population size and number of games per fitness evaluation.
We have already seen that a large population is helpful (Section 4.1), and that as few
as 41 games per evaluation can be used for successful coevolution of backgammon
players (Section 6.4). Darwen uses round robin with a population size of 200, playing
10 games per opponent for a total of 1990 games per evaluation [2]. This many games
per opponent is clearly excessive, in light of the 41 games per evaluation used by single
evaluator. However, for longer testing it does appear desirable to use population sizes
larger than just 15 as we have done so far. As can be seen in Figure 4.1, population
size 141 starts learning more slowly than population size 15 but performs higher after
2 million games, achieving a better score and still improving at 8 million games.

In order to find an appropriate population size and games-per-match setting for
longer nonlinear tests, we begin by contrasting Darwen’s experimental setup – round
robin experiments using 200 population size and 10 games per opponent, with the same
using just 1 game per opponent. We then compare this with a population with 100
members and 1 game per opponent to see if 200 members is excessive, and finally we
compare these to a losers first experiment also using 100 size population and 1 game
per opponent.

With the results of this experiment we go on to run our final experiment, evolving
nonlinear networks using 3 and 5 hidden nodes with the losers first coevolution strategy.

7.1 Experimental Setup

For the linear network structures we use the same structure as all previous experiments
in this work. For nonlinear networks we introduce a hidden layer, testing one network
with 3 and one with 5 hidden nodes. The initial comparison of larger populations
compares 200 population size with 10 games per opponent, 200 population with 1 game
per match, and 100 population with 1 game per match, using round robin. Additional
runs using 100 population and 1 game per match were run using the losers first scheme,
for reassurance that we still gain in efficiency at a larger population size.

The nonlinear experiments both use the losers first scheme, with 100 population
size and 1 game per match. Because of this a slight modification was made to the losers
first scheme for all experiments in this chapter. The initial match played against the
current worst network in the population needs to be reliable. Playing just one game
against the worst player and discontinuing all further evaluation on the result of that
game is unwise due to the noise inherent in backgammon games. Thus, the first match
against the worst player is always played using 11 games, while the remaining round
robin games are played at the lower games-per-match setting.

The experiments using 3 hidden nodes were run for a total of 20 million games.
However, experiments with 5 hidden nodes were so slow that they were abandoned
after 5 million games. An extra round of experiments using losers first for linear
structure was run to 20 million games for comparison, also using 100 population size

29

and 1 game per opponent.
All experiments in this section were run 10 times and averaged to get graphed

results and confidence intervals.

30

7.2 Results

Results of the population size comparisons can be seen in Figure 7.1.

Figure 7.1: Comparison of population size 200 with 10 games per op-
ponent to population 200 with 1 game per opponent, and population
100 with 1 game per opponent. Losers first with population 100 and
1 game per opponent is also compared. Confidence intervals for all
curves at a given sample point are between 8 and 10% of the sample
value.

We see that using 1 game per opponent instead of 10 for population size 200 is an
order of magnitude faster at optimising. This confirms our prediction that 1990 games
per evaluation is unnecessarily high. A population size of 100 with 1 game per opponent
is even faster, using just 99 games per evaluation. Losers first still outperforms round
robin at this population size.

Obviously further efficiency can be gained over the experimental settings used by
Darwen by a more appropriate population size and games-per-match setting. Using
population size 100 and 1 game per match, we test nonlinear structure for longer
experiments as seen in Figure 7.2. We include results of a longer experiment using
linear structure (0 hidden nodes) for comparison.

We wanted to run all the longer experiments for 20 million games each, however
the heavy computational effort of EC became a problem. Networks with 3 hidden
nodes have 3 times as many weights as a linear network structure, meaning 3 times
more calculations for every move that is considered. Similarly, a network with 5 hidden
nodes takes 5 times as many calculations per move considered. Because of this, though
the linear network setup is able to play 30 million games after 120 hours, networks with
3 and 5 hidden nodes play just 10 million and 5.5 million respectively. Thus, after 120
hours4 we decided to abandon the 5 hidden nodes network to focus on using 3 hidden
nodes.

