Office Robot Localization with a Nearest Neighbor Observation Model:

A Comparison of Different Particle Filter Techniques

Erwin J.T. Buijs

Informatics – Intelligent Autonomous Systems

Faculty of Science (FNWI)

University of Amsterdam (UvA), The Netherlands

e-mail: ejtbuijs@science.uva.nl

Supervisor: Nikos Vlassis

Keywords: auxiliary particle filter, Monte Carlo localization, nearest neighbors

August 8, 2003

Acknowledgements

First of all I would like to thank Nikos Vlassis for his guidance during the whole duration of this graduation

period, both in developing ideas for the research and in the course of the writing of this thesis.

Furthermore I’d like to thank Bas Terwijn for supplying me with the basic software on which I built the

programs I used during the conducting of the experiments. He and Matthijs Spaan were also a big help with

respect to giving advice and solving problems concerning the software. And off course they made the time

I spent here a lot more fun with their company.

And last but not least, I’m very grateful for the support and encouragement I received from my family,

friends and colleagues in all these years. They made these years a whole lot easier.

Contents

5Contents

7Chapter 1

7Introduction

81.1 Objective

91.2 Overview of the thesis

11Chapter 2

11Traditional localization methods

112.1 Kalman filter

162.2 Markov Localization

23Chapter 3

23Particle Filters

233.1 Motivation

243.2 Monte Carlo localization

303.3 Auxiliary particle filters

31Chapter 4

31Experimental results

314.1 Experimental setup

334.2 Observation model

364.3 Comparing MCL with APF

45Chapter 5

45Conclusions

455.1 Future work

47Bibliography

Chapter 1

Introduction

Sensor-based robot localization has been recognized as one of the fundamental problems in mobile robots [Thrun 2000]. It is the problem of estimating the pose (location and orientation) of a robot relative to the environment in which it is found. The localization problem is frequently divided into several subproblems. The first one is the position tracking problem. This problem has received by far the most attention in the literature and is the most simple localization problem. With position tracking the initial pose of the robot is known, and the problem is to compensate small, incremental errors in the odometry of the robot. Algorithms for position tracking often make restrictive assumptions on the size of the error and the shape of the uncertainty of the robot, required by a range of existing localization algorithms.

A second subproblem is more of a challenge to solve. This is the global localization problem. In this case the robot is not told the initial pose, instead it has to determine it from scratch. The global localization problem is more difficult, since the error in the estimate of the robot cannot be assumed to be small. Here a robot should be able to handle multiple, distinct hypothesis about where it can be found in the environment.

An even more difficult problem to solve is the kidnapped robot problem. Here a well-localized robot is teleported to some other place without it being told. This problem differs from the global localization problem in that the robot might firmly believe to be somewhere else at the time of the kidnapping. The kidnapped robot problem is often used to test the ability of a robot to recover from catastrophic localization failures.

Finally, all these problems are particularly hard in dynamic environments, for example if the robot operates in an environment in which people are walking about or the furniture is frequently placed in a different location. These situations will most likely corrupt the sensor measurements of the robot.

The vast majority of existing algorithms only address the position tracking problem. The nature of small, incremental errors makes algorithms such as Kalman filters applicable, which have been successfully applied in a range of fielded systems. Kalman filters estimate posterior distributions of robot poses conditioned on sensor data. Exploiting a range of restrictive assumptions, for example Gaussian-distributed noise and Gaussian-distributed initial uncertainty, they represent posteriors by Gaussians, exploiting an elegant and highly efficient algorithm for incorporating new sensor data. However, the restrictive nature of belief representations makes them inapplicable to global localization problems.

Possibly the most powerful family of global localization algorithms to date are based on Markov localization, a generalization of Kalman filters [Burgard et al 1996]. Just like Kalman filters, these algorithms estimate posterior distributions over the location and, if needed, the orientation of a robot. The key distinguishing factor is that these distributions are approximated by piecewise constant functions instead of Gaussians, enabling them to represent highly multi-modal distributions. As a result, these algorithms have been applied successfully to global localization problems. However, the piecewise constant representation can impose a significant computational burden, especially in high dimensions or if one is interested in high resolution. To overcome this limitation, researchers have proposed selective updating algorithms and tree-based representations that dynamically change their resolution. While these algorithms work well in real-time, they nevertheless suffer from two limitations. First, they use a lot of time and memory resources, resulting in the fact that they are computationally very expensive. The second limitation is that the accuracy of the estimation is limited by the resolution of the approximation. In general, this has as a result that when the robot is well-localized, Markov localization algorithms are less accurate than Kalman filters.

One way of dealing with the problem of the high usage of time and memory resources is by using particle filters [Dellaert et al 1999]. Particle filters are simulation-based filters which recursively estimate the continuous posterior distributions encountered in Bayes filtering. This is done by sampling the posterior density with a large enough amount of particles. In theory, the more particles are used for sampling, the approximation of the density of the robot pose will be increasingly precise.

However, basic particle filters are not without problems. They are especially prone to situations in which one or more of the observations appear to be outliers. Therefore a variation on the basic particle filter has been developed in the literature, the auxiliary particle filter [Pitt et all 1999]. This method can deal with outliers and it can also handle situations where the observation model is not available [Vlassis et al 2002].

1.1 Objective

The main issue discussed in this thesis is the comparison between the basic particle filter and the auxiliary particle filter. The basic particle filter suffers from several problems, for example, when the likelihood function is too peaked or is found in one of the tails of the prior. The auxiliary particle filter is designed to solve the problems mentioned here, along with other problems. In principle, the auxiliary should be able to establish the position of the robot with more precision compared to the basic particle filter. To see whether or not this is true, we carried out a set of tests to ascertain this. In this thesis we hope to come to the conclusion that the auxiliary particle filter is indeed more precise than the basic particle filter.

1.2 Overview of the thesis

We will provide here an overview of the thesis

 Chapter 2 discusses other localization methods. These methods are the Kalman filter and Markov localization. A short description and the mathematics behind these techniques are given, along with the various problems encountered when trying to establish the pose of a robot when they are used.

In chapter 3 both the particle filter and the auxiliary particle filter are presented. The mathematical basics that are behind the filters are discussed. The basic particle filter has some problems that hamper the process of approximating the actual position of the robot. These are shown, along with the methods the auxiliary particle filter uses to try to solve these problems.

Chapter 4 presents an overview of the tests. It will give the reader an idea of how the testing has been done. Before that, the environment in which the tests have been done will be shown, along with a brief discussion of Principal Component Analysis (PCA). This chapter will conclude with the presentation of several results, which will be discussed.

Chapter 5 ends the thesis with some conclusions and some suggestions for future work.

Chapter 2

Traditional localization methods

Several methods have been developed to try to solve the problem of robot localization. Every method discussed in this chapter uses a different approach for this problem. They each have their positive and negative points concerned with trying to establish the position of the robot.

2.1 Kalman filter

The Kalman filter is a recursive solution to the discrete-data linear filtering problem. There has been much research done on this particular algorithm and it has been used extensively in the field of robot localization. This method is mainly used for position tracking, i.e. the initial position is known and subsequently the movement is tracked.

2.1.1 The basic idea

The Kalman filter gives an estimate of the state of a dynamic system from noisy measurements. It gives a recursive minimum variance estimate of the state of the system.

To be able to apply the Kalman filter to give an estimate of the position in an environment, a discrete-time state space model is needed. This consists of a state equation and a measurement equation.

