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Chapter 1

Introduction

SLAM stands for Simultaneous Localization And Mapping. It is a fundamental topic in Autonomous
Systems and Robotics as it represents one of the most basic skills that any robot requires in order
to be truly autonomous. This skill will allow a robot placed in an unknown environment at an
unknown location to simultaneously build a consistent spatial representation (a map) and determine
its location within this map.

The classical approach to solve the SLAM problem was presented long ago [21] and many alternative
solutions have been published since. The objective of any SLAM algorithm is to estimate as
accurately as possible both the map and the robot location and their uncertainties based on the
information conveyed by one or more sensors. The potential application of SLAM is incredibly wide,
ranging from indoor and outdoor robots to underwater and aerial vehicles. Despite the fact that
the SLAM problem is considered theoretically solved, many new developments are published every
year that aim at the definition of a simple, practical and affordable solution, and try to overcome
many of the practical issues that remain unsolved.

The standard approach to solving the SLAM problem is considering the robot pose and the map as
a process that needs to be estimated. In such a process, the robot moves within the environment
taking measurements that convey certain information that can be related to the estimation of its
position within the map. This approach is a direct match to the state estimation methods, where
certain process is estimated using information about both the dynamics of the process and the
information that is obtained through measurement.

The range of sensors used to measure the environment and convey information about the robot
pose and the map, vary as much as the algorithms published during the last years. Laser range
scanners are considered one of the most robust measurement devices due to their accuracy, though
they present some disadvantages such as the price and limited range of applicability. Most laser
range sensors are only suitable for indoor environments and those which are valid for outdoors are
extremely expensive.

Computer Vision based approaches have receive a lot ot attention in the recent literature due to
the flexibility and affordability of cameras. A lot of the reseach in the SLAM topic is nowadays
based on some form of visual SLAM.

7



8 CHAPTER 1. INTRODUCTION

1.1 Related Work

S. Pfister [18] approaches the problem of building a map using a robot equipped with laser range
scanner by extracting a set of segments and their uncertainty from the raw laser scans data. They
present an algorithm that first extracts a simple set of lines using the Hough transform and then
merges those lines through a line fitting algorithm. In order to estimate the uncertainty of the
obtained lines, error models for the laser scanner are used. Their approach keeps a global map
consisting of lines that are re-merged at every robot location where a new laser scan is obtained. The
essential disadvantage of this approach is the need to either have an extremely accurate odometry
measure to perform a correct line fitting from one robot pose to the next one, or the definition of
very complex correlation terms in the error models for the fitted lines. F. Lu and E. Milios [16]
present an alternative method in which laser scans are consistently aligned. Based on the maximum
likelihood criterion they propose a method in which all the local frames (scans at each robot pose)
are kept as well as the relative spatial relationships between them. These spatial relationships are
modeled as random variables and derived from either odometry or matching pairwise scans. They
achieve consistency by using all the spatial relations as constraints to solve for the data frame poses
simultaneously instead of the classical incremental approach.

Despite of the accuracy of laser range scanners, they are still expensive and not practical for many
applications. In the recent literature, cheaper and more flexible measurement devices such as
cameras have gained a lot of popularity in the SLAM community. Cameras represent a cheap and
flexible solution for measuring the environment and they convey information about the map and the
relative pose of the robot. They are flexible as many different feature extraction techniques can be
applied as they are naturally a content rich sensor. From simple corner detectors to very complex
pairwise pose estimation methods with omnidirectional cameras can be used to extract information
about the environment. P. Jensfelt et. al. [13] present a method based on the extraction and
matching of image features using a single affordable camera. By means of a modified rotationally
variant SIFT [15] descriptor they consider only a few high quality image features to represent the
map and use in a SLAM algorithm. As a single camera is used only bearing information about the
image features is known.

A.J. Davidson et al. [2] also approach the SLAM problem with a single camera. Furthermore they
present a real time algorithm that can recover the 3D trajectory of a single uncontrolled monocular
camera moving rapidly through a previously unknown scene. They apply their methods to a
humanoid robot equiped with a wide vision monocular camera moving in small circles. However,
they also included the use of a gyro as an additional sensor in the SLAM algorithm. Their approach
is based on the on-line creation of a sparse persistent map of natural landmarks within a probabilistic
framework.

Alternative approaches to SLAM using cameras also include more complex devices such as stereo
vision cameras or omnivision systems. Using an omnidirectional camera, O. Booij et. al. [3]
present a method in which by measuring similarity [14] between images taken at every robot pose
they build a topological map that is then used for navigation. They achieve robustness by means
of the epipolar geometry and a planar floor constraint that allows the computation of the relative
heading of pairwise images. By means of image similarity the robot equipped with the camera is
capable of recognizing previously seen areas.

As we have seen, the wide range of possible features that can be extracted from any measurement
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device yields an enormous amount of possibilities with regard to the feature representation (i.e. the
map can be 2D landmark locations, bearing, 3D positions, distances, etc). J. Folkesson et. al. [8]
propose a feature representation framework that addresses symmetries and constraints in the feature
coordinates. Their approach also allows the features to be initialized with partial information only.
This is particularly useful when using a single camera when at first only bearing information is
available. In this framework the number of dimensions of a feature grows as more information
is gathered. Such a generic approach is also suitable for sensor fusion where laser and camera
information can be combined.

Approaching the feature or map representation with a different angle, R. Eustice et al. [6] present
a method for the estimation of the trajectory of an underwater vehicle using a 5 DOF camera. The
robot trajectory is represented by a history of robot poses and overlapping imagery provide partial
observation of these poses. Their delayed state representation, also termed trajectory based, is
framed in a Kalman Filter state estimator.

1.2 Visual Trajectory Based SLAM

The Kalman Filter [23] (KF) and its variant the Extended Kalman Filter (EKF) are considered the
standard solution to the SLAM problem. They represent a recursive solution to the problem of esti-
mating the state of a process in the presence of certain measurements taken from the environment.
In our robotics environment, the process to be estimated is the map and the robot location, and the
measurements are the features extracted from whichever sensor the robot is equipped with. There
are however a number of difficulties that make the application of the KF SLAM algorithms impossi-
ble to real life applications. Firstly, for large environments where a large map full of features needs
to be created, the computational complexity of most solutions makes the application for mapping
large areas unrealistic and not feasible. Secondly, there is a natural problem associated with the
event at which the robot revisits previously seen areas, the so called loop closing problem.

In this Thesis we present a combined method that aims at the solution of both the computational
complexity and the loop closing problems in the SLAM framework. Using a single omnidirectional
camera, we combine a robust omnivision image matching algorithm, a relative pose estimation
method [4] [14] and a trajectory based state representation [7]. We embed this within an Information
Filter [19] to obtain an Omnivision Trajectory Based SLAM algorithm. We show in our experiments
that our combined method can accurately build a map of the environment in almost linear time
in the size of the map and can accurately close the loop even when the accumulated error in the
odometry is larger than 80 meters in distance and 100 degrees in orientation. Finally we show that
our approach can cope with both the computational complexity and the loop closing problem using
a single omnivision camera for extremely large environments.

1.3 Organization of this thesis

The content of this Thesis is organized in 5 chapters. In Chapter 2 we introduce the State Estimation
problem based on the Kalman Filter solution and its variants the Extended Kalman Filter and
the Extended Information Filter. This chapter represents the theoretical background required to
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understand our approach and is presented with a generic view with no reference but the essential
to our particular implementation. We explore in a linear fashion the probabilistic framework in
which we embed our estimation approach, paying special attention to the derivation of the essential
formulas in the begining (KF and EKF) which make the understanding of the Information Filter
much more accesible. We also present the formal methodology to measure the error introduced
with the Extended Kalman Filter by means of consistency measurement. In Chapter 3 we present
our approach in detail and discuss both our measurement methodology to obtain information about
the environment and the probabilistic framework used to estimate the robot trajectory. We pay
particular attention to the definition of the mathematical form of the state representation and give
detailed information about the computational benefits of the Information Filter for trajectory based
approaches. In Chapter 4 we present our experimental setup as well as the results obtained. We
show by means of three different experiments three essential results. We first discuss an artificially
created data set and explore how the errors introduced by the EKF affect the trajectory estimation.
A data set taken in a small office enviroment is used to illustrate how the loop closure is performed
and how accurate our method is in the presence of a sufficiently bright images. Finally, we present
the largest data set ever used to our knowledge in a SLAM framework where we show how the
loop is effectively closed for an extremely large environment. In Chapter 5 we summarize our
approach and results, and draw the final conclusions and discuss future work. Additionally, two
Appendixes are provided to present some mathematical background and a summary of all the
relevant notation.



Chapter 2

Introduction to State

Estimation

The problem of building a map and localizing a robot within the map can be understood as a
state estimation problem. The robot moving around the environment and taking measurements
represents the process, while the robot location and the map are the state of this process that need
to be estimated. By means of incorporating information about the environment inferred from a
(noisy) sensor device, a state estimation procedure aims at the discovery of the state that best
describes the process at any given time by filtering out the noise. In this chapter we present the
theoretical background related to our work on the state estimation problem (estimating the map
and the relative robot location). We first present the basics of state estimation, namely the Kalman
Filter, and then extend its application to non linear processes, the Extended Kalman Filter. Finally,
we study an alternative representation of the Extended Kalman Filter which presents computational
advantages.

2.1 Kalman Filter

2.1.1 Introduction

The Kalman Filter (KF) is a recursive solution to the problem of estimating the present, past or
future state of a process minimizing the mean of the squared error. The KF is used to estimate
the state x ∈ R

n of a discrete time process that is governed by a linear stochastic difference
equation. Such process consist of two elements: the control of the process (the dynamics) and the
measurements z ∈ R

m taken during the process.

Process Control

The control equation defines the state of the process as a linear combination of the state in the
previous time step, the control input and some error:

11



12 CHAPTER 2. INTRODUCTION TO STATE ESTIMATION

xk = Axk−1 + Buk−1 + wk, (2.1)

where xk is the state of the process in time step k, A(n × n) relates the state in time step k − 1
to the state in time step k (modeling the dynamics), B(n × l) relates the control input u ∈ R

l to
the state xk and wk ∈ R

n is the random variable that represents the process noise at time step
k.