4120 hours is the maximum wall-time afforded us by the computing cluster used for these experi-

31

Figure 7.2: Comparison of losers first scheme using nonlinear networks
with 3 and 5 hidden nodes, and a linear network with 0 hidden nodes.
Experiments with 5 hidden nodes were abandoned due to infeasible
computational times. Confidence intervals for all curves at a given
sample point are between 8 and 10% of the mean value at the sampling
point.

Figure 7.2 displays the results of the nonlinear experiments. Despite a clear effi-
ciency gain using losers first, 100 population and just 1 game per match, we are still
unable to evolve better backgammon players using nonlinear structure.

The network with 3 hidden nodes has not reached a clear plateau after 20 million
games, and though it is still possible that after many more games these nonlinear struc-
tures could be optimised using coevolution to outperform linear networks at playing
backgammon, the time necessary to test this hypothesis is unfortunately too long for
the scope of this work, being in the order of one month per experiment.

Comparing to Tesauro’s TD-Gammon [18] we see that his players used significantly
more than 5 hidden nodes to achieve well above the linear networks skill level. With
10 hidden nodes TD-Gammon achieved a score of 52.7% against Pubeval, with 20 it
achieved 57.1%, and with 40 it achieved 61.1% [19, Table 1]. Darwen demonstrates
that coevolution can achieve higher than TD-learning in the backgammon domain for
linear network structures, however to compete with Tesauro’s nonlinear structures we
would need to use 40 hidden nodes – clearly infeasible, as experiments using networks
with just 5 hidden nodes are already running far too slowly. For nonlinear network
structures it appears that evolutionary computation is simply too slow.

ments. In order to achieve 20 million games with 3 hidden nodes, the entire population was saved at
the end of the first 120 hours, and the experiment was restarted using the restored population.

32

8 Discussion

This thesis presents an analysis of coevolution techniques in the backgammon domain,
and demonstrates that it is possible to exploit transitive games for more efficient fitness
evaluation.

Coevolution is useful for training backgammon players, benefiting from evolution’s
larger population sizes for a wider search than simpler optimisation strategies such as
hillclimbing. Incremental evolution provided by coevolution is also very important,
providing fitness tests that evolve in tandem with the players, encouraging far more
growth than a fixed evaluation scheme.

However, the backgammon domain is almost purely transitive, and does not require
a diverse teaching set to train from, which explains why no gain in optimisation is
achieved through techniques such as fitness sharing or a hall of fame. Because of this,
the single evaluator scheme can train backgammon players comparably as well as round
robin coevolution.

The domain also suffers from a noisy fitness test, due to the nature of the game of
backgammon, which means many games must be played to confidently gauge fitness
values. This explains why binary rank placement fails to achieve more efficient opti-
misation than round robin – because it is important to have an accurate score against
each opponent played, more games must be played per opponent and this offsets any
benefit gained through playing less opponents.

The ranking distribution of coevolution in the backgammon domain can be exploited
for more efficient optimisation. During coevolution, a newcomer will be worse than the
worst player in the population approximately 50% of the time, meaning that it will
not contribute useful genetic innovations to the evolving population and will not aid in
optimisation. Other ranks are roughly evenly distributed. This has been successfully
exploited for more efficient fitness testing using the losers first strategy. Losers first
successfully evolves players more quickly and to a higher skill level than other fitness
evaluation strategies, using linear network structures.

Finally, coevolution of nonlinear network structures still fails to achieve higher
than linear network structures within a feasible time-frame, even using the losers first
strategy. Darwen concludes that the number of games necessary to evolve nonlinear
structure for the game of backgammon is impractically high [2]. By increasing the effi-
ciency of coevolution using losers first, as well as a more optimal choice of parameters,
we hoped to outperform our linear networks, however we remain unable to surpass
Darwen’s limitations.