The state equation is given by:

[image: image1.wmf]k

k

k

k

k

k

u

B

x

A

x

e

+

+

=

-

1

(2.1)

Some explanation of the various variables and symbols is given here:

1.
[image: image2.wmf]k

x

 is an n-dimensional state vector, which is to be estimated

2.
[image: image3.wmf]k

A

 is an n-dimensional known system matrix

3.
[image: image4.wmf]k

B

 is an n by m-dimensional known input matrix

4.
[image: image5.wmf]k

u

 is an optional m-dimensional input vector

5.
[image: image6.wmf]k

e

 represents the process noise

Because variable
[image: image7.wmf]k

u

 is optional, it can be left out of the equation. For the rest of this discussion this will be the case. This gives a new state equation that can be simplified into:

[image: image8.wmf]k

k

k

k

x

A

x

e

+

=

-

1

(2.2)

The measurement equation is given by:

[image: image9.wmf]k

k

k

k

x

C

y

d

+

=

 (2.3)

Some explanation of the various variables and symbols is given here:

1.
[image: image10.wmf]k

y

is a p-dimensional measurement vector

2.
[image: image11.wmf]k

x

is a n-dimensional state vector which is to be estimated

3.
[image: image12.wmf]k

C

 is a p by n-dimensional known measurement matrix

4.
[image: image13.wmf]k

d

 represents the measurement error

The variables
[image: image14.wmf]k

e

 and
[image: image15.wmf]k

d

 are assumed to have zero crosscorrelation and are white. Furthermore
[image: image16.wmf]k

e

 and
[image: image17.wmf]k

d

 each have a covariance matrix (
[image: image18.wmf]k

Q

 and
[image: image19.wmf]k

R

 respectively) and have normal probability distributions:

[image: image20.wmf])

,

0

(

~

)

(

k

k

Q

N

p

e

[image: image21.wmf])

,

0

(

~

)

(

k

k

R

N

p

d

For the rest of this discussion, we will assume that system matrix
[image: image22.wmf]k

A

 and measurement matrix
[image: image23.wmf]k

C

 will remain constant. However, it is possible that both matrices could change with each measurement or time-step. Both of the covariance matrices
[image: image24.wmf]k

Q

 and
[image: image25.wmf]k

R

are also assumed to remain constant.

2.1.2 Prediction equations

In this section the problem of estimating the next state of the system is discussed. With Kalman filters, the initial state is known. The initial state is represented by the state vector
[image: image26.wmf]0

x

. To be able to predict the state of the system at time
[image: image27.wmf]1

k

, the previous estimate
[image: image28.wmf]0

ˆ

x

is needed. Because the prediction makes use of the old estimate, before incorporating the new measurements found at time
[image: image29.wmf]1

k

, this estimate will be called an “a priori” estimate. The a priori estimate is represented by
[image: image30.wmf]-

1

ˆ

x

, here the hat denotes that it is an estimate and the upper minus denotes that it is a previous estimate. So to calculate the a priori estimate, the following equation can be formed:

[image: image31.wmf]k

k

x

A

x

ˆ

ˆ

1

=

-

+

 (2.4)

In other words, to obtain a new estimate, multiply the last collected estimate
[image: image32.wmf]k

x

ˆ

with A, the system matrix.

Furthermore, it is also needed to change the error covariance matrix
[image: image33.wmf]-

k

P

, which is associated with the a priori

estimate with every new time step. The equation showing how to calculate a new value for
[image: image34.wmf]-

k

P

:

[image: image35.wmf]Q

A

AP

P

T

k

k

+

=

-

+

1

 (2.5)

It seems that depending on the size of
[image: image36.wmf]Q

, the random process noise covariance matrix has a significant effect on the error covariance matrix. The value of
[image: image37.wmf]Q

 is normally obtained before using it in the process that is to be estimated. However this tends to be somewhat of a difficult task.
[image: image38.wmf]Q

 has to simulate process noise for the process to be estimated, but it is tricky to obtain the amount of noise before the process is running. Normally acceptable results can be reached when enough uncertainty is infused into the process by giving
[image: image39.wmf]Q

 a reasonable value. However the Kalman filter can achieve better results when suitable values for
[image: image40.wmf]Q

 are found through tuning it with the help of a distinct filter, this process is called system identification.

2.1.3 Update equations

In this section the equations needed for updating the state of the system are discussed. As could be seen in the previous section, we now have an a priori estimate
[image: image41.wmf]-

k

x

ˆ

. What is now needed is an updated estimate
[image: image42.wmf]k

x

ˆ

; this is called the a posteriori estimate. To obtain the a posteriori estimate, the noisy measurement
[image: image43.wmf]k

y

 has to be combined with the a priori estimate. This is shown in the following equation:

[image: image44.wmf])

ˆ

(

ˆ

ˆ

-

-

-

+

=

k

k

k

k

k

x

C

y

K

x

x

 (2.6)

As can be seen, the a posteriori estimate
[image: image45.wmf]k

x

ˆ

can be obtained by combining the a priori estimate
[image: image46.wmf]-

k

x

ˆ

 with the weighted difference between the actual measurement
[image: image47.wmf]k

y

 and the measurement prediction
[image: image48.wmf]-

k

x

C

ˆ

. The difference
[image: image49.wmf])

ˆ

(

-

-

k

k

x

C

y

is called the residual. It reflects the discrepancy between the actual measurement
[image: image50.wmf]k

y

 and the measurement that was predicted. If the residual is zero, then it appears that the prediction of the value of the next measurement and the actual measurement are the same.

In equation (2.6) there still is one symbol that is still to be explained. The Kalman gain
[image: image51.wmf]k

K

 is a matrix that aims to minimize the a posteriori error covariance matrix. The formula for calculating the Kalman gain is:

[image: image52.wmf]1

)

(

-

-

-

+

=

R

C

CP

C

P

K

T

k

T

k

k

(2.7)

From this it can be seen that when the measurement error covariance matrix
[image: image53.wmf]R

 reaches zero, the Kalman gain will weigh the residual more heavily:

[image: image54.wmf]1

k

0

K

lim

-

®

=

C

k

R

If this is the case, the actual measurement
[image: image55.wmf]k

y

 is trusted more and more. At the same time, the predicted measurement
[image: image56.wmf]-

k

x

C

ˆ

 is trusted less and less.

If however the a priori estimate error covariance matrix
[image: image57.wmf]-

k

P

 reaches zero, the Kalman gain will weigh the residual less heavily:

[image: image58.wmf]0

K

lim

k

0

=

®

-

k

P

When this is the situation, when covariance matrix
[image: image59.wmf]-

k

P

 approaches zero, the actual measurement is trusted less and less, on the other hand
[image: image60.wmf]-

k

x

C

ˆ

 is trusted more and more.

The last update equation is the error covariance update equation. This is given by:

[image: image61.wmf]-

-

=

k

k

k

P

C

K

I

P

)

(

 (2.8)

The error covariance matrix
[image: image62.wmf]k

P

 gives a statistical measure of the uncertainty in
[image: image63.wmf]k

x

, it is a measure of the dispersion of
[image: image64.wmf]k

x

around
[image: image65.wmf]k

x

ˆ

.

2.1.4 The discrete Kalman filter algorithm

In this section the working of the discrete Kalman filter algorithm will be presented.

The Kalman filter estimates a certain process by using a form of feedback control. First it estimates the state of the system at a given time and afterwards receives feedback from incoming measurements. In other words, first it predicts what the state of the system will be and, after receiving new measurements from sensors, these predictions will be corrected.

[image: image260.wmf]1

ˆ

ˆ

-

-

=

k

k

x

A

x

Figure 2-1: The ongoing Kalman filter cycle

As can be seen in figure 2-1, the Kalman filter is an ongoing process. When the Kalman filter is used for the first time, it makes use of the initial values given at time
[image: image66.wmf]0

t

. Remember that in this discussion, it is assumed that system matrix
[image: image67.wmf]A

, measurement matrix
[image: image68.wmf]C

, and noise covariance matrices
[image: image69.wmf]Q

 and
[image: image70.wmf]R

 are constant all the time.

The first step to be taken now is to use the time update equations. These are responsible for projecting the current values of the state and error covariance estimates forward in time. After this step is done, there will be new a priori estimates available for a next time step. To do this, obtaining a new system state estimate and a new error covariance estimate matrix, the previous state and error covariance estimates are used. If the process has just started the initial values will be used, otherwise the last a posteriori estimates will be used to calculate the new a priori estimates. How this is done can be seen in figure 2-2.