As a convention in the SLAM community, the odometry measurement is usually taken as the control
input , being the error wk in that case the error associated with the odometry model. As we followed
this convention in our work, the words control and odometry will be interchangeable and the error
wk will be defined as the error of the odometry model.

Measurements

The measurement equation defines the measurement prediction as a linear combination of the state
of the process and the error for the measurement model:

zk = Hxk + vk, (2.2)

where zk is the measurement prediction at time step k, H(m × n) relates the state of the process
to the measurement taken at time step k and vk ∈ R

m is the random variable that represents the
measurement error.

Gaussian Assumption

One essential aspect of the KF is the assumption that is made over the random variables (the
noises) vk and wk. They are both assumed to be independent from each other, white, and with
normal probability distribution 1:

p(w) ∼ N (0, Q), (2.3)

p(v) ∼ N (0, R), (2.4)

where Q represents the error covariance of the process, and R the error covariance of the measure-
ment.

Origins of the KF

The KF works in two steps that are recursively repeated, the time update step and the measurement
update step. During the time update step a prediction of the state (a priori estimation) is performed
based entirely on the dynamics of the process. During the measurement update step, this estimation
is updated with the information that the measurements convey (a posteriori estimation).

1Gaussian distribution N (µ, Σ) with mean µ and covariance matrix Σ
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The a priori state estimate is easily derived from equation 2.1 (taking the noise out) and is defined
as a linear combination of the previous state and the control input:

x̂k = Axk−1 + Buk−1. (2.5)

The goal of the KF is to compute the a posteriori state estimate xk as a linear combination of an
a priori estimate and a weighted difference between the real measurement and the measurement
prediction.

We will define xk as the a posteriori state estimate at time step k, x̂k the a priori state estimate,
x̌k the ground truth state, ẑk the measurement estimate and zk the actual measurement taken at
time step k (for more details on notation see Appendix B).

Following these definitions, the equation we need to find is:

xk = x̂k + K(zk − ẑk), (2.6)

where the difference zk− ẑk is the measurement innovation and K(n×m) is the weighting factor. As
the measurement prediction ẑk can be expressed as Hx̂k (see equation 2.2), an equivalent expression
is:

xk = x̂k + K(zk − Hx̂k), (2.7)

The a posteriori state estimate (2.7) represents the mean or first moment of the state distribution
[23] and it is normal if the Gaussian assumptions 2.3 and 2.4 are met.

For both the a priori and a posteriori state estimates there is an a priori and a posteriori estimate
error covariance that represents the accuracy of the estimate:

P̂k = E[êkêT
k ], (2.8)

Pk = E[ekek
T ], (2.9)

where êk is the a priori error (x̌k − x̂k) and ek is the a posteriori error (x̌k − xk).

The a posteriori estimate error covariance (see equation 2.9) represents the variance of the state
distribution [23]:

p(xk | zk) ∼ N (x̂k, Pk). (2.10)

In order to optimize the state estimation the weighting factor K (also called gain) is chosen to
minimize the a posteriori error covariance (see equation 2.9). After a number of transformations
involving equations 2.8, 2.9 and the definition of the error ek (for more information see [12], [5],
[17] and [23]), the expression of the gain is simplified (in one of its common forms) as:
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Kk =
P̂kHT

P̂kHT + R
, (2.11)

where R is the measurement error covariance1. In other words, looking at expression 2.11, the
weighting factor K gives more credit to the measurement innovation as the R diminishes, while it
gives less credit to it as the P̂k diminishes.

Starting with the equation we wanted to derive (see equation 2.6) and the definition of the gain K,
we have reached a weighted linear combination of the a priori state estimate and the measurement
innovation, to estimate the state of the process minimizing the mean of the squared error or error
covariance:

xk = x̂k +

(

P̂kHT

P̂kHT + R

)

(zk − Hx̂k), (2.12)

1R is usually found in the literature without the time step index k as it is commonly taken independent of the
time step as for many models it is difficult to make an online estimation of the measurement error. The same applies
for Q, which is in general assumed independent of the time step. We will make the same assumption though all our
work.
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2.1.2 KF in Probabilistic Terms

Two of the fundamental aspects of the KF are the Gaussian Assumption and the linear stochastic
difference equation that governs the process to be estimated. However, it is difficult to grasp these
probabilistic concepts and their consequences from the definition of the equations of the KF. In
order to get a clear picture of how the probabilities of both the state x and the measurements z work
together and to find a rationale for the equations of the kalman filter algorithm, we will successively
review the probability distribution of the state x, probability distribution of the measurement z,
the joint probability of x and z, and finally the distribution of the conditional x | z and z | x, which
will prove to be essential for the later understanding of the non linear version of the KF.

As a tool for the derivation of an expression for these distributions, we will make use of the canonical
representation of a Gaussian distribution.

Probability distribution of measurement z

The probability of the measurement z is a Gaussian distribution (see 2.1.1) with mean the predicted
measurement ẑ and covariance matrix R.

P (z) = N (z; ẑ, R). (2.13)

Substituting ẑ for its equivalent Hx̂ (see equation 2.2),

P (z) = N (z;Hx̂,R), (2.14)

and expressing the normal distribution with its common formulation yields:

P (z) =
1√
2πR

exp

(

−1

2
(z − Hx̂)T R−1(z − Hx̂)

)

. (2.15)

The quadratic in the exponential can be expanded:

P (z) =
1√
2πR

exp

(

−1

2

(

zT R−1z − 2(Hx̂)
T
R−1z + (Hx̂)

T
R−1Hx̂

)

)

, (2.16)

and the first part introduced in the exponential:

P (z) = exp

(

−1

2
log | 2πR | −1

2
zT R−1z + (Hx̂)

T
R−1z − 1

2
(Hx̂)

T
R−1Hx̂

)

. (2.17)

Looking closely to the above expression and reorganizing the terms:

P (z) = exp

((

−1

2
log | 2πR | −1

2
(Hx̂)

T
R−1Hx̂

)

+
(

(Hx̂)
T
R−1z

)

−
(

1

2
zT R−1z

))

, (2.18)
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the above equation is precisely the canonical representation (also called information form) of a
Gaussian (see Appendix A.1):

P (z) = exp(g + mT z − 1

2
zT Wz), (2.19)

where

m = R−1Hx̂, (2.20)

W = R−1, (2.21)

g = −1

2
log | 2πR | −1

2
Hx̂T R−1Hx̂. (2.22)

Hence, the information form of the Gaussian distribution of measurement z can be expressed
as:

P (z) = N−1(z;R−1Hx̂,R−1). (2.23)

Probability distribution of state x

Following the same procedure as with the measurement, the probability of state x is defined as
a Gaussian distribution with mean the a priori state estimate and covariance matrix P , which is
estimated in the KF algorithm:

P (x) = N (x; x̂, P ), (2.24)

which can be expressed in its canonical form as:

P (x) = N−1
(

x;P−1x̂, P−1
)

. (2.25)

Joint distribution for measurement and state

We are now interested in the joint distribution of the measurement z and the state x (see Appendix
A.2). For these two variables we know from equation 2.2:

z = Hx + v, (2.26)

where p(v) ∼ N (0, R) and p(x) ∼ N (x̂, P ), hence, making use of Bayes rule, the joint distribution
is characterized as :

P (x, z) = N
([

x̂

Hx̂

]

,

[

P PHT

HP HPHT + R

])

. (2.27)
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To proceed we need to compute the inverse of the covariance matrix Σ of P (x, z) in order to reach
a canonical representation of the joint distribution.

Σ−1 = K =

[

Kxx Kxz

Kzx Kzz

]

. (2.28)

Such expression of the inverse can be found in Appendix A.2 in the Inversion Lemma, which after
a number of simplifications leads to:

K =

[

P−1 + HT R−1H −HT R−1

−R−1H R−1

]

. (2.29)

So the joint Gaussian distribution of the measurement z and the state x can be now characterized
using the canonical representation as:

P (x, z) = exp

(

g + mT

[

x

z

]

− 1

2

[

x z
]

W

[

x

z

])

, (2.30)

where:

m =

[

P−1x̂

0

]

, (2.31)

W =

[

P−1 + HT R−1H −HT R−1

−R−1H R−1

]

, (2.32)

g = −1

2
log | 2πP | −1

2
x̂T P−1x̂ − 1

2
log | 2πR | . (2.33)

Or using the standard notation:

P (x, z) = N−1

(

x, z;

[

P−1x̂

0

]

,

[

P−1 + HT R−1H −HT R−1

−R−1H R−1

])

. (2.34)

Having obtained expressions for the distribution of z, x and the joint distribution of both z and x,
we now have the basic tools to derive the expression of the a posteriori error covariance along with
some other useful expressions.

Conditional distribution of the measurement given the state

From Bayes Rule we know that:

P (z | x) =
P (x, z)

P (x)
(2.35)

We already have an expression for both distributions in the right hand side. It is easy to show that
the above joint distribution P (x, z) can be expressed as a multiplication of two distributions in its
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canonical form (it is easy to show how it works as the contents of the exponentials can be added
to represent a multiplication). The joint distribution for state x and measurement z (see equation
2.34) can be expressed as the multiplication of two distributions:

exp

(

g1 +

[

P−1x̂

0

]T [

x

z

]

− 1

2

[

x z
]

[

P−1 0
0 0

] [

x

z

]

)

×

exp

(

g2 +

[

0
0

]T [

x

z

]

− 1

2

[

x z
]

[

HT R−1H −HT R−1

−R−1H R−1

] [

x

z

]

)

, (2.36)

where:

g1 = −1

2
log | 2πP | −1

2
x̂T P−1x̂, (2.37)

g2 = −1

2
log | 2πR | (2.38)

The first term in equation 2.36 is the canonical representation for the distribution of x (see equation
2.25), hence the second term, following the Bayes equation 2.35 must be the canonical representation
of P (z | x).