8.1 Related Work

The research motivating this thesis comes primarily from three sources: Tesauro’s
TD-Gammon [18], Pollack & Blair’s hillclimbing for backgammon training [10], and
Darwen’s coevolution of backgammon players [2].

Tesauro’s TD-Gammon has already been compared to coevolution by Darwen in
[2]. Though coevolution is able to outperform temporal difference learning for a linear
network structure, albeit taking an order of magnitude more training games [2, 18], it
remains unable to evolve nonlinear structure necessary to outperform linear networks.

33

Pollack & Blair achieved a surprising level of success training backgammon using
hillclimbing techniques in [10]. The results of this thesis indicate that coevolution
outperforms hillclimbing techniques through having a population size greater than 2.
Pollack & Blair’s networks plateau at an average score of 0.4, with a single network
achieving 0.45, while the results of this work achieve a plateau as high as 0.48, with in-
dividuals scoring as high as 0.53. Pollack & Blair also develop intransitivities amongst
later generational champions, which we show are due to noise in their fitness evalua-
tions.

Finally, an increase in coevolution efficiency has been achieved over the round robin
tournament method used by Darwen, using the losers first strategy. Also, Darwen’s
use of 1990 games per evaluation is unnecessarily high, by about a factor of 10. Using
a population size of 100 and just 1 game per match, giving a total of 99 games per
evaluation for normal round robin, provides further efficiency gains to coevolution.
To illustrate this, Darwen’s networks reach a score of 0.4 against Pubeval after 8
million games [2, Figure 4], while the losers first strategy reaches 0.4 in just over 1
million games (Figure 7.2). Despite these gains in efficiency, Darwen’s observation
that nonlinear structure is not being learnt through coevolution still holds.

8.2 Directions for Future Research

This work shows that the backgammon domain is noisy yet transitive, and that the
ranking distribution of round robin coevolution can be effectively exploited for more
efficient fitness evaluation, however much more by way of analysis and exploitation can
be done in this domain.

Techniques useful for noisy domains have yet to be applied to these strategies, such
as Darwen’s and Pollack & Blair’s use of “canned dice”, whereby pairs of games are
played using the same pseudo-random number sequence for dice rolls, with players
taking turns playing the opening move [10]. Such techniques could go far in decreasing
the number of games necessary for learning backgammon.

Of course, optimality of software and experimental setup also remains an issue.
Our experiments ran for no longer than 20 million games each, which may not be long
enough for rigorous testing of a coevolutionary method, yet such experiments typically
needed an entire week to run. Methods for distributing evolutionary calculations over
parallel processors, as well as optimisation of code for backgammon games as well as
network calculations, could go far in assisting further analysis.

Further work in this domain could also involve a more intelligent approach to learn-
ing nonlinear structure for neural networks. Topological evolution, which was briefly
experimented with in the early stages of this thesis, remains to be properly inves-
tigated, as well as directed search methods for slowly increasing numbers of hidden
nodes. Combinations of topological evolution with reinforcement learning techniques
such as TD-Gammon’s temporal difference learning method might also yield interesting
results, given the success of TD-Gammon.

Finally, the analyses and new approaches to fitness evaluation in this work are
certainly not limited to the game of backgammon. Clearly, careful domain analysis
offers possibilities for more efficient coevolution in any domain. While new research
often focuses on the development and proof of superior algorithms for generalised cases,

34

this work demonstrates the importance of more rigorous domain analyses to aid in our
understanding of why some techniques work, why some do not, and how we can best
tailor algorithms to work in specific domains.

35

Appendix: Algorithm Parameters

For reproducibility, we present the evolutionary algorithm parameters used in this work
here.

The algorithm used was based on the NEAT algorithm [13], with topological mu-
tation rates set to zero. Parameter settings used are as follows:

• All parent species and organism selection done by roulette wheel selection.

• Unlimited number of species with a similarity threshold of 0.5.

• Probability that a new network is obtained by mating set to 0.7. If mating is not
chosen, mutation is automatically performed.

• Probability that mating takes place between 2 parents from different species set
to 0.25.