After obtaining new a priori estimates, the next step is to use the measurement update equations. As implied by the name of these equations, they make use of feedback, in the form of new measurements, and the a priori estimates to calculate improved a posteriori estimates. First the Kalman gain has to be calculated, to see how much the residual will be weighed. When the Kalman gain is known, it is possible to obtain a new a posteriori state estimate. As is shown, to be able to calculate the new state, the new measurement is compared to predicted measurement, multiplied with the Kalman gain and combined with the a priori state estimate. The final step is obtaining an a posteriori error covariance estimate. All the measurement update equations are presented in figure 2-2.

[image: image261.wmf]Q

A

AP

P

T

k

k

+

=

-

-

1

Figure 2-2: The Kalman filter algorithm

The Kalman filter has a recursive nature, so this entire process will be repeated until program termination. In every cycle of the process, i.e. after each time and measurement update pair, the previous a posteriori estimates are used to calculate the new a priori estimates and from them the new a posteriori estimates.

2.1.5 Advantages and problems with Kalman filters
As has already been said, the Kalman filter is one of the most popular techniques that are used for position tracking. It can be used to compensate for errors caused by the odometry during movement of a robot. As a prerequisite for this method, the initial position, and if available the initial orientation, have to be known in advance. Kalman filters are very efficient and highly accurate in establishing position and orientation of the robot.

There are however also several problems with regard to this localization technique which cannot be solved. The main problem is concerned with the fact that with most implementations of the Kalman filter the position is estimated using a single Gaussian distribution. This unimodal Gaussian distribution is enough to represent a single location for the robot. However, it does not have the capacity to deal with multiple possible locations. Furthermore, if the situation occurs in which there is no information available about the initial position and orientation of the robot, the Kalman filter will be unable to determine the location. The same problem occurs when confronted with localization failures, Kalman filters are unable to deal with these situations. As a result it is not possible to solve the kidnap-problem and it cannot be used for global localization.

Recently, a variation on the Kalman filter has been developed which is based on multiple hypothesis tracking. This approach is based upon multimodal probability distributions and as such is capable of global localization.

2.2 Markov Localization

As mentioned in the previous section, Kalman filters are generally not suited to be used for global localization. They are not designed to deal with the problem of trying to establish the position, and possibly the orientation, when encountered with multiple possible locations. To solve this problem a new approach has been proposed in the literature, called Markov Localization.

2.2.1 The basic idea

Markov Localization uses a probabilistic algorithm. This means that instead of maintaining a single hypothesis as to what is the best estimate of the pose of a robot, this technique keeps a probability density over the space of every possible position and orientation. The density appears in various forms and each form represents some kind of information about the position of a robot. For example, if there is absolutely no information about the position of the robot, the density can be represented by a uniform distribution. When it is highly certain of the position, there will be a unimodal (i.e. with only one peak) distribution centered around the supposedly true position. This technique is also capable of tracking multiple hypothesis, in the case in which the robot is not entirely sure of his location and there are multiple options available to choose from. When this is the case, every likely location has a higher probability density around this location. All other locations, where the robot is not likely to be found, have a very low probability density.

2.2.2 The mathematics behind Markov Localization
In this paragraph the mathematics behind Markov Localization will be shown. First of all, some pre-conditions.

Suppose that the position of a robot is represented by a three-dimensional variable
[image: image71.wmf]ñ

á

=

q

,

,

y

x

l

.
[image: image72.wmf]x

 and
[image: image73.wmf]y

 represent the x- and y-coordinates in a Cartesian coordinate system,
[image: image74.wmf]q

 denotes the orientation. Furthermore, consider
[image: image75.wmf]t

l

 being the actual position of the robot at time
[image: image76.wmf]t

, and letting
[image: image77.wmf]t

L

 be any random three-dimensional variable that represents
[image: image78.wmf]t

l

.

The robot does not exactly know his actual position, instead it keeps a belief
[image: image79.wmf])

(

t

L

Bel

 about all possible positions. This implies that
[image: image80.wmf])

(

t

t

l

L

Bel

=

 indicates the probability the robot gives to the fact that it is located at position
[image: image81.wmf]l

 at time
[image: image82.wmf]t

.

The belief can be updated by two different events. The first event is tied to the arrival of a new measurement from one of the environment sensors the robot is equipped with. This could be a measurement from a sonar, a camera image, a laser range finder, etc. The second measurement comes from an odometry reading. We denote the environment sensor measurements by
[image: image83.wmf]s

 and the odometry measurements by
[image: image84.wmf]a

. Furthermore, we assume that the robot receives a stream of data
[image: image85.wmf]d

, consisting of named sensor and odometry measurements. This is represented by

[image: image86.wmf]}

,...,

,

{

1

0

T

d

d

d

d

=

where each
[image: image87.wmf]t

d

 (with
[image: image88.wmf]T

t

£

£

0

) being of one of the two kinds of measurements,
[image: image89.wmf]t

 is used here as an index for the data, and
[image: image90.wmf]T

 denotes the measurement which was the last to be collected.

Before looking at how the update rules are derived, there are two conditions that have to be taken into account. The first one has to do with the fact that with Markov Localization the posterior distribution has to be estimated conditioned over all of the available data. Because of this, the following equation is implied:

[image: image91.wmf])

,...,

,

|

(

)

|

(

1

0

T

T

T

d

d

d

l

L

P

d

l

L

P

=

=

=

The second condition is tied to the Markov Assumption. The Markov Assumption implies that the past has no effect given the present. Therefore, if the actual position of the robot is known, all of the previous data is irrelevant. It is enough to know the present location
[image: image92.wmf]t

l

 to be able to predict the future data. This is shown in the following equation:

[image: image93.wmf]t

l

L

d

d

P

d

d

l

L

d

d

P

t

t

t

t

t

t

t

"

=

=

=

+

+

+

+

)

|

,...

,

(

)

,...,

,

|

,...

,

(

2

1

0

2

1

As already mentioned before, there are two different kinds of measurements, an environment sensor measurement and an odometry measurement. The Markov Localization algorithm handles both differently. First the case in which the measurement comes from an environment sensor is described, afterwards the same will be done for the case that an odometry measurement is encountered.

Case 1: The last encountered data item is a sensor environment measurement,
[image: image94.wmf]t

t

s

d

=

[image: image95.wmf])

|

(

)

(

d

l

L

P

l

L

Bel

T

T

=

=

=

 (1)

Rule 1 is what has to be calculated. The righthand part of the previous rule can be rewritten using the first condition. This results in the following:

[image: image96.wmf])

,

,...,

|

(

)

(

1

0

T

T

T

T

s

d

d

l

L

P

l

L

Bel

-

=

=

=

 (2)

In other words, the datastream
[image: image97.wmf]d

 consists of every collected measurement in the past, including the newly encountered sensor environment measurement. Using the Bayes rule this can be rewritten into rule 3:

[image: image98.wmf])

,...,

|

(

)

,...,

|

(

)

,

,...,

|

(

)

(

1

0

1

0

1

0

-

-

-

=

=

=

=

T

T

T

T

T

T

T

T

d

d

s

P

d

d

l

L

P

l

L

d

d

s

P

l

L

Bel

 (3)

Using the Markov Assumption, the present location is known so all previous data is irrelevant, the previous rule can be changed into the following simplified version:

[image: image99.wmf])

,...,

|

(

)

,...,

|

(

)

|

(

)

(

1

0

1

0

-

-

=

=

=

=

T

T

T

T

T

T

T

d

d

s

P

d

d

l

L

P

l

L

s

P

l

L

Bel

 (4)

The denominator in rule 4 does not depend on position
[image: image100.wmf]l

 of the robot, so it can be replaced by a constant normalizer
[image: image101.wmf]T

a

:

[image: image102.wmf])

,...,

|

(

)

|

(

)

(

1

0

-

=

=

=

=

T

T

T

T

T

T

d

d

l

L

P

l

L

s

P

l

L

Bel

a

 (5)

It is clear that the previous rule has an incremental nature. Consider the first condition,
[image: image103.wmf])

,...,

,

|

(

)

(

1

0

T

T

T

d

d

d

l

L

P

l

L

Bel

=

=

=

. The end of the righthand part of rule 5,
[image: image104.wmf])

,...,

|

(

1

0

-

=

T

T

d

d

l

L

P

 resembles the righthand part of the condition. The only difference is that the last part of rule 5 does not take the last encountered measurement into account. Therefore it follows that the previous belief
[image: image105.wmf])

(

1

l

L

Bel

T

=

-

 equals this last part. Thus
[image: image106.wmf])

,...,

|

(

)

(

1

0

1

-

-

=

=

=

T

T

T

d

d

l

L

P

l

L

Bel

. Substituting this into rule 5 results in the following rule:

[image: image107.wmf])

(

)

|

(

)

(

1

l

L

Bel

l

L

s

P

l

L

Bel

T

T

T

T

T

=

=

=

=

-

a

 (6)

It can be seen in the last rule (6) that the posterior belief
[image: image108.wmf])

(

l

L

Bel

T

=

 results from multiplying the sensor likelihood
[image: image109.wmf])

|

(

l

L

s

P

T

T

=

 with a normalizing constant
[image: image110.wmf]T

a

 and the previous belief
[image: image111.wmf])

(

1

l

L

Bel

T

=

-

. The incremental equation derived in rule 6 will be used in the Markov Localization algorithm to update the position whenever an environment sensor measurement is encountered. The algorithm itself will be presented in the next section.