P (z | x) = N−1

(

z, x;

[

0
0

]

,

[

HT R−1H −HT R−1

−R−1H R−1

])

(2.39)

Conditional distribution of a particular measurement given the state

We now must introduce in the conditional distribution one particular given measurement (the
one taken at the interest time step k) so that the probability of the measurement z to be the
actual measurement zR (P (z = zR | x)) can be calculated. This is rather simple as the canonical
representation for such distribution will be simplified as z is no longer a variable, but a vector. Lets
begin with the expression for the conditional distribution P (z | x) as show in equation 2.39:

exp

(

−1

2
log | 2πR | +

[

0 0
]

[

x

z

]

− 1

2

[

x z
]

[

HT R−1H −HT R−1

−R−1H R−1

] [

x

z

])

(2.40)

As we are looking for the probability of the measurement being zR, we can rewrite the expression
as:

exp

(

−1

2
log | 2πR | +

[

0 0
]

[

x

zR

]

− 1

2

[

x zR
]

[

HT R−1H −HT R−1

−R−1H R−1

] [

x

zR

])

(2.41)
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and realize the products:

exp

(

−1

2
log | 2πR | −1

2

(

xT HT R−1Hx − zRT
R−1Hx − xT HT R−1zR + zRT

R−1zR
)

)

(2.42)

and finally reorganize the terms noting that zR is no longer a variable so we can reach a new
canonical representation for the Gaussian conditional distribution for a given measurement:

exp

((

−1

2
log | 2πR | −1

2
zRT

R−1zR

)

+
(

zRT
R−1Hx

)

−
(

1

2
xT HT R−1Hx

))

(2.43)

which precisely takes the canonical form of a Gaussian distribution:

P (z = zR | x) = N−1

(

z = zR | x; [zRT
R−1H]T ,HT R−1H

)

, (2.44)

with the omitted constant g:

g = −1

2
log | 2πR | −1

2
zRT

R−1zR; (2.45)

Conditional distribution of the state given one particular measurement

We know that given the covariance and mean of the jointly Gaussians x and z (see equation 2.27),
we can compute the conditional distribution, using Bayes rule, of x given z as:

P (x | z = zR) = N
(

x | z = zR; x̂ +

(

PHT

HPHT + R

)

(zR − Hx̂), P −
(

PHT

HPHT + R

)

HP

)

,

(2.46)

where we can see the precise definition of the gain K:

K =
PHT

HPHT + R
(2.47)

and after some transformations of the covariance expression, the common form of the a posteriori
covariance estimate:

P −
(

PHT

HPHT + R

)

HP = (I − KH)P (2.48)

This is the expression for the a posteriori error covariance that completes the definition of the KF
algorithm.
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2.1.3 The Algorithm

We have obtained an a priori approximation for the state (see equation 2.5) and derived an expres-
sion for the a posteriori state estimate that minimizes the a posteriori error covariance. We can now
define the full KF algorithm as a two stage algorithm: time update equations (prediction stage or a
priori estimation) and measurement update equations (update stage or a posteriori estimation). We
have studied the probabilistic details of the Kalman Filter so we can now construct a full algorithm
to perform both the a priori and a posteriori state and error covariance estimates:

Time Update equations

x̂k+1 = Axk + Buk (2.49)

P̂k+1 = APkAT + Q (2.50)

Measurement Update equations

Kk+1 =
P̂k+1H

T

HP̂k+1HT + R
(2.51)

xk+1 = x̂k+1 + Kk+1(zk+1 − Hx̂k+1) (2.52)

Pk+1 = (I − Kk+1H)P̂k (2.53)

The recursive nature of the algorithm is one of the most interesting aspects of the filter as it allows
an implementation where the process (typically some robot state) is re-estimated at every step
when more information (the robot sensing its environment) is available.

It is difficult, given the set of equations that complete the algorithm, to get a clear idea of its
computational complexity. Some factors, such as the state to be estimated, are relevant for the
estimation of the complexity. Generally, the state will grow as more information is gathered through
the measurements. As the state x and the error covariance P get bigger with every time step, the
computation time used by the algorithm also grows with time. In the computation of the gain
K the inverse of HP̂k+1H

T + R needs to be computed. This inversion is the most expensive
computation in the algorithm, so the overall complexity is ruled by the quadratic complexity of this
operation.
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2.2 Extended Kalman Filter

2.2.1 Introduction

As discussed in the previous section (see 2.1), the KF addresses the problem of estimating the state
of a process that is governed by a linear difference equation. There are however many scenarios,
specially in robotics, where either the process or the relation between the state and the measurement
do not follow a linear model [23]. For such situations a KF that linearizes the process is required
and is usually referred as Extended Kalman Filter (EKF).

Process Control

The process for which the state we wish to estimate can be governed by a non linear difference
equation, hence instead of having a linear combination of the previous state, the control and the
error, there is a non linear function f that takes as input the previous state, the control and the
error:

xk = f(xk−1, uk−1, wk−1). (2.54)

Such a function is typically present when the dynamics of the system include, for instance, non
linear acceleration. Given the characteristics of our robotic environment, the control equation will
remain linear as we will not model either speed or acceleration and will only account for the
odometry as the measure for the robot dynamics, thus no linearization is required. Hence, the
process control equation remains linear:

xk = Axk−1 + Buk−1 + wk. (2.55)

Measurements

The relation between the state and the measurement can also be governed by a non linear difference
equation. It is common to find a non linear function h that takes both the state of the process and
the noise as arguments [23]. We will however, for the sake of simplicity, define the measurement as
a linear combination of a non linear function of the state and the noise.

zk = h(xk) + vk. (2.56)

It is essential to note that the basic difference with the linear KF is that the random variable x

is no longer Gaussian after the nonlinear transformation (h(x)), hence the measurement z will not
remain Gaussian as in the linear KF.

Gaussian Assumption

The goal of the EKF is to linearize the non linear difference equation that governs the measurement
process in order to use the standard KF procedure. As the KF requires all distributions to be
Gaussian, the Gaussian assumption about the random variables describing the noise that was made
before, stands now aswell:
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p(w) ∼ N (0, Q), (2.57)

p(v) ∼ N (0, R), (2.58)

Linearization

The EKF follows the same two stage structure as the KF. In the time update step, an a priori state
and covariance error are estimated. In the measurement update step, the information conveyed by
the measurements is used to improve an a posteriori estimation.

In the general case, the process control equation might be governed by a non linear function.
However, as in our simplified environment where only linear models are present for the dynamics
of the process, only the measurement needs to be approximated (linearized).

In the standard KF, the measurement prediction zk was unique (no a priori nor a posteriori estimate)
and defined by Hx̂k. As the measurements now do not follow a linear equation and an approximation
needs to be performed (linearization), the measurment estimation works, as the state estimation,
in two stages.

The a priori measurement estimation (mean measurement) is easily computed by truncating the
error vk in the measurement difference equation and evaluating the function h on the a priori state
estimate:

ẑk ≈ h(x̂k). (2.59)

Once the a priori estimate can be computed, the a posteriori estimate is approximated (linearized)
as a first order approximation based on the Jacobian evaluated at the mean state (the a priori state
estimate):

zk ≈ ẑk + JH(xk − x̂k) + wk, (2.60)

where ẑk is the a priori measurement estimate and JH is the Jacobian 1 matrix of the function h

evaluated at the mean state.

Despite the fact that the a posteriori measurement estimate is not required for the EKF algorithm,
it will be essential for the understanding of the probabilities behind the filter.

1The Jacobian matrix of partial derivatives is defined as:

JH [i,j] =
δh[i]

δh[j]

(x̂k). (2.61)
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2.2.2 EKF in Probabilistic Terms

As with the KF, the probabilistic terms of the inner workings of the filter are lost in the definitions
of the algorithm. It is particularly interesting to take a deep look at the probabilities that play
a role in the state estimation as the idea of linearization is clearly understood in its probabilistic
aspect.

We will only discuss the probabilities that are relevant in the linearization process of the measure-
ment estimate. Those probabilities that are not discussed here, are exactly the same as in the linear
KF.

Probability distribution of measurement z

The probability of the measurement z does not follow a Gaussian distribution as z is defined by
a non linear stochastic difference equation. However, as we already have an expression for the
linearized approximation of the mean of the measurement (see equation 2.59), the distribution of z

can be described as:

P (z) =
1√
2πR

exp

(

−1

2
(z − h(x̂))T R−1(z − h(x̂))

)

. (2.62)

Note that the only difference with respect to the linear KF is that the estimation of z is now a
function h(x̂) instead of a matrix multiplication.

Following the same steps as in the linear case (expanding the quadratic, inserting everything in the
exponential and reorganizing), a canonical representation can be reached:

P (z) = exp

((

−1

2
log | 2πR | −1

2
h(x̂)

T
R−1h(x̂)

)

+
(

h(x̂)
T
R−1z

)

−
(

1

2
zT R−1z

))

. (2.63)

This expression is a Gaussian distribution (due to the linearization), hence can be expressed in its
standard notation:

P (z) ≈ exp(g + mT z − 1

2
zT Wz), (2.64)

where

m = R−1(h(x̂)), (2.65)

W = R−1, (2.66)

g = −1

2
log | 2πR | −1

2
h(x̂)T R−1h(x̂). (2.67)

Or equivalently:
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P (z) ≈ N−1(z;R−1h(x̂), R−1). (2.68)

Joint distribution for measurement and state

Again, following the same idea as in the linear KF and having the relation:

z ≈ h(x̂) − JH(x − x̂) + v, (2.69)

defined as the linear approximation of the measurement estimation, we can define the joint dis-
tribution of the state x and the approximation of the measurement z as a Gaussian distribution
characterized as:

P (x, z) ≈ N
([

x̂

h(x̂)

]

,

[

P PJH
T

JHP JHPJH
T + R

])

. (2.70)

Inverting the covariance matrix of P (x, z) (see equation ), again by means of the inversion lemma
followed by some simplifications, in order to reach a canonical representation of the joint distri-
bution, the joint Gaussian distribution of the first order approximation of measurement z and the
state x can be now characterized using the canonical representation as:

P (x, z) ≈ exp

(

g + mT

[

x

z

]

− 1

2

[

x z
]

W

[

x

z

])

, (2.71)

where:

m =

[

P−1x̂ + JH
T R−1JH x̂ − JH

T R−1h(x̂)
−R−1JH x̂ + R−1h(x̂)

]

, (2.72)

W =

[

P−1 + JH
T R−1JH −JH

T R−1

−R−1JH R−1

]

, (2.73)

g = −1

2
log | 2πP | (2.74)

−1

2
log | 2πR |

−1

2
x̂P−1x̂

−1

2
x̂JH

T R−1JH x̂

+h(x̂)R−1JH x̂

−1

2
h(x̂)R−1h(x̂)

Or using the standard notation:
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P (x, z) ≈ N−1

(

x, z;

[

P−1x̂ + JH
T R−1JH x̂ − JH

T R−1h(x̂)
−R−1JH x̂ + R−1h(x̂)

]

,

[

P−1 + JH
T R−1JH −JH

T R−1

−R−1JH R−1

])

.