• Probability of mutation occurring after mating set to 0.4.

• Probability of single point crossover (rather than multi-point) set to 0.8.

• Probability of mutating link weights set to 0.9.

– 0.75 chance of a link mutation incrementing link weight by δi ∈ (−0.5, 0.5).
Otherwise, link mutation replaces link weight by δr ∈ (−1, 1). δi and δr
chosen from even distributions.

• All other mutation probabilities set to 0.

36

References

[1] Berliner, H. (1977), Experiences in evaluation with BKG: A program that plays
backgammon, in Proceedings HCAI-77, Cambridge, MA, pp 428-433.

[2] Darwen, Paul J. (2001), Why Coevolution beats Temporal Difference learning
at Backgammon for a linear architecture, but not a nonlinear architecture, in
Proceedings of the 2001 Congress on Evolutionary Computation.

[3] de Jong & Pollack (2004), Ideal Evaluation from Coevolution, in Evolutionary
Computation Vol 12, Number 2.

[4] Ficici & Pollack (2003), A Game-theoretic Memory Mechanism for Coevolution.
in Proceedings of the 2003 Genetic and Evolutionary Computation Conference, pp
286-297.

[5] Magriel, Paul (1976), Backgammon. Quadrangle/The New York Times Book Co.
ISBN 0-8129-0615-2.

[6] Minsky & Papert (1969), Perceptrons, Cambridge, MA: MIT Press.

[7] Mitchell, Tom M. (1997), Machine Learning, McGraw-Hill, ISBN 0-070-42807-7.

[8] Monroy, Stanley, Miikkulainen (2006), Coevolution of Neural Networks using a
Layered Pareto Archive, in Proceedings of the 8th annual conference on Genetic
and evolutionary computation, pp 329-336.

[9] Morehead, Morehead, & Mott-smith, Hoyle’s Rules of Games (2001), Third Re-
vised and Updated Edition, Signet, 321-330. ISBN 0-451-20484-0.

[10] Pollack & Blair (1998), Coevolution in the Successful Learning of Backgammon
Strategy, in Machine Learning Vol 32, Number 3, pp 225-240.

[11] Rosin & Belew (1997), New Methods for Competitive Coevolution, in Evolutionary
Computation Vol 5, Number 1, pp 1-29.

[12] Russell, Stuart J. & Norvig, Peter (2003), Artificial Intelligence: A Modern Ap-
proach (2nd ed.), Upper Saddle River, NJ: Prentice Hall, ISBN 0-137-90395-2.

[13] Stanley & Miikkulainen (2002), Evolving Neural Networks through Augmenting
Topologies, MIT Press Journals, in Evolutionary Computation Vol 10, Number 2,
pp 99-127.

[14] Sutton & Barto (1998), Reinforcement Learning: An Introduction, MIT Press,
Cambridge, MA, ISBN 0-262-19398-1.
Also online: http://www.cs.ualberta.ca/~sutton/book/ebook/the-book.html

[15] Tesauro, Sejnowski (1989), A Parallel Network that Learns Backgammon, in Ar-
tificial Intelligence Vol 39, Issue 3, pp 357 - 390.

37

[16] Tesauro (1989), Neurogammon Wins Computer Olympiad, in Neural Computation
Vol 1, pp 321-323.

[17] Tesauro (1993), FTPable benchmark evaluation function, Forum archives of
rec.games.backgammon, retrieved 21-07-2008.
http://www.bkgm.com/rgb/rgb.cgi?view+610

[18] Tesauro, G. (1995), Temporal Difference Learning in TD-Gammon, in Communi-
cations of the ACM, March 1995 / Vol. 38, Number 3.

[19] Tesauro, G. (1998), Comments on “Coevolution in the Successful Learning of
Backgammon Strategy”, in Machine Learning Vol 32, Number 3, pp241-243.

[20] Winkeler & Manjunath (1998), Incremental Evolution in Genetic Programming,
in Genetic Programming 1998: Proceedings of the Third Annual Conference, pp
403-411.

38