Case 2: The last encountered data item is an odometry measurement,
[image: image112.wmf]t

t

a

d

=

[image: image113.wmf])

|

(

)

(

d

l

L

P

l

L

Bel

T

T

=

=

=

 (1)

Rule 1 is what has to be calculated. The righthand part of the previous rule can be rewritten using the Theorem of Total Probability into the following form:

[image: image114.wmf]ò

=

=

=

=

=

-

-

'

)

|

'

(

)

'

,

|

(

)

(

1

1

dl

d

l

L

P

l

L

d

l

L

P

l

L

Bel

T

T

T

T

 (2)

As could be seen in the previous case, the datastream
[image: image115.wmf]d

 encountered in the rule can be expanded to

[image: image116.wmf]}

,

,...,

,

{

1

1

0

T

T

a

d

d

d

d

-

=

For now, only the first
[image: image117.wmf]d

 of rule 2 will be substituted, so all of the steps in the derivation will be kept fairly simple. The substitution results in:

[image: image118.wmf]ò

=

=

=

=

=

-

-

-

'

)

|

'

(

)

'

,

,

,...,

|

(

)

(

1

1

1

0

dl

d

l

L

P

l

L

a

d

d

l

L

P

l

L

Bel

T

T

T

T

T

T

 (3)

Using the Markov Assumption this can be changed into:

[image: image119.wmf]ò

=

=

=

=

=

-

-

'

)

|

'

(

)

'

,

|

(

)

(

1

1

dl

d

l

L

P

l

L

a

l

L

P

l

L

Bel

T

T

T

T

T

 (4)

Now the second datastream
[image: image120.wmf]d

 can be substituted, resulting in:

[image: image121.wmf]ò

-

-

-

=

=

=

=

=

'

)

,

,...,

|

'

(

)

'

,

|

(

)

(

1

0

1

1

dl

a

d

d

l

L

P

l

L

a

l

L

P

l

L

Bel

T

T

T

T

T

T

T

 (5)

Rule 5 can be simplified. When looking at the righthand part of the previous rule,
[image: image122.wmf])

,

,...,

|

'

(

1

0

1

T

T

T

a

d

d

l

L

P

-

-

=

, it is clear that the odometry measurement
[image: image123.wmf]T

a

 does not carry any information about the last location
[image: image124.wmf]1

-

T

L

. Therefore it can be discarded from the equation. So rule 5 can be rewritten into:

[image: image125.wmf]ò

-

-

-

=

=

=

=

=

'

)

,...,

|

'

(

)

'

,

|

(

)

(

1

0

1

1

dl

d

d

l

L

P

l

L

a

l

L

P

l

L

Bel

T

T

T

T

T

T

 (6)

As was the case with the environment sensor measurement, it appears that here rule 6 also is of an incremental form. Again, consider the condition
[image: image126.wmf])

,...,

,

|

(

)

(

1

0

T

T

T

d

d

d

l

L

P

l

L

Bel

=

=

=

. The righthand part of the condition closely resembles the end of rule 6,
[image: image127.wmf])

,...,

|

'

(

1

0

1

-

-

=

T

T

d

d

l

L

P

. The only difference is that the last measurement is not taken into account. As could be seen in case 1, it follows that
[image: image128.wmf])

,...,

|

'

(

)

'

(

1

0

1

1

-

-

-

=

=

=

T

T

T

d

d

l

L

P

l

L

Bel

. Substituting this into rule 6 leads to the following rule:

[image: image129.wmf]ò

=

=

=

=

=

-

-

'

)

'

(

)

'

,

|

(

)

(

1

1

dl

l

L

Bel

l

L

a

l

L

P

l

L

Bel

T

T

T

T

T

 (7)

In order to calculate the posterior belief
[image: image130.wmf])

(

l

L

Bel

T

=

, the previous belief
[image: image131.wmf])

'

(

1

l

L

Bel

T

=

-

 has to be multiplied with the motion model
[image: image132.wmf])

'

,

|

(

1

l

L

a

l

L

P

T

T

T

=

=

-

, and in conclusion the integral has to be taken of the result. The incremental equation derived in rule 7 will be used in the Markov Localization algorithm to update the position whenever an odometry measurement is encountered. The algorithm itself will be shown in the next section.

2.2.3 The Markov Localization algorithm
Together the two equations from the previous section, rule 6 of case 1 and rule 7 of case 2, which are used for updating the position, form the heart of the Markov Localization algorithm. The complete algorithm is presented here:

for each location
[image: image133.wmf]l

 do

[image: image134.wmf])

(

)

(

0

0

l

L

P

l

L

Bel

=

¬

=

end for

forever do

 if new environment sensor measurement
[image: image135.wmf]T

s

 is received do

[image: image136.wmf]0

¬

T

a

 for each location
[image: image137.wmf]l

 do

[image: image138.wmf])

(

)

|

(

)

(

1

l

L

Bel

l

L

s

P

l

L

tempBel

T

T

T

T

=

=

¬

=

-

[image: image139.wmf])

(

l

L

tempBel

T

T

T

=

+

¬

a

a

 end for

 for each location
[image: image140.wmf]l

 do

[image: image141.wmf])

(

)

(

1

l

L

tempBel

l

L

Bel

T

T

T

=

¬

=

-

a

 end for

 end if

 if new odometry measurement
[image: image142.wmf]T

a

 is received do
 for each location
[image: image143.wmf]l

 do

[image: image144.wmf]ò

=

=

=

¬

=

-

-

'

)

'

(

)

'

,

|

(

)

(

1

1

dl

l

L

Bel

l

L

a

l

L

P

l

L

Bel

T

T

T

T

T

 end for

 end if

end forever

The first thing that will be done in the algorithm is to initialize the belief. Because in general it is assumed here that the initial position is unknown, the probability density at time
[image: image145.wmf]0

=

t

 will be uniformly distributed. It is also possible that there already is some information known about the position of the robot. If that is the case, a peaked Gaussian distribution can be centered at that location.

After the initialization there are two options. The first one is that the perception model will be applied, the second is that the motion model will be used. Every time a new measurement arrives, we check what kind of measurement it was. If it came from one of the sensors of the robot, the perception model
[image: image146.wmf])

|

(

l

L

s

P

T

T

=

 will be used to update the belief of all positions with

[image: image147.wmf])

(

)

(

1

l

L

tempBel

l

L

Bel

T

T

T

=

¬

=

-

a

.

If the new measurement came from the odometry, the motion model
[image: image148.wmf]ò

=

=

-

)

'

,

|

(

1

l

L

a

l

L

P

T

T

T

 will be applied to update the belief with

[image: image149.wmf]ò

=

=

=

¬

=

-

-

'

)

'

(

)

'

,

|

(

)

(

1

1

dl

l

L

Bel

l

L

a

l

L

P

l

L

Bel

T

T

T

T

T

.

Updating the beliefs will be done until the program running this algorithm is terminated.