(2.75)

Conditional distribution of the measurement given the state

Using Bayes Rule we can separate the Gaussian distribution P (x, z) in its canonical form as a
product of two Gaussian distributions:

exp

(

g1 +

[

P−1x̂

0

]T [

x

z

]

− 1

2

[

x z
]

[

P−1 0
0 0

] [

x

z

]

)

×

exp

(

g2 +

[

JH
T R−1JH x̂

−R−1JHh(x̂) + R−1h(x̂)

]T [

x

z

]

− 1

2

[

x

z

]T [

JH
T R−1JH −JH

T R−1

−R−1JH R−1

] [

x

z

]

)

, (2.76)

where:

g1 = −1

2
log | 2πP | −1

2
x̂T P−1x̂, (2.77)

g2 = −1

2
log | 2πR | (2.78)

−1

2
x̂JH

T R−1JH
T x̂

+
1

2
h(x̂)R−1JH

T x̂

+
1

2
x̂JH

T R−1h(x̂)

−1

2
h(x̂)P−1h(x̂)

The first term in equation 2.76 is the canonical representation for the distribution P (x) (see equation
2.25), hence the second term, following the Bayes equation 2.35 must be the canonical representation
of P (z | x).

P (z | x) ≈ N−1

(

z, x;

[

JH
T R−1JH x̂

−R−1JHh(x̂) + R−1h(x̂)

]

,

[

JH
T R−1JH −JH

T R−1

−R−1JH R−1

])

(2.79)

Conditional distribution of a particular measurement given the state

Substituting the stochastic variable z for a particular measurement zR in equation 2.79 we ob-
tain:
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exp

(

g2 +

[

JH
T R−1JH x̂

−R−1JHh(x̂) + R−1h(x̂)

]T [

x

zR

]

− 1

2

[

x zR
]

[

JH
T R−1JH −JH

T R−1

−R−1JH R−1

] [

x

zR

]

)

.

(2.80)

Realizing the products and reorganizing the terms we obtain a canonical representation of the
Gaussian approximation (linearized distribution) of P (z = zR | x):

P (z = zR | x) ≈ exp

(

g + mT

[

x

zR

]

− 1

2

[

x zR
]

W

[

x

zR

])

, (2.81)

where:

m = JH
T R−1JH x̂ + zRT

R−1JH , (2.82)

W = JH
T R−1JH , (2.83)

g = −1

2
log | 2πR | (2.84)

−1

2
x̂JH

T R−1JH
T x̂

+
1

2
h(x̂)R−1JH

T x̂

+
1

2
x̂JH

T R−1h(x̂)

−1

2
h(x̂)P−1h(x̂)

−R−1JHh(x̂)zR

+R−1h(x̂)zR

−1

2
zRT

R−1zR

Conditional distribution of the state given one particular measurement

Given the covariance and mean of the jointly Gaussians state x and the first order approximation of
z (see equation ??), we can compute the conditional distribution of x given the real measurement
zR as:

P (x | z = zR) ≈ N
(

x | z = zR; x̂ +

(

PJH
T

JHPJH
T + R

)

(zR − h(x̂)), P −
(

PJH
T

JHPJH
T + R

)

JHP

)

,

(2.85)

where we can see the precise definition of the gain K:
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K =
PJH

T

JHPJH
T + R

(2.86)

and after some transformations of the covariance expression, the common form of the a posteriori
covariance approximated estimate:

P −
(

PJH
T

JHPJH
T + R

)

JHP = (I − KJH)P (2.87)

Understanding the Linearization

As any approximation method, the linearization performed over the measurement estimation z

induces errors, which are transfered to the Gaussian that is fitted to the true distribution.

Lets consider a robotic process where the measurements consist of the distance from the current
robot position to the previous known robot position, and the state consist of the collection of robot
poses (X,Y and heading α) along the robots trajectory. In such a scenario, the transformation
from state to measurement is non linear:

h(xk) =

√

(xk − xk−1)
2

+ (yk − yk−1)
2
. (2.88)

In this case, the probability of the measurement to be the actual one given the state estimate (P (z =
zR | x)) will take the shape of a volcano crater centered around the last robot position:

Figure 2.1: True distribution of P (z = zR | x) represented in 3D. The height represents the
probability and the coordinates in the plane represent the real world plane coordinates.

In the linearization process, a Gaussian is used to approximate the true distribution. As we can see
in the picture below, the particular shape of the true distribution cannot be sufficiently described,
hence the error in the estimation of the state and the covariance will be considerable.
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Figure 2.2: Linearization of the distribution of P (z = zR | x) represented in 3D. The height
represents the probability and the coordinates in the plane represent the real robot coordinates.

This is perhaps one of the major drawbacks of the EKF and the reason for the filter to become
either pessimistic or optimistic. A pessimistic filter estimates the error covariance bigger than the
true error covariance. An optimistic filter estimates the error covariance smaller than the true
error covariance. Both cases make a filter inconsistent. Further in this section we will discuss some
methods to test the filter consistency when ground truth data about the state is known (for instance
in simulation) .
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2.2.3 The Algorithm

Following the same procedure as with the KF, we can now define a set of equations for the two
stages of the EKF: time update equations (prediction stage) and measurement update equations
(update stage).

Time Update equations

x̂k+1 = Axk + Buk (2.89)

P̂k+1 = APkAT + Q (2.90)

Measurement Update equations

Kk+1 =
P̂k+1J

T
H

JH P̂k+1J
T
H + R

(2.91)

xk+1 = x̂k+1 + Kk+1(zk+1 − h(x̂k+1)) (2.92)

Pk+1 = (I − Kk+1JH)P̂k (2.93)

Note that the essential difference between the KF and the EKF is the introduction of the Jacobian
JH and the function h evaluated at the a priori state estimate that is used to approximate the a
priori measurement
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2.3 Extended Information Filter

2.3.1 Introduction

One of the principal drawbacks of the EKF is its computation costs. There is a well known barrier
[19] around the hundred state elements where the EKF approach becomes no longer viable due to
the large execution time. One of the focuses of research in the SLAM community is the reduction
of the complexity of the SLAM problem, either through the definition of alternative methods or
the use of approximation techniques.

The Information Filter (IF) [19] [7] is an equivalent definition of the KF based on an alternative
representation of the Gaussian distribution. For the understanding of the EKF in its probabilistic
terms we made use of the information form of the Gaussian distribution, though the filter equations
and the estimation process were entirely based on the standard Gaussian representation.

The EIF, on the other hand, is based on the information form representation. If in the EKF the
state and error covariance are estimated (a priori and a posteriori), the alternative information
vector and information matrix will be estimated in the EIF. It is important to understand that
the IF is mathematically equivalent to the KF, though the use of a different representation of the
Gaussian distribution yields important advantages in terms of computational costs.

We have already discussed the Extended version of the KF (EKF) hence we will continue on the
same line and present the information filter in its extended version, the Extended Information
Filter.

2.3.2 Deriving the EIF

We know that the goal of the EIF is to estimate both a priori and a posteriori the information
vector and information matrix (also called precision matrix). We also know the formal relation
between the information vector η and the estimated state vector x and the information matrix Λ
and the error covariance matrix P (see Appendix A.1):

Λ = P−1 (2.94)

η = P−1x (2.95)

(2.96)

With this information and the already defined EKF algorithm, we will now derive the expression for
the a priori information matrix estimate, the a posteriori information matrix estimate, the a priori
information vector estimate and the a posteriori information vector estimate. All those constitute
the EIF algorithm.
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Measurement Update

Taking the EKF a posteriori error covariance estimate (see equation 2.70) and including the defi-
nition of the Gain, we have:

Pk+1 = (I − P̂k+1J
T
H

JH P̂k+1J
T
H + R

JH)P̂k+1, (2.97)

and multiplying by the a priori error covariance P̂k:

Pk+1 = P̂k+1 −
P̂k+1J

T
H

JH P̂k+1J
T
H + R

JH P̂k+1, (2.98)

or equivalently:

Pk+1 = P̂k+1 − P̂k+1J
T
H [JH P̂k+1J

T
H + R]−1JH P̂k+1. (2.99)

Expression 2.99 is precisely the definition of The Matrix Inversion Lemma (see Appendix A.3),
hence can be written as:

Pk+1 = [P̂−1

k+1
+ JT

HR−1JH ]−1. (2.100)

Using the inverted expression, we obtain an expression for the inverse of the a posteriori error
covariance which is precisely the a posteriori information matrix:

Λk+1 = P−1

k+1
= P̂−1

k+1
+ JT

HR−1JH . (2.101)

In the above expression P̂−1

k+1
is precisely the a priori information matrix Λ̂k+1 which we will derive

in the next section:

Λk+1 = Λ̂k+1 + JT
HR−1JH . (2.102)

Time Update

For the time update step the a priori information matrix is defined as the inverse of the a priori
error covariance:

Λ̂k+1 = P̂−1

k+1
. (2.103)

Using the expression from the EKF algorithm, we need to obtain the inverse:
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P̂−1

k+1
= (APkAT + Q)−1. (2.104)

Using the inversion lemma, this is equivalent to:

P̂−1

k+1
= Q−1 − Q−1A(AT Q−1A + P−1

k )−1AT Q−1, (2.105)

where P−1

k is the a posteriori information matrix defined in the previous section, hence the a priori
information matrix is:

Λ̂k+1 = Q−1 − Q−1A(AT Q−1A + Λk)−1AT Q−1. (2.106)



2.3. EXTENDED INFORMATION FILTER 33

2.3.3 The Algorithm

Based on the alternative information form of the EKF, we have derived the expression for both the
a priori and a posteriori information matrices. Based on this alternative representation we can now
define the complete algorithm in the information form for the EIF.