2.2.4 Advantages and problems with Markov Localization

In the previous section it appeared that a robot using a localization technique like a Kalman Filter is not able to acquire his position when it does not have information about his initial position. To overcome this problem, a different technique called Markov Localization was developed. Markov Localization is able to ascertain the position of the robot starting from scratch.

Furthermore, unlike Kalman Filters, it also has the ability to recover from situations in which the robot, after a certain amount of time, has absolutely no idea about his current position, the so-called localization failures. Kalman Filters are in general not able to handle these failures.

Another advantage Markov Localization has over Kalman Filters is that is has the capacity to deal with ambiguous situations. When encountered with multiple possible locations in the environment, Markov Localization is able to keep track of every option. It can do this because it keeps a probability density over the whole environment to estimate the locations where the robot could be. Hopefully, in time the density will be centered around one single point in the environment, depicting the true location of the robot. Kalman Filters on the other hand are unable to handle this problem.

There are however also some details tied to Markov Localization which result in several problems. The algorithm discussed above assumes that the environment is static. Because of that, a robot that uses this algorithm will most likely have trouble localizing itself when placed in a dynamic environment. By dynamic we mean an environment where there are objects that move around. For example, people moving around in the various rooms and hallways of the environment, or pieces of furniture that are continually placed on other locations. Recently some methods have been developed which enable Markov Localization to work even in dynamic environments [Fox et al 1999]. These however will not be discussed in this thesis.

Another problem is concerned with the state space representations. Most approaches of Markov Localization organize the state space according to a coarse, topological structure of the environment. Although these approaches are able to solve the problem of global localization, because of the coarse resolution of the state space representations, the estimations of the positions will in general not be that accurate. As a result, the robot can only estimate his position depending on the resolution of the topological grid. Therefore, when using topological approaches it is possible that the best estimate of the position will vary from the position in the real world. When using a grid-based approach, the state space is discretized. This way, the probability density can be approximated by a piece-wise constant function. Although this approach is powerful, it also introduces some problems. Grid-based approaches are inclined to use enormous amounts of memory and the resolution and size of the state space have to be determined before starting with the computational part. Due to the computational requirements, it is largely impossible to process all of the measurements in real-time. This results in a situation in which a lot of valuable information about the state will not be available. Consequently, the estimate of the position is not very accurate.

Chapter 3

Particle Filters

In this chapter a different approach to robot localization is discussed. This approach belongs to the class of particle filters. Particle filters are sampling-based methods; the probability density of the state vector is represented by a set of samples randomly drawn from it [Doucet et al 2001].

First, we look at some of the reasons why sampling-based methods are becoming more popular than the traditional localization methods. Second, the basic particle filter technique for robot localization, Monte Carlo localization, is presented. It seems that although Monte Carlo localization is better than the traditional methods, it also suffers from several problems. Finally the auxiliary particle filter will be described, along with the solutions it offers to the problems of Monte Carlo localization.

3.1 Motivation

Before describing in detail the workings of particle filters, we look at some of the reasons of why particle filters are preferred over the more traditional localization methods. It seems that by employing this technique several problems concerned with the traditional methods are completely, or the greatest part, solved.

3.1.1 Dealing with a continuous state space

A significant problem concerned with localization is the way in which the environment is represented. We have to assume that every position in the environment could be a valid location for the robot. As such, the environment can be regarded as a continuous state space. The problem now is how to deal with it, especially how to deal with the posterior density
[image: image150.wmf])

|

(

y

x

p

, which gives us the information we need, that is possible positions and orientations, in the state space. When trying to describe the density, several methods, for example Markov localization, require a great deal of memory to accomplish this. Particle filters on the other hand use a different method for describing the density. They approximate the density with a set of samples drawn from it. As a result, the continuous state space is converted into a discrete state space, which requires less memory to be used and also is easier to sample from.

3.1.2 Large state space

Some localization methods inflict a heavy burden on computational resources. Grid-based Markov localization for example has to use enormous amounts of memory when the dimension of the state space is high. This is because the state space is discretizised and afterwards the state space density is approximated by a piece-wise constant function.

Sampling-based methods, like particle filters, place less of a burden on computational resources. Instead the density is represented by a set of samples that are randomly drawn from it. This in general requires much less memory for usage.

3.1.3 Multi-modal densities

When in the process of localization, the possibility arises that multiple different positions for the robot have to be considered. A technique like the Kalman filter is not equipped for dealing with this problem. Instead Kalman filters display the entire state space density in one single unimodal Gaussian distribution, i.e. only one single possible location. As a result they cannot be used for global localization where multi-modal probability distributions appear frequently.

On the other hand, particle filters do have the ability to represent multi-modal densities. The distribution of the state vector is represented as a set of particles in state space. During visualization of the process of localization, every observation of a possible location of the robot consists of a cloud of particles. The more likely an observation is, the higher is the number of particles tied to that observation.

3.1.4 Global localization

With global localization the initial position of the robot is unknown and it has to be determined from scratch. To solve this problem, the robot should be able to handle multiple, distinct hypotheses. As already said in the previous paragraph, particle filters can represent multi-modal densities. Therefore they can be used for global localization.

3.1.5 Localization failures

When the situation occurs in which the robot after some time is unable to determine its position, we speak of a localization failure. When this happens the robot has to start over with regard to localization. Because now the new initial position is unknown, this situation resembles the start of global localization. Because particle filters can handle the global localization problem, they are also able to cope with localization failures.

3.2 Monte Carlo localization

Monte Carlo localization is a different approach to the localization problem compared to Kalman filters and Markov localization. Here the probability density is represented by a set of samples that are randomly drawn from it.

3.2.1 Bayes filtering

Monte Carlo localization is based on a recursive Bayes filter that estimates the posterior distribution of the position, or multiple positions, conditioned on sensor measurements. Before delving into Monte Carlo localization itself, we first show the foundations and equations on which Bayes filtering is based.

Bayes filtering tries to estimate a probability density over the state space in accordance with the data that is encountered. Data could be images collected by cameras, odometry readings, range measurements, etc. Bayes filters, just like Markov localization, assume that the environment is Markov. In other words, past and future are independent of each other if the current state is known.

This results in a posterior density, which sometimes is called the belief of the robot about its position. It is denoted by:

[image: image151.wmf])

|

(

t

t

y

x

p

This can be read “the probability that we are in state
[image: image152.wmf]t

x

 after encountering observation
[image: image153.wmf]t

y

 at time
[image: image154.wmf]t

. Furthermore, a transition model is needed to bring the robot from one state to another, from
[image: image155.wmf]t

x

 to
[image: image156.wmf]1

+

t

x

. This model is given by:

[image: image157.wmf])

,

|

(

1

t

t

t

u

x

x

p

+

Parameter
[image: image158.wmf]t

u

 denotes an action, for example the movement of the robot. We assume that there will always be an action
[image: image159.wmf]t

u

 present in the transition model, therefore the model can be simplified into:

[image: image160.wmf])

|

(

1

t

t

x

x

p

+

Also, every time step
[image: image161.wmf]t

, the robot observes a sensor measurement of the environment. Because this will most likely also change the posterior, this has to be taken into account in the process of calculating a new posterior. The observation model is given by

[image: image162.wmf])

|

(

t

t

x

y

p

We assume that the observations
[image: image163.wmf]t

y

 are independent from each other, given the states
[image: image164.wmf]t

x

. The observation model is also called the measurement or sensor model.

Using the Bayes rule, the posterior at time
[image: image165.wmf]1

+

t

 can be written as:

[image: image166.wmf])

(

)

|

(

)

|

(

1

1

1

1

1

+

+

+

+

+

µ

t

t

t

t

t

x

p

x

y

p

y

x

p

So the posterior can be calculated by multiplying the likelihood with the prior density. The prior density is given by:

[image: image167.wmf]ò

+

+

=

t

t

t

t

t

t

dx

y

x

p

x

x

p

x

p

)

|

(

)

|

(

)

(

1

1

It can be seen that the prior density makes use of the previous posterior density.

The two formulas together form the basis for Bayes filtering. There are however some pitfalls concerned with solving for the posterior density. To be able to calculate the posterior, we need to compute the integral from the prior density, multiply it with the likelihood
[image: image168.wmf])

|

(

1

1

+

+

t

t

x

y

p

 and normalize the resulting posterior density to unit integral. When the transition and observation models are linear and/or Gaussian, the equations can be easily solved when using Kalman filters. However, when these models are nonlinear and/or non-Gaussian it is not possible to calculate the posterior density analytically. If this is the case, the problem has to be tackled by using approximations or simulations. This is exactly what particle filters are designed for.

3.2.2 The basic idea

As shown in the previous section, Monte Carlo localization is based on Bayes filters. The problem with Bayes filters is the way in which the continuous posterior density is represented. This is especially a problem when the transition and the observation model are nonlinear and/or non-Gaussian, because the posterior cannot be analytically calculated.

Monte Carlo localization avoids this problem, by recursively approximating the continuous posterior density
[image: image169.wmf])

|

(

t

t

y

x

p

. This is done by representing the continuous posterior density by a set of random particles
[image: image170.wmf]i

t

x

, with discrete associated probability weights
[image: image171.wmf]i

t

p

, for time step
[image: image172.wmf]t

 and with
[image: image173.wmf]i

 being the index of a particle
[image: image174.wmf]I

i

,...,

1

=

. Each particle represents a state and the weights correspond with non-negative numerical factors that sum up to one. As a result, the continuous posterior density is approximated by a discrete distribution with a random support.

At the start, the initial set of samples represent the initial belief
[image: image175.wmf])

(

0

x

p

 about the state. In our example, a robot in a certain environment, the initial belief is given by several particles drawn from a uniform distribution over the whole environment. Typically, in such a situation all weights have the same value. So when there are
[image: image176.wmf]I

 particles available for sampling, all weights will receive
[image: image177.wmf]I

i

t

1

=

p

 as value.

As a result, the posterior density distribution can now be rewritten into a discrete form by an empirical estimate:

[image: image178.wmf]å

=

-

=

I

i

i

t

t

i

t

t

t

x

x

y

x

p

1

)

(

)

|

(

d

p

Here
[image: image179.wmf])

(

i

t

t

x

x

-

d

 is a delta function, which is centered on particle
[image: image180.wmf]i

t

x

. It is
[image: image181.wmf]1

 if
[image: image182.wmf]i

t

t

x

x

=

 and
[image: image183.wmf]0

 otherwise. As can be seen in the function, the posterior is not continuous anymore. Because it has been approximated, it is converted into a discrete version.

With the help of the previous rewritten equation for
[image: image184.wmf])

|

(

t

t

y

x

p

, the equation for calculating the continuous prior can also be changed into a discrete version. This is sometimes called the mixture density.

[image: image185.wmf]å

=

+

+

=

I

i

i

t

t

i

t

t

x

x

p

x

p

1

1

1

)

|

(

)

(

p

The integral for computing the prior is now replaced by a summation. This is much easier to compute, as sampling is much easier than analytically solving the continuous version of the equation.

To be able to calculate the posterior density
[image: image186.wmf])

|

(

1

1

+

+

t

t

y

x

p

, we first have to know the value for the prior
[image: image187.wmf])

(

1

+

t

x

p

. This is a difficult task when we use the integral. However, in the discrete version of the prior, there is no integral anymore. Therefore the posterior density can now be changed into the following form:

[image: image188.wmf]å

=

+

+

+

+

+

µ

I

i

i

t

t

i

t

t

t

t

t

x

x

p

x

y

p

y

x

p

1

1

1

1

1

1

)

|

(

)

|

(

)

|

(

p

As can be seen, compared to the continuous version of the posterior density, it is more trivial to calculate the discrete version.

The two equations used to compute the discrete versions of the prior
[image: image189.wmf])

(

1

+

t

x

p

 and the posterior
[image: image190.wmf])

|

(

1

1

+

+

t

t

y

x

p

 densities form the basis for the Monte Carlo localization algorithm, which will be discussed in the next section. Because they are discrete functions, it is much easier to compute them. Compared to other methods like Markov localization, it uses less memory and is computationally less expensive. Furthermore, they are very easy to implement.

3.2.3 The Monte Carlo localization algorithm

In this section a possible algorithm for Monte Carlo localization is presented. It uses the discrete versions of the equations needed for computing the prior and the posterior densities.

The Monte Carlo localization method has a prediction and an update phase. Assume that during the initialization of the filter, at time
[image: image191.wmf]0

=

t

, we have sampled the prior
[image: image192.wmf])

(

0

x

p

 and obtained a random sample set
[image: image193.wmf]}

{

0

0

i

x

X

=

, with
[image: image194.wmf]I

i

,...,

1

=

.

In the prediction phase we use the set of samples
[image: image195.wmf]t

X

 containing the particles from the last iteration of the algorithm, or, if this is the first time the algorithm is run, the set of randomly distributed particles
[image: image196.wmf]0

X

. All of the particles from
[image: image197.wmf]t

X

 are used, and the transition model
[image: image198.wmf])

|

(

1

i

t

t

x

x

p

+

 is used to sample from. This results in a new set of particles
[image: image199.wmf]1

'

+

t

X

, the prime denotes the fact that in the obtained set the new measurement is not yet incorporated. The new set approximates the prior density
[image: image200.wmf])

(

1

+

t

x

p

.

In the update phase the measurement
[image: image201.wmf]1

+

t

y

 is integrated into the process of calculating the posterior density. We already have the prior density, approximated with the set of particles
[image: image202.wmf]1

'

+

t

X

. Each particle has to have a certain weight linked to it. This weighing is given by:

[image: image203.wmf])

'

|

(

1

1

1

i

t

t

i

t

x

y

p

+

+

+

=

p

All of the weights are given a value according to how likely the observation is, given the particle linked to the weight, i.e. they receive the value which is given by the likelihood. The result is a set of weights, which are not yet normalized. This however is to be done at the end of the update phase. Now it is time to obtain a new set of particles
[image: image204.wmf]1

+

t

X

. This is done by resampling from the weighted set
[image: image205.wmf]}

,

'

{

1

1

i

t

i

t

x

+

+

p

. During resampling, particles which have a high weight are more likely to be drawn from the weighted set, some particles will most likely be picked several times. Outliers on the other hand, in general with a very low value in the weight, have a high chance of being discarded. After the new set of particles is obtained, the weights still have to be normalized. This is done in a final normalization-step, which ensures that all the weights will sum up to one.

Below an algorithm for Monte Carlo localization is shown. This algorithm is called Sampling/Importance Resampling (SIR):

Initialization) we have an uniformly distributed set of samples
[image: image206.wmf]0

X

, obtained from sampling from the prior
[image: image207.wmf])

(

0

x

p

Step 1) for each particle
[image: image208.wmf]i

t

x

:

draw a sample
[image: image209.wmf]i

t

x

1

'

+

 from the transition model
[image: image210.wmf])

|

(

1

i

t

t

x

x

p

+

 a new set of samples
[image: image211.wmf]1

'

+

t

X

 is obtained

Step 2) for
[image: image212.wmf]I

i

,..,

1

=

:

weight each particle
[image: image213.wmf]i

t

x

1

'

+

 from
[image: image214.wmf]1

'

+

t

X

 by the likelihood
[image: image215.wmf])

'

|

(

1

1

1

i

t

t

i

t

x

y

p

+

+

+

=

p

 for
[image: image216.wmf]I

j

,..,

1

=

:

Draw one
[image: image217.wmf]1

+

t

X

 sample
[image: image218.wmf]j

t

x

1

+

 from
[image: image219.wmf]}

,

'

{

1

1

i

t

i

t

x

+

+

p

 normalize all weights
[image: image220.wmf]j

t

1

+

p

 a new set of samples
[image: image221.wmf]1

+

t

X

 is obtained. It approximates the posterior density
[image: image222.wmf])

|

(

1

1

+

+

t

t

y

x

p

.

Step 1 and 2 are repeated for the duration of the process of localization.

3.2.4 Problems with Monte Carlo localization
As we already said in the beginning of this chapter, there are various benefits with regard to using particle filters instead of the more traditional methods. They are less of a burden on computational resources, especially when compared to grid-based Markov localization. They have the ability to track the position of a robot locally and localize it globally. Furthermore they are able to represent multi-modal densities.