Time Update equations

Λ̂k+1 = Q−1 − Q−1A(AT Q−1A + Λk)−1AT Q−1 (2.107)

η̂k+1 = Λ̂k+1x̂k+1 (2.108)

Measurement Update equations

Λk+1 = Λ̂k+1 + JT
HR−1JH (2.109)

ηk+1 = Λk+1xk+1 (2.110)

It is interesting to note that the a posteriori information matrix is now much simpler to calculate
than the error covariance matrix was. A simple additive operation can now be used instead of a
complex inversion. On the other hand, the expression of the a priori information matrix is somehow
more complex that its counterpart the a priori error covariance.

2.3.4 State Recovery

The drawback of the EIF is the fact that we no longer obtain an estimation of the state but we do
obtain its relative in the information form. Once the information matrix and information vector
are obtained we need to transform the information vector back to the original mean form in order
proceed to the next time step.

The most naive recovery method using the relation between information matrix and covariance
matrix results in cubic complexity and voids the efficiency obtained with the new information filter.
In fact, recovering the state mean can be described as solving a sparse, symmetric, positive-definite,
linear system:

Λtxk = ηt, (2.111)

which can be generally solved using the conjugate gradient method (CG, [20]) in n iterations with
O(n) complexity per iteration (O(n2) total cost) and usually in less if a good initialization is
used.

In our Matlab experiments we tested five different state recovery techniques. All these techniques
are generic solutions to solving the set of equations defined by Ax = b.
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• Inversion: just to use as baseline for improvement measurement, we use the naive inversion
technique which uses Gaussian elimination with partial pivoting. This is far from optimal
and will make the experiments on large datasets impossible.

• CGS (conjugate gradients squared method): this is an iterative solution to the set of equa-
tions. However, it requires the definition of an initial guess (in our case we used the state
vector of the previous time step augmented with a new robot pose) and a tolerance value of
1e − 7. The solution is not guaranteed to be exact.

• PCG (preconditioned conjugate gradients method): if the information matrix is ill condi-
tioned, a preconditioner can be used to speed up the process. For our experiments we used
the incomplete Cholesky factorization of the information matrix as preconditioner with a
tolerance of 1e − 7. The solution in this case is also not guaranteed to be exact.

• LU (Lu decomposition): this method decomposes the information matrix into two triangular
matrices, one of them with values in the upper right diagonal, and the other one on the lower
left diagonal. It is an exact solution and works by solving the system for each of the triangular
matrices.

• Cholmod2 (supernodal sparse Cholesky backslash): this is not a method per se but an
implementation of a solution using the Cholesky decomposition for sparse matrices. It is
similar to the LU decomposition but in this case the two triangular matrices are the tranpose
of each other. It is part of the package SuiteSparse 2 by Tim Davis which is available online.

The essential advantage of the information form is that the information matrix contains many
elements that are close to zero. In order to gain computational speed, it is possible to approxi-
mate these numbers by zero, in other words, the information matrix can be sparsified. Depending
on the amount of ”close to zero” elements in the information matrix and their distance to the
zero approximation, this sparsification can lead to big errors, hence making the sparsification not
useful.

2SuiteSparse is a collection of packages for working with extremely large sparse matrices. It is freely available
online at: http://www.cise.ufl.edu/research/sparse/SuiteSparse/
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2.4 Filter Consistency

The estimation of the state of the process in the EKF and EIF is characterized by its uncertainty
which is also estimated. One of the issues that can arise when estimating both the process and its
uncertainty is the fact that the uncertainty might not be sufficiently close to the real uncertainty.
The EKF models the uncertainty of the state estimate based on the uncertainty of both the dynamics
and the measurements. If the estimated uncertainty is deviated from the true error with respect to
the ground truth data, there exists an inconsistency between the uncertainty of the measurements
and the dynamics and the uncertainty of the estimated state.

The fact that the state of the process might not be accurate is not as relevant as long as the
estimation of the uncertainty is accurate (i.e. we know how much error we have). The problem
arises when the filter becomes optimistic (under estimating the uncertainty) or pessimistic (over
estimating the uncertainty).

The reason for which the filter becomes either optimistic or pessimistic is the error that arises from
the linearization of the measurement equation during the linearization procedure (remember that
in our set up, the control equation remains linear hence no linearization is performed). As the true
distribution cannot be fully described with a Gaussian model (though how big the error is depends
very much on the type of measurements we take), the error on the linearization accumulates at
every time step up to the point where the filter can no longer estimate accurately the error on the
estimation of the state.

There are several test that can be performed to analyze when and why a filter becomes incon-
sistent. For these tests to succeed a ground truth state is usually required, however, they can
be very insightful in simulated data in order to understand the fundamental information that the
measurements convey in the measurement update step.

The consistency criteria of a filter are as follows [1]:

1. The state error should be acceptable as zero mean and have magnitude commensurate with
the error covariance estimated by the filter (NEES)

2. The innovations should also have the same property (NIS)

3. The innovations should be acceptable as white (Whiteness)

Only the last two criteria can be tested on data where a ground truth state and error is not known
(typically real data). The first criterion, which is the most important one, can only be tested when
the ground truth state is available. In our work we do not test to Whiteness.

NEES

The normalized (estate) estimation error squared (NEES) test is meant to test if the filter
satisfies the criteron 1 of the filter consistency criteria.

The NEES is defined as:

ǫk = (x̌k − xk)T × P−1

k × (x̌k − xk), (2.112)



36 CHAPTER 2. INTRODUCTION TO STATE ESTIMATION

where x̌k is the ground truth state.

The test is based on the results of Monte Carlo Runs that provide N independent samples of the
random variable ǫk. The sample average NEES for N montecarlo runs is then:

ǭk =
1

N

N
∑

i=1

ǫi
k. (2.113)

Then Nǭk will have, under the hypothesis H0 that the filter is consistent, a chi squared density
with Nnx degrees of freedom (nx is the dimension of the state x). Under these circumstances the
first criterion will be accepted if:

ǭ ∈ [r1, r2], (2.114)

where the acceptance interval [r1, r2] is determined such that

P{ǭk ∈ [r1, r2] | H0} = 1 − α, (2.115)

where 1 − α represents the confidence value (typically 95%).

This test can also be used for a single run, though the more runs are used the narrower the
acceptance interval becomes.

A bias in the state estimation error will increase ǫk which will yield unacceptable values for the
statistic ǭk (i.e. it will be outside the acceptance interval).

NMEE

If the NEES test is not satisfied, a separate bias test can be carried out to identify the source of
the problem. This is done by taking each component of the state error x̌k − xk divided by its
standard deviation (its estimated error covariance) and checking whether its mean be accepted as
zero.

The statistical test for the normalized mean estimation error (NMEE) for component j of the state
from runs i = 1, ..., N is:

(µ̄k)j =
1

N

N
∑

i=1

(x̌k − xk)i
j

(Pk)jj

. (2.116)

The acceptance interval in this case, having an acceptance region of 95%, is defined as:

(µ̄k)j ∈ [−r, r], (2.117)

where r = 1.96√
N
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NIS

The same procedure as with the NEES can be carried out for the innovations νk = zk−ẑk (criterion
2). Under the hypothesis that the filter is consistent, the normalized innovation squared (NIS) is
defined as:

(ǫk)ν = νT
k × (JH P̂kJT

H + R)−1 × νk. (2.118)

Note that this test can be carried out with no ground truth available, however it is performed under
the hypothesis that the filter is consistent.

Using N independent samples, the average NIS is calculated as:

(ǭk)ν =
1

N

N
∑

i=1

(ǫk)
i

ν , (2.119)

which is tested in the same way as the NEES test but with an acceptance region based on the fact
that N(ǫ̂k)ν is chi-squared distributed with Nnz degrees of freedom, where nz is the dimension of
the measurement vector z.
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Chapter 3

Omnivision Trajectory Based

SLAM

So far we have discussed the general ideas behind the KF, its extended version, the EKF, for non-
linear processes, and the alternative representation in the EIF. We are now particularly interested
in the application of such methods to the estimation of a robotic process where a robot moves in
a certain environment and using its internal sensors it is capable of estimating its relative pose
while it builds a map of the environment (SLAM problem). If we consider both the robot pose and
the map of the environment as a process governed by a control equation (the robot moving) and
a measurement equation (the robot sensing) it is easy to understand how such a representation is
parallel to the state estimation we discussed before.

Within the classical Kalman Filter SLAM framework and its derivations the EKF and EIF, multiple
approaches have been presented with respect to both the features that are extracted (used as
measurements from the environment) and the representation of the state vector that is going to
be estimated. The standard EKF SLAM solution estimates landmark positions, the map, and the
current robot pose. In most visual SLAM algorithms, a limited set of landmarks is used in order
to reduce the computational costs (the more features, the bigger the state vector and covariance
estimation, hence the more complex the solution).

We present a combination of two methods for both feature extraction and state representation that
present a clear advantage with respect to more classical approaches. Eustice et al. [7] present an
elegant solution using the EIF where the state is represented as the current robot pose and the
set of all previous poses. This approach for the state representation is called Trajectory Based
SLAM. Based on this representation, the measurement of the environment is directly affected as
we now need to extract features that are related to the state representation. Using an Omnivision
image taken at every robot pose we take advantage of the extraction of image features and epipolar
geometry to obtain information regarding the relative poses between pairs of images.

39
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3.1 Trajectory Based State Vector

In conventional visual landmark based SLAM the state x of the estimation process consists of only
the most recent robot pose as well as a growing set of 2D or 3D positions of landmarks reconstructed
from the camera, which is called the map. During every update newly seen landmarks are added
to the state vector (new features of the map) and the robot pose is updated to the last pose. In
Trajectory Based SLAM the landmarks are not explicitly modeled, rather, the state at time step
k, xk, consists of current and all previous robot poses, which in our case are the 2D positions and
orientation angles:

xk =

[

ẋ∗
k

M

]

=











ẋ∗
k

ẋk−1

...
ẋ0











=



































xk

yk

θk

xk−1
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θk−1

...
x0

y0

θ0



































, (3.1)

where ẋk is the 3D vector containing the robot pose at time step k (x, y and heading θ) and the
first pose in xk is always the current robot pose, also called ẋ∗

k while the remaining of the poses
represent the map M . This representation has a direct implication in the complexity of the EIF as
we will discuss in the next section.

Using the raw sensor data and the estimated robot trajectory (the state), a representation of the
environment can be built at every moment during the estimation process.

Figure 3.1 visualizes an example operation of the Trajectory SLAM with 4 robot poses.

• The first robot pose ẋ0 = [x0,y0, θ0]
T is added to the state as [0, 0, 0]T and thus defines the

coordinate frame for the rest of the robot poses.

• An omnidirectional image is taken at this position and stored in memory.

• Time Update Step: The next robot pose ẋ1 is added to the state using the odometry
readings u0 (the control vector).

• Measurement Update Step: An image is taken at the current robot pose which is then
compared with the image from the previous pose providing additional positional information
z0
1, the observation vector, that is used to improve the estimate of the state.

This procedure is repeated for every new robot pose. In ẋ2 a new image is taken and matched with
both previous robot poses. Then the robot drives around the corner to ẋ3, causing the overlap of
the new image with the first two images to reduce. The image comparison method, as explained in
in the following section, detects this and the pose estimation of ẋ3 will be based on the observation
of the last pose z2

3 and the odometry reading u3.
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Figure 3.1: Example of state augmentation procedure

This example is sufficiently clear to illustrate the procedure that the trajectory based SLAM follows
to create the map using previous robot poses as environment landmarks. There is however an
important aspect of SLAM that is not addressed in this example, the loop closing problem.

3.2 Omnivision Based Measurement Vector

The measurement vector zk contains the information extracted from the environment at time k

that is used in the measurement update step of the KF to improve the estimation of the state xk.
We approach the problem of measuring the environment by taking omnidirectional images at every
robot pose and measure the relative pose between the last image and all the previous ones whenever
it is possible. Thus, an observation z describes the relative positional information extracted from
the current omnidirectional image and all the previous images which depict the same part of the
environment.

It is well known that the relative pose can be estimated from two images using the epipolar constraint
[10]. This estimation is performed by first extracting a set of salient local image features from both
omnidirectional images which are then compared to give a set of n 3D point correspondences,
p1, . . . ,pn on one image surface and q1, . . . ,qn on the other. In our experiments we used SIFT
features (Scale Invariant Feature Transform) [15]. Point correspondences that resulted from the
same world point in the environment can be related by the essential matrix which describes the
relative camera pose:

pT
i Eqi = 0 , for all i. (3.2)
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Figure 3.2: Sample Image taken with the Omnivision Camera

Based on this function, the matrix E can be estimated from 8 correspondences using the 8-point
algorithm [10]. If we take into account that in our environment setup the robot moves on a planar
surface the estimation of E can be done using only 3 correspondences by applying the similar
3-point algorithm[4].

To be robust against false point correspondences we use the 3-point algorithm inside the hypothesize
and test method RANSAC (RANdom SAmple Consensus). This provides us with the matrix E

and the number of correspondences for which the reprojection error given E is small. If the ratio
between this number and the number of features found in the images is bigger than a certain
threshold, which we set to 0.1 in our experiments, then we extract the pose information from
E. Otherwise, we do not use this image pair for the observation. In this way we use the same
algorithm for both determining which measurements to add to the observation vector, solving the
data association problem, and computing the measurements themselves.

From E the relative pose can be extracted using [11] and results, in the case of 2D motion, in the
heading of the translation φ and a 2D rotation θ. As opposed to landmark based SLAM, where
only the direction of the observed landmarks is taken into account to improve the state estimate,
for Trajectory based SLAM, both these two parameters are used. The observation vector at time
step k thus gets the following form:
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z =
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, (3.3)

where the set of s observation pairs [φ, θ] correspond to the set of omnidirectional images, taken at
previous robot poses, for which a sufficient set of feature matches were found.

3.3 Exactly Sparse Extended Information Filter

As we discussed before, the EIF represents some advantages with respect to the EKF due to
the possibility to perform certain sparsification over the information matrix. Such sparsification,
depending on the state representation and the measurement method used, will yield a certain
amount of error that will be transfered from step to step.

As presented by Eustice. et al. [7], a trajectory based approach in the EIF SLAM method presents
some natural advantages with respect to other classical state representations where a set of natural
landmarks are present in the state vector. Namely, for such a representation, the information matrix
becomes naturally sparse, hence no artificial sparsification is required and no error is induced on the
estimation results. As we shall see, the natually sparse characteristic of the information matrix for
a trajectory based SLAM approach allows the mapping and localization problem to be addressed
in almost linear time.

In this section, we first present a brief description of the state augmentation procedure in the EKF
(how the state vector increases in size as the robot moves and new poses are introduced as part
of the trajectory). Then, using the same augmentation scheme, we present the state augmentation
procedure for the information representation of the solution, the EIF. We also analyze the resulting
information matrix and explain its naturally sparse property. Finally, we draw some conclusions
regarding the gain in computational costs for the trajectory based SLAM approach.

3.3.1 State Augmentation in the EKF

As the EKF assumes a standard parametrization of the Gaussian distribution, and the process is
linearized by means of a first order approximation, we know that the estimate at time step k is
described by a Gaussian distribution 1 as follows:

p(ẋ∗
k,M | zk, uk) = N

([

µẋ
∗

k

µM

]

,

[

Σẋ
∗

k
ẋ
∗

k
Σẋ

∗

k
M

ΣM ẋ
∗

k
ΣMM

])

1The mean µ and covariance Σ of the distribution represent the state x and error covariance P estimated in the
EKF.
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This distribution represents the map M and robot pose ẋ∗
k given the measurements zk and control

input uk. When a new robot pose is reached (before new measurements are obtained, hence time
update step), the robot state needs to be augmented to include the new pose in the map and get a
new estimate for the robot state, leading to the new distribution:

p(ẋ∗
k+1, ẋk,M | zk, uk+1) = N

(

µ′
k+1,Σ

′
k+1

)

(3.4)

where the augmented mean and covariance (a priori state and error covariance) are defined based
on the first order approximation as:

µ′
k+1 =





µẋ
∗

k
+ uk+1

µẋ
∗

k

µM





Σ′
k+1 =





(Σẋkẋk
+ Q) Σẋkẋk

ΣẋkM

Σẋkẋk
Σẋkẋk

ΣẋkM

ΣM ẋt
ΣM ẋk

ΣMM



 , (3.5)

which is an equivalent and extended representation of the a priori error covariance estimation found
in the algorithm of the EKF (see algorithm 2.2.3).

3.3.2 State Augmentation in the EIF

The EIF is based on the alternative representation of a Gaussian distribution, the canonical or
information form. Using this representation, we know that the estimate at time k is described by
an information form of the Gaussian distribution as:

p(ẋ∗
k,M | zk, uk) = N−1

([

ηẋ
∗

k

ηM

]

,

[

Λẋ
∗

k
ẋ
∗

k
Λẋ

∗

k
M

ΛM ẋ
∗

k
ΛMM

])

Again, when a new robot pose is reached the robot state needs to be augmented:

p(ẋ∗
k+1, ẋk,M | zk, uk+1) = N−1

(

η′
k+1,Λ

′
k+1

)

(3.6)

Taking the previous standard representation of this distribution used in the EKF, and the formal
relation between the normal form and the information form (see Appendix A.1), it is possible to
reach a state augmentation scheme by means of inverting the augmented error covariance Σ′

k+1

(equation 3.5), obtaining the information vector η′
k+1

and information matrix Λ′
k+1

(see Section
2.3.2):
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η′
k+1 =





Q−1(uk+1)
ηxk

− Q−1(uk+1)
ηM





Λ′
k+1 =





Q−1 −Q−1 0
−Q−1 Λxkxk

+ Q−1 ΛxkM

0 ΛMxk
ΛMM





Note that the matrix Q is rather simple and somehow different than the one defined for the EKF.
In this case, the matrix Q does only contain the error model for the odometry, hence it is a simple
3 × 3 matrix.

3.3.3 Sparse Information Matrix

Note the zeros that result from augmenting the state in the information form. This is the key result
that leads to the computational gain (naturally sparse) of the EIF when using a trajectory-based
approach. When the state vector is augmented to include the new robot position xt+1 only shared
information between the robot state and the previous robot state is introduced and the shared
information between the map M and the new robot pose is always zero. If we would continue to
introduce new states, we shall observe that the information matrix will present a block tridiagonal
structure where each state is only linked to the previous and following one. The only exception
occurs when a loop is closed. In such situation, non diagonal elements will appear in the information
matrix as shared information between the new robot state and previously visited robot states is
introduced.

When we marginalize the state x∗
t from the distribution in equation 3.6 to perform the time update

step, it can be proved [7] that it can be implemented in constant time as only a fixed portion of the
information matrix is involved in the marginalization calculation.

Having seen the state augmentation in the time update step in both the covariance and information
form, we can similarly obtain the expression in the information form for the measurement update
step [7]:

ηt = η̂t + JH
T R−1(zt − h(µ̂t) + Hµ̂t)

Λt = Λ̂t + JH
T R−1JH

This description of the measurement update step in the information form shows that the information
matrix is additively updated by the product HT R−1H. As the jacobian H is always sparse [7] only
some elements of the information matrix need to be modified, hence the updates are constant in
time.

Up to this point, the total complexity of the information filter (the algorithm alone regardless of
the state recovery) is constant in time (both prediction and measurement) as opposed to the cubic
complexity of the standard EKF. The state recovery process can be carried out in almost linear
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time with the help of Cholesky decomposition as implemented in the CHOLMOD package we used
in out Matlab experiments, so the global computation of the filter grows almost linearly with the
size of the map.



Chapter 4

Experimental Results

4.1 Introduction

Our approach to the SLAM problem did face three different challenges: computational complexity
of the standard EKF solution, adequacy of an Omnivideo camera to measure the environment and
the loop closing problem. In order to test the performance of our Omnivision Trajectory Based EIF
approach, we carried out a set of experiments to demonstrate how our approach can solve each of
the three problems.