There are however also several problems. The first one deals with the fact that a standard Sampling/Importance Resampling particle filter needs a lot of particles when the likelihood is too peaked. In many cases the prior will be spread out more than the observation likelihood. This will require a large number of particles to be sampled for convergence. Because of that, the results will tend to become less precise.

A second problem is when the likelihood can be found in one of the tails of the prior. This situation can be seen in Figure 3. The most interesting part of the posterior is the part where the prior and the likelihood overlap each other. When sampling from the prior
[image: image223.wmf])

(

1

+

t

x

p

 in this situation, there will not be enough particles produced in the overlapping part. Moreover, the weights
[image: image224.wmf]i

t

1

+

p

 will be unevenly distributed. As a result, the posterior cannot be represented with reasonable accuracy. This is especially a problem when outliers are encountered [Pitt et al 1999].

[image: image262.wmf]1

)

(

-

-

-

+

=

R

C

CP

C

P

K

T

k

T

k

k

Figure 3: Sampling only from the prior fails to produce enough particles in the

 overlapping region between the prior and the likelihood function.

A third problem is about the question of how the observation model
[image: image225.wmf])

|

(

1

1

+

+

t

t

x

y

p

is represented. In many cases, the observation model is unavailable. Then a good model has to be estimated from the data from sensor measurements. These measurements may well involve high-dimensional vectors. For example, they could be camera images, laser range profiles, and so on. The dimensionality of the measurements has to be reduced, allowing them to be easily incorporated into the observation model. However, when using lower-dimensional measurements, a lot of information is discarded. This can affect the whole process of localization. Therefore not a too low dimension has to be chosen. See [Vlassis et al 2002] for details.

3.3 Auxiliary particle filters

The auxiliary particle filter is an enhancement over the particle filters based on Monte Carlo localization. It resolves several of the problems that the basic particle filters are unable to solve.

3.3.1 An auxiliary particle filter algorithm
The main problem concerned with all particle filters is how to optimally sample from the posterior. One solution is to use an auxiliary particle filter. The main difference compared to the basic particle filter is that it places the likelihood inside the mixture density. Therefore we can change the equation for sampling from the posterior into the following form:

[image: image226.wmf]å

=

+

+

+

+

+

µ

I

i

i

t

t

t

t

i

t

t

t

x

x

p

x

y

p

y

x

p

1

1

1

1

1

1

)

|

(

)

|

(

)

|

(

p

In the above equation, the product
[image: image227.wmf])

|

(

1

1

+

+

t

t

i

t

x

y

p

p

 is used as component probability, making it possible to sample from the respective mixture. Now however we encounter a new problem. In the likelihood
[image: image228.wmf])

|

(

1

1

+

+

t

t

x

y

p

 the state vector is unknown, so we need a way to approximate the mixture. This results in the following estimate of the posterior:

[image: image229.wmf]å

=

+

+

+

+

+

µ

I

i

i

t

t

i

t

t

i

t

t

t

x

x

p

y

p

y

x

p

1

1

1

1

1

1

)

|

(

)

|

(

)

|

(

ˆ

m

p

Here
[image: image230.wmf]i

t

1

+

m

 is a value that is tied to the
[image: image231.wmf]i

-th component transition density
[image: image232.wmf])

|

(

1

i

t

t

x

x

p

+

, for example the mean, the mode, a draw or some other likely value associated with the density.

So to sample from the posterior, the following has to be done:

1. propagate particle
[image: image233.wmf]i

t

x

 in the next time step to
[image: image234.wmf]i

t

1

+

m

2. sample
[image: image235.wmf]I

j

,...,

1

=

 particles
[image: image236.wmf]j

t

x

1

+

 from the transition density
[image: image237.wmf])

|

(

1

i

t

t

x

x

p

+

 with probability
[image: image238.wmf])

|

(

1

1

i

t

t

i

t

y

p

+

+

m

p

3. reweigh the weights belonging to particles
[image: image239.wmf]j

t

x

1

+

 using the following equation:

[image: image240.wmf])

|

(

)

|

(

1

1

1

1

1

j

i

t

t

j

t

t

j

t

y

p

x

y

p

+

+

+

+

+

µ

m

p

The equation above will have as a result that weights will not vary as much as when using the basic particle filter. Moreover, because we are mostly looking at particles associated with high likelihoods, particles with a low likelihood tend to be sampled less frequently.

Chapter 4

Experimental results

In this chapter we present the experiments and the results we obtained from them. First the experimental setup is discussed.

4.1 Experimental setup

We want to compare results for Monte Carlo localization and localization with an auxiliary particle filter. We do this by using real image data obtained from a robot moving around in an office environment (see figure 4-1).

[image: image241.wmf]

Figure 4-1: The environment from which the images were taken

The image data we use comes from the MEMORABLE robot database. It is made by the Tsukuba Research Center in Japan, for the Real World Computing Partnership. The database is comprised of roughly 8000 pictures of robot positions with associated measurements from camera images. The measurements were obtained by positioning the robot on the grid-points of a virtual grid in the office environment. The distances between all of the grid-points are 10 cm.

[image: image263.wmf]k

z

Figure 4-2: Image from a camera with a hyperbolic mirror

The robot used for obtaining the measurements is a Nomad 200. During the collecting of the image data it was equipped with an omni-directional imaging system. This was comprised of a vertically oriented standard color camera with a hyperbolic mirror placed in front of the lens. As a result of this setup, images were acquired which look like figure 4-2, an omni-directional view from the position the image was shot. The omni-directional camera images were transformed into 360 degrees panoramic images, and after that smoothed and finally subsampled to reduce the dimensionality. As a result the images have a resolution of 64 x 256 pixels. Figure 4-3 shows a typical example of what the omni-directional image would look like after the transformation.

[image: image264.wmf])

ˆ

(

ˆ

ˆ

-

-

-

+

=

k

k

k

k

k

x

C

z

K

x

x

Figure 4-3: Panorama image derived from omni-directional image

During the experiments, we simulate the robot moving from one position to the next one in the office environment. At every position, the robot has to compare the image taken at that position with other images for establishing its position. What is actually compared are several features derived from the images. These features are obtained by using Principal Component Analysis [Kröse et all 2001].

Principal Component Analysis (PCA) computes the eigenvectors of a set of images. The eigenvectors are used as an orthogonal basis for representing the individual images. In principal, all eigenvectors are needed to represent an entire image. However, for visual recognition, only a subset is needed. When comparing images, it is computationally cheaper to use only a subset of eigenvectors. The images can be thought of d-dimensional data vectors. PCA projects this data vector onto the eigenspace. The eigenspace is built up by the first q eigenvectors, with q < d. They represent the q directions in which the variation in the set of images was maximal. When q is taken sufficiently large, the most part of the variation of the set of images is still preserved. After PCA, the original images are projected onto the eigenvectors. The eigenvectors essentially transform the original image into a set of linear features. These features will be used for comparing the image the robot sees at his position with the images from the training set. For a more detailed discussion of PCA, see [Kröse et al 2001]. In our experiments, the image set is composed of about 125 images and we project these images into 10 dimensions. The comparing of the images and the construction of the appearance (observation) model will therefore be done in a 10-dimensional space.

4.2 Observation model

As mentioned in the previous section, we make use of a dataset that consists of about 8000 pictures. This dataset will be used to calculate the distance from a certain point to all of the pictures in the dataset.

The question is how the dataset should be set up. It does not make sense to use all of the pictures from the database. That would mean that with each movement of the robot we should compare the measurement with each of the 8000 pictures. That would result in very costly operations, even though the dimensions of
[image: image242.wmf]x

 and
[image: image243.wmf]y

 are relatively small.

For this reason we have decided to use another approach to build a suitable dataset. The environment from which the images were taken has been divided into several parts. This is done by placing a virtual grid over the environment. Every grid-point of the virtual grid is collected and put into the dataset. To give an idea of how much grid-points there are, the distance between every point in the grid is 50 cm. This means that the dataset contains about 300 images from the total set of 8000. When a new measurement arrives, the measurement will therefore only be compared to the 300 images in the dataset.