Three set of experiments are discussed. The first experiment aims at the illustration of the in-
consistencies that arise during the estimation process due to the errors in the linearization of the
measurement process. The second experiment illustrates the important computation gain of the
EIF with respect to the standard EKF solution and also depicts the ability of our approch to build
consistent maps of small environments. The third experiment is to our knowledge the largest ex-
periment carried out in Visual SLAM and it was designed to measure the ability of our method to
close large loops where the odometry error is very large.

4.2 Experimental Setup

For our experiments we used a Nomad Scout (see figure 4.1) robot equipped with an Omnivideo
system consisting of a one megapixel firewire camera and an Accowle convex hyperbolic mirror
[24]. Additionally, and for visualization purposes only, the robot was equipped with a laser range
scanner. The measurements taken with the laser were then used after the trajectory was corrected
with our method to visualize the environment and illustrate the improvement in the accuracy of
the map.

Due to the large field of view of the camera it was possible to generate 360 degrees images (see
figure ??). Two images per second were recorded while the robot was driving at a maximum speed
of 20 cm per second, resulting in an average of 1 image every 10 cm. A large portion of the long
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Figure 4.1: LEFT: Nomad Scout Robot with Omnivision System - RIGHT: 360 degrees image

hallways where the robot was driven were poorly iluminated, posing a real challenge for the image
matching algorithm. We measured the amount of light in some of these corridors obtaining an
equivalent amount of light to a living room lit by Christmas tree lights (30 lux).
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4.3 Artificial Data Set

As an illustration of the inconsistency that inevitably arises in any non linear process when approx-
imated with a linear function, we created an artificial dataset. It consisted of a trajectory where
the robot drives 4 times around a circle in the counterclockwise direction (see figure 4.2). Each
lap around the circle consisted on 50 robot poses where the robot was able to observe all previous
poses that lay within a certain radius of the current pose. As simulated data does not contain the
Omnivision images, we also simulated the measurements (relative poses) that real images will yield,
making our dataset completely compatible with our method.

Figure 4.2: Artificial data set where the robot drives following a circular trajectory. The small
circles around each robot pose depict the error covariance of each pose and are centered on the
estimated robot pose. The large circle represents the observable area. Ground truth is represented
by the remaining points with no circle around.

The purpose of this experiment is the illustration of the accumulation of error in the estimation of
both the state and the error covariance due to the linearization, hence the appearance of inconsis-
tency at certain point during the estimation. The reason to use an artificial data set is the fact that
an artifical data set also contains the ground truth, hence the filter consistency can be measured
(see section 2.4)

The results of this experiment can be appreciated in figure 4.3. The first plot represents the NEES
measurement, meant to test if the state error should be acceptable as zero mean and have magnitude
commensurate with the error covariance estimated by the filter. We can see how the filter becomes
too optimistic after a few steps. An optimistic deviation occurs when the estimated error covariance
is smaller than it should be. This is also observable in the trajectory plot (see figure 4.2 where
we can see how the estimated poses get out of the circles representing the error covariance as the
robot moves along the trajectory). The most interesting observation in this plot is the fact that
the NEES measure drops at exactly the loop closing points. This behavior (the filter becoming
consistent again) ocurs because the robot was observing position zero, which is by definition the
most accurate one as it is recorded as a position with zero error.
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Figure 4.3: NEES, NMEE and NIS for an artificial data set
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The second plot, NMEE, is meant to test the same properties on the innovations. Each of the three
lines represents one dimension in the robot pose, X position, Y position and heading α Again, we
see how the filter becomes inconsistent after a few iterations, and how this inconsistency diminishes
at the loop closing points. One particularly interesting observation is that the NMEE test is fully
consistent for the heading dimension. We believe that this behavior is induced by the circular shape
of the trajectory as it was only present in our simulations with perfectly circular trajectories.

Lastly, the NIS test depicts how the state grows over time, showing significant increases at the loop
closing points. This is induced by the fact that at the loop closing points, the amount of observed
robot poses increases by a factor equal to the lap around the circle.

4.4 Small Office Environment

One of the most challenging environments to perform visual SLAM is an office space. The major
difficulty that any visual SLAM method faces in office environment is the visual similarities that
many hallways and offices share. These similarities make image matching difficult (see figure 4.4).
By using omnivision images along with a robust image matching algorithm to perform SLAM over a
map we prove that our approach is more than adequate for office environments even when odometry
(very accurate usually) yields enormous errors in the long run.

This experiment was preformed in an office environment where the robot was driven manually
around a small loop where two differente offices were visited along with a small portion of the
hallway that connects them. The trajectory was driven twice in order to test our approach when
previously seen areas are revisited. The total trajectory consist of 875 images taken at every robot
pose along with odometry measures (displacement in x, displacement in y and heading of the robot
α). Due to the smooth surface and the limited size of the environment, we artificially increased the
odometry error at some points (by artificially making the robots wheel slip) during the trajectory
to better illustrate the improvement in the accuracy of the SLAM corrected map.

We present two maps of the same trajectory. Each map contains the same information, namely,
the estimated trajectory of the robot (black circles), the laser data obtained at every robot location
and the connected graph that represents the images that were found to have sufficient similarity
(light gray lines connecting robot poses).

As we can see in figure 4.7, the sections of the trajectory where the robot drives multiple times
over a hallway or office where no occlusion is present, the images taken at those poses are correctly
matched (plenty of links between those poses in the map). In fact, we can see that no false links
(links crossing walls for instance, or links across far away poses) are presents in this dataset.

The first map (see figure 4.7) was built using odometry as the only information source. Despite
the fact that some structure can be distinguished in the map (walls, doors and hallways), the
odometry error rapidly adds up yielding duplicated structures (see figure 4.5, Left). If the robot
would continue driving the same space for more loops, the accumulated error will make the map
completely cluttered.

The second map (see figure 4.8) represents the same trajectory corrected with our Omnivision
Trajectory-based SLAM approach. Two essential aspects are shown in this map. Firstly, it is clear
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Figure 4.4: Typical hallway images

Figure 4.5: Left: Odometry map, Right: SLAM map - small office
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that our method can perfectly cope with loop closure in small environments as the duplication of
structures (laser data) in loop closing points is no longer present (see figure 4.5, Right) and previ-
ously seen areas are correctly matched together. Secondly, the fact that no duplicated structures are
present at all in the corrected map implies that the information regarding the relative pose obtained
through the omniview images convey enough information to compensate for the accumulation of
error in odometry. Features like walls, hallways, doors and even the small ”box-like” structure
where the robot goes around are now clearly visible.

Regarding the representation of the information matrix, the diagonal structure discussed in section
3.3 can be appreciated (see figure 4.6). The non diagonal elements represent the information
introduced when a loop is closed. The small non diagonal elements crossing perpendicularly the
main diagonal represent the information introduced when small loops are closed (for instance when
the robot walks around the box-like structure). The other non diagonal elements (far away from the
main diagonal but in the same direction) represent the information introduced when the big loop
is closed (the robot comes back to the initial position. It is important to note the clear difference
between the information matrix and the error covariance matrix. In the information matrix, new
information is only introduced as links between the previous pose and the following one and only
additional information is present in the case of loop closure. On the other hand (see figure 4.6),
the correlations present in the error covariance matrix are updated at every stage and the matrix
presents a ”checkers board-like” structure. The fact that the information matrix presents so many
”white” space (actual zeros in the matrix) is a fundamental gain in computational complexity
as only a few elements in the matrix are updated at every step, hence the matrix is naturally
sparse.

1

Figure 4.6: Left: Information matrix, Right: error covariance matrix - small office

1In our experiments we also run the standard EKF solution to compare obtaining indeed the exact same results.
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Figure 4.7: Odometry based map with laser data and connectivity map for robot poses - small office
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Figure 4.8: Omnivision SLAM corrected map with laser data for visualization purposes - small
office
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4.4.1 Complexity

To finalize our set of experiments, and to test the computational gain of the EIF versus the golden
standard EKF, we analyzed the computing time (see figure 4.9) of the SLAM algorithm over the
small office dataset. The complexity of the ESEIF is at most quadratic including the state recov-
ery process (quadratic at most, but can be approximately linear using Cholesky decomposition),
however, the computational cost would rise linearly in the number of observations (in practice this
can be considered constant) if the state recovery is not included [7]. This is enough to extend the
viable use of the filter well beyond the 1000 steps, showing a reduction ratio in the construction of
the complete map of 6 times. During the experiments, we run the SLAM algorithm offline using
both the EKF and ESEIF and accounted for the computation time of both. One of the interesting
aspects of the figure below (see figure 4.9) is the peaks that can be observed in the EKF computa-
tion speed. As we discussed earlier, the more image matches are found for one time step, the more
information is updated in the error covariance matrix, hence the more computation time is needed.
The high times present in the EKF line represent moments in the trajectory where plenty of ob-
servations where present (namely, the small loop around the ”box-like” structure and the portion
of the hallway shown in figure 4.5).

Figure 4.9: EKF vs. ESEIF computation time
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4.5 Large Environment Mapping

Having proved that our Omnivideo system is adequate for building a map correctly, and having
shown how small loops are correctly closed, a most challenging data set was aquired. Again in
an office environment the robot was driven for more 1.5 hours along corridors and offices over a
surface of more than 10,000 squared meters. In order to test the ability of our approach to cope
with closing large loops, we drove to the starting point after 45 minutes and having already taken
5210 images. The robot was then driven over the same part of the corridors to increase the overlap
and finalized at the end of a corridor after having taken 10,325 images in total. After the complete
dataset was recorded, the accumulated error in the odometry added up to more than 80 meters in
distance and 100 degrees in heading.

We again present two maps of the same trajectory. The first one is based on the odometry readings
(see figure 4.10), while the second one represents the SLAM corrected trajectory (see figure 4.11. For
this maps we do not show the laser readings as they do not convey additional information.

Figure 4.11 shows the resulting SLAM corrected trajectory of the robot. As we can see, the large
loop is correctly closed (all grey circles represent the same spot in the trajectory) even though the
accumulated error in odometry was very large. However, the resulting SLAM corrected trajectory is
not as truthful as it was for the case of the small dataset. The reason for this is the enormous amount
of correction needed to close such a large gap in the loop closing point. When previously seen areas
are detected, the whole trajectory needs to be bent in order for those areas to overlap. Given the
constraints between different robot poses (enforced by both the observations and the odometry),
the bending is applied over the complete trajectory, reconnecting the loop closing portions, but
spreading the rest of the trajectory. This behavior in the loop closing is simmilar of that of a piece
of wire that is bent putting both extremes together. As there are forces between the individual cells
of the wire, the whole shape of the wire is modified when connecting both extremes. This behavior
was also termed ”Certainty of Relations despite Uncertainty of Position” by Udo Frese [9] and it
is a direct result of the strong relations introduced in the trajectory by both the observations and
the odometry.

In figure 4.12 we see the amount of matches found at every time step. As we can see, only in the
loop closing points or the stationary moments the amount of observations increases. For the large
loop after 5, 210 images, we see a sudden increase in the amount of matches which represents the
robot driving the same hallway. As this portion of the trajectory was driven before, the amount of
matches doubles after revisiting for the first time. Again, after 7, 800 images, the same hallway is
visited again and the number of matches again doubles. The smaller peaks in the plot represent
portions where the robot either closed small loops (going around a small room for instance) or the
robot stood still for some seconds.

Regarding the computation time of the state recovery, we appreciate in figure 4.13 very interesting
results. Initially, and for reasonably large datasets, the Cholmod2 method performs better than the
rest. However, this advantage in performance is actually caused by the constant number of obser-
vations. Looking closely at figures 4.13 and 4.12, we see how at the moment of the first loop closure
(time ste ≈ 5, 210), the growth in computation time of the Cholmod2 increases significantly and in
a non linear fashion. This can be clearly seen in figure 4.15 where the computation time divided by
the number of non zero entries is displayed. It is clear that the CGS remains approximately constant
with the number of observations. This is a very interesting result key to a sucessfull implementation
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Figure 4.10: Odometry based map - large loop
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Figure 4.11: SLAM based map - large loop
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Figure 4.12: Number of observations. Average 34,45.

of the EIF over extremely large datasets. For an efficient implementation, a mixed strategy could be
employed, using the Cholmod2 method when the number of observations is limited, and switching
to CGS when loops are closed. The naive inversion technique grows so fast that it is barely useful
for maps with more than 100 features. The PCG technique shows a resonable performance up to
time step 1, 000. The sudden increase in computation time might be caused by an inapropriate
conditioning. Lu and CGS behave very similarly though their performance is significantly worst
than Cholmod2 for a constant amount of observations. This difference in performance is specially
noticeable for large datasets (more than ≈ 2, 000 robot poses). As we can see, the time required by
LU or CGS is more than double at time step 3, 000, which implies that the total computation time
up to that time step is 27 minutes for LU and CGS and 10 minutes for Cholmod2.

As the CGS is not an exact solution, a comparishon measure was needed to determine wether
the CGS was overconfident or conservative in the estimation of the information matrix. Using
a measure from [22], we compared the matrices obtained in CGS and Cholmod. The resulting
histogram shows how the estimated information matrix in CGS is conservative (values greater than
zero) with respect to the exact matrix obtained by Cholmod2.
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Figure 4.13: Computation speed per time step in state recovery. As we use a trajectory based
approach, the time step multiplied by 3 is the number of map features (number of robot poses ×
dimensions of each pose)
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Chapter 5

Conclusions ad Future Work

We have succesfully shown that an omnivideo system is adequate for building an accurate map of
indoor office environments even when facing low light conditions. We have shown that estimating
the epipolar geometry of two panoramic images and obtaining the relative heading and orientation
of each other yileds enough information to create a consistent trajectory map and compensate
for the accumulation of error in odometry. Furthermore, by means of a dataset recorded with a
mobile robot, we have shown that a very accurate map of a small office environment can be created
and maintained by our omnivision trajectory based SEIF approach. Given the computation time
required by the ESEIF and the state recovery process, we have also shown that building such a
map (for ≈ 1, 000 robot poses) can also be done in real time.

Using a robust image matching algorithm together with the ESEIF, large loops can be effectively
closed in extremely large environments. The computational gain of the Information Filter com-
pared with the traditional Extended Kalman Filter solution showed an enourmous improvement in
performance. Not only for the small office experiment, but also for the 10, 000 squared meters en-
vironment, which is one of the largest experiment on Visual SLAM to our knowledge. Such a large
experiment will not be possible with the standard Extended Kalman Filter due to the quadratic
time required. Furthermore, it will not be possible without an appropriate state recovery technique,
as we have shown that only LU decomposition, CGS and Cholmod2 are sufficiently fast for less
than 5, 000 robot poses, though the Cholmod2 is significantly better in terms of global computation
time. For extremely large datasets (more than 10, 000 robot poses) we suspect that the CGS will
perform better as the computation time growth in our experiments shows a more linear behavior less
sensible to number of observations. An efficient implementation will consider using the Cholmod2
for a number of robot poses (map features) below 5, 000 and a constant number of observations.
When the number of features increases significantly, for instance when closing large loops, the CGS
seems to be the most appropriate choice.

Having observed the amount of error induced by the linearization process by means of an artificial
data set our SLAM algorithm could be improved with a more appropriate linearization technique.
The essential drawback of the Information Filter is the need to recover the state in order to compute
the next filter step. Some approaches regarding partial state recovery could be employed though
they also introduce error as they are only an approximation. Another interesting alternative to

63



64 CHAPTER 5. CONCLUSIONS AD FUTURE WORK

explore will be the substitution of the non linear function h(x) with an alternative function over the
information vector, namely h∗(η). This will shortcut the need to recover the state vector x though
the definition of such function is difficult to foresee as the information vector lacks geometrical
meaning.

Regarding the ”bending” process of the trajectory on the loop closing points, we believe, that using
a relaxation technique to introduce additional error between certain robot poses, the bending could
be enforced over those poses, acting as joints in the bending process. This error introduction could
be done by a more detailed odometry error model. By droping the use of a static error covariance
R and introducing an improved model that accounts for the additional error when the robot is
turning. Such an error model will be integrated in a non-linear motion process.

As an extension of this Thesis, additional experiments will be performed with larger datasets in
outdoor environments. Also the planar constraint used in the 3 point algorihtm (epipolar geometry
estimation) will be droped and a 3D slam algorithm will be implemented. As part of our goal to
develop a Visual SLAM algorithm for extremely large environments we will further investigate all
the proposed techniques with the objective to implement a system capable of mapping, navigating
and 3D reconstructing a portion of a city.



Appendix A

General Math

A.1 Canonical Representation of a Gaussian

A Gaussian can be expressed using the so called canonical representation or information form:

φ(x) = exp(g + mT x − 1

2
xT Wx) (A.1)

where the polynomial coefficients m and W represent the Gaussian and are related to the mean
and covariance by:

W = Σ−1 (A.2)

m = Σ−1µ (A.3)

g = −1

2
log | 2πΣ | −1

2
µT Σ−1µ (A.4)

and the Gaussian is usually written as:

φ(x) ≡ N−1(m,W ), (A.5)

where the constant term g is omitted.

A.2 Joint Gaussian Distributions

The joint Gaussian distribution for two uncorrelated random variables is defined as:
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P (z, x) = N (

[

µz

µx

]

,

[

Σzz Σzx

Σxz Σxx

]

) (A.6)

or in its standard representation:

P (z, x) =
1

2πΣ
exp

(

−1

2

(

z − µz x − µx

)

(

Σzz Σzx

Σxz Σxx

)−1 (

z − µz

x − µx

)

)

(A.7)

Again, expanding the quadratic in the exponential, we can reach a canonical representation of the
joint Gaussian:

P (z, x) = exp

(

g +
(

mz mx

)

(

z

x

)

− 1

2

(

z x
)

(

Wzz Wzx

Wxz Wxx

)(

z

x

))

(A.8)

where:

(

Wzz Wzx

Wxz Wxx

)

=

(

Σzz Σzx

Σxz Σxx

)−1

(A.9)

mz = Kzzµz + Kzxµx (A.10)

mx = Kxxµx + Kxzµx (A.11)

g = −1

2
log | 2π

(

Σzz Σzx

Σxz Σxx

)

| −1

2

(

µz µx

)

(

Σzz Σzx

Σxz Σxx

)−1 (

µz

µx

)

(A.12)

And perhaps another more interesting expression of the inverse of the covariance matrix based on
the Inversion Lemma (see further Appendix A.3):

(

Σzz Σzx

Σxz Σxx

)−1

=

(

Σ−1
zz + Σ−1

zz Σzx(Σxx − Σxz(Σ−1
zz )Σzx)−1ΣxzΣ

−1
zz −Σ−1

zz Σzx(Σxx − Σxz(Σ−1
zz )Σzx)−1

−(Σxx − Σxz(Σ−1
zz )Σzx)−1ΣxzΣ

−1
zz −(Σxx − Σxz(Σ−1

zz )Σzx)−1

)

(A.13)

A.3 The Matrix Inversion Lemma

The so called Matrix Inversion Lemma is a result from the inverse of the nonsingular n×n partitioned
matrix:

[

P11 P12

P21 P22

]−1

=

[

V11 V12

V21 V22

]

(A.14)
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where:

V11 = P−1

11 + P−1

11 P12V22P21P
−1

11 = (P11 − P12P
−1

22 P21)
−1 (A.15)

V12 = −P−1

11 P12V22 = −V11P12P
−1

22 (A.16)

V21 = −V22P21P
−1

11 = −P−1

22 P21V11 (A.17)

V22 = P−1

22 + P−1

22 P21V11P12P
−1

22 = (P22 − P21P
−1

11 )−1P12 (A.18)

and is defined as: ]

(A + BCB′)−1 = A−1 − A−1B(B′A−1B + C−1)−1B′A−1 (A.19)
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Appendix B

Naming Conventions

• xk - a posteriori state estimation at time step k

• x̂k - a priori prediction of state at time step k

• x̌k - ground truth state

• ẑk - measurment prediction at time step k

• zk - real measuement at time step k

• R - noise model for the measurements

• Q - noise model for the process

• P̂k - a priori error covariance

• Pk - a posteriori error covariance

• ẋ∗
k - 3D vector containing the robot pose at time step k

• M - the map or remaining robot poses

• xk - position in the X axis at time step k

• yk - position in the Y axis at time step k

• θk - heading time step k
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