The observation model we use is a nearest neighbors-based model [Vlassis et all 2002]. Every time the robot moves, it sees an image of the environment. According to that measurement, it has a belief of where in the environment it could be located. Because we simulate this whole situation, instead of actually seeing a real image, we supply our virtual robot with the image of the position where it is really located. Each time this happens, several PCA-features from the image are extracted (in our examples there are constantly 10 features). These features are then compared to

[image: image265.wmf]-

-

=

k

k

k

P

C

K

I

P

)

(

Figure 4-4: An example of estimating the position with nearest neighbors

the features collected from the images in the dataset. This is done by calculating the Euclidean distance in 10-dimensional space between the features from the image at the present location and every image in the dataset. We then maintain the first 20 nearest neighbors. These are the nearest neighbors of the observation and as such the most likely candidates to correspond to the actual position of the robot. However, care has to be taken, because some of these neighbors may look like the image feature-wise, but may be so because of image occlusion. In fact, because of this some of the nearest neighbors actually could ‘accidentally’ be chosen as a neighbor.

In figure 4-4 we show an example of how the location of the robot (likelihood of a particle) is determined. Note that in the example the upper side of the picture contains three dimensions. We however use 10 dimensions in our experiments. When the robot receives a new measurement, it incorporates this measurement with the information it already had about the possible location where it could be located. It determines where the nearest neighbors are with respect to the new measurement. From these it computes the corresponding robot positions as stored in the database (note that the database contains pairs of images-positions). Then it places a Gaussian kernel over each of these positions. The weighted sum of these kernels in effect forms the likelihood function shown in figure 3.

In our experiments we selected five different values for the kernel-sizes:

· 10 cm

· 100 cm

· 200 cm

· 500 cm

· 1000 cm

In our experiments there are two different methods for giving a weight to the nearest neighbor kernels. The first one gives every kernel the same weight, according to the following formula:

[image: image244.wmf]x

weight

1

=

with
[image: image245.wmf]x

 being the number of kernels, in our case
[image: image246.wmf]x

 = 20. When this is the situation, the actual distances of the nearest images to the actual image are neglected and each is given the same value.

The other method for giving a weight to each kernel can be seen in figure 4-5. Here the weights are distributed according to the following formula:

[image: image247.wmf])

1

(

)

1

(

2

+

+

-

=

x

x

i

x

weight

with
[image: image248.wmf]x

 being the number of nearest neighbors,
[image: image249.wmf]i

 denotes the nearest neighbor that is being considered.

First the 20 nearest neighbors are sorted. The one that is closest to the current observation, according to the measure of Euclidean distance in 10-dimensional feature-space, is seeded as number one. This is done for all of the neighbors, therefore the neighbor with the largest distance is seeded at the 20th place. Then every nearest neighbor is given a weight according to the formula given above. As can be seen in figure 4-5, the neighbor seeded as first is given the largest weight, and so on.

This method still suffers from problems caused by image occlusion. If the situation occurs where because of image occlusion a certain image is accidentally considered as a nearest neighbor, in the simulation it would attract some particles. This could certainly cause localization problems when it is one of the top ranking neighbors.

[image: image266.wmf]1

ˆ

-

k

x

Figure 4-5: The closer a nearest neighbor is to the

 observation, the more weight it gets

4.3 Comparing MCL with APF

In this section the results obtained from testing are presented. We devised several different routes which have been traversed in the office environment. Every route has the same length of about 250 different positions. In the movement from one position to the next, there are no jumps. This means that all of the positions are connected either horizontally or vertically.

During testing we use 100 particles. At the start of each experiment these will be uniformly distributed throughout the whole office environment. When the first measurement is received, the 20 nearest neighbors in the pose space will be determined, then the particles will be drawn towards them. After several measurements, the expectation is that the particles will resemble the position where the robot is most likely located.

The first three figures shown in the next three paragraphs (figures 4-6, 4-7 and 4-8) are obtained by using the sliding scale method for determining the weight of the nearest neighbors. Figures 4-9, 4-10 and 4-11 are the results of testing while each nearest neighbor is given the same weight.

4.3.1 Distance from actual position using MCL with sliding scale

In this first test we make use of the sliding scale method, i.e. every nearest neighbor gets a weight which resembles the chance of being the most likely option for the actual position.

This goal of this test is to determine the difference between the actual position, which we already know beforehand, and the position estimated by usage of Monte Carlo localization. This estimation process is accomplished by taking all the
[image: image250.wmf]x

- and
[image: image251.wmf]y

-coordinates of the particles and calculating the average
[image: image252.wmf]x

- and
[image: image253.wmf]y

-coordinate.

As can be seen in figure 4-6, at the beginning of the localization process there is a large difference between the estimation and the real position of the robot. This is due to the fact that at the beginning all the particles are randomly [image: image254.jpg]250

— 10cm

— 100 cm
—— 200 cm
—— 500 cm
—— 1000 cm

I
200

I
150

I
100

L
50

60

uonez|[e20| oped sjuow Buisn uonisod [EN}O. WO SULISIP

30

number of steps

Figure 4-6: The difference in Euclidean distance between the actual location of

 the robot and the estimated location using Monte Carlo localization

distributed throughout the environment. Therefore it takes several measurements until they are attracted to one of the nearest neighbors.

After the first phase the particles catch on to the set of nearest neighbors. The difference in Euclidean distance between the actual position of the robot and the estimated position immediately becomes much smaller. In the long run it becomes more or less constant around a distance of about 35-40 cm. This holds for most of the different kernel-sizes, except for the kernel with size = 100 cm. That particular kernel-size has from the start of the experiment an extra error of about 3 cm.

4.3.2 Distance from actual position using APF with sliding scale

In this experiment the sliding scale, see figure 4-5, is used yet again. Figure 4-7 resembles figure 4-6 a lot. The main difference is that in this particular experiment the kernel with size = 100 cm does not introduce an extra error. Instead it also follows roughly the same path as the other kernel-sizes.

[image: image255.jpg]distance from actual position using auxiliary particle filter

60

30

— 10cm
— 100 cm
—— 200 cm

number of steps

200

250

Figure 4-7: The difference in Euclidean distance between the actual location of the

 robot and the estimated location using the auxiliary particle filter

In this experiment with the auxiliary particle filter, the average position of the particles acts similar to the version which uses Monte Carlo localization. First the uniformly distribution of the particles, accounting for the high error in distance at the start. Then some particles catch on to the nearest neighbors, after which the error decreases. And afterwards the error remains constant around 35-40 cm.

4.3.3 Comparing results from APF and MCL with sliding scale

In the previous two paragraphs we showed the results from the experiments for localization with either Monte Carlo localization or the auxiliary particle filter, with the weights of the nearest neighbors given by the sliding scale method. Here we want to compare the two methods.

To determine which method is better, we used the results from the previous two experiments and combined them. In other words, we took the error in distance when using the auxiliary particle filter and subtracted the error caused by Monte Carlo localization. The result of that procedure can be seen in figure 4-8.

[image: image256.jpg]auxiliary particle filter - monte carlo localization

10cm
100 cm
200 cm
500 cm
1000 cm

50

100

number of steps

150

200

250

Figure 4-8: Comparing the auxiliary particle filter with Monte Carlo localization.

 < 0 means that the auxiliary particle filter is better. > 0 means that Monte

 Carlo localization is better. 0 means that the two methods are equally good

As was expected after having seen the results from the experiments, the overall difference between the two methods is not very significant. On the other hand, it can be seen that the auxiliary particle filter method performed slightly better than the Monte Carlo localization method. This is particularly obvious when looking at the kernel with size = 10 cm. With that kernel-size, the auxiliary particle filter had an error which was about 2 cm, measured in Euclidean distance, smaller than the other method. The kernels with sizes 200 cm and above had an error that was between 0 and 1 cm smaller. Only the kernel of size 100 cm did not perform so well.

4.3.4 Distance from actual position using MCL with equal nearest neighbor weights

In this test we give each nearest neighbor the same weight. As already mentioned, all of the weights together sum up to one. So each nearest neighbor will have the same attraction to the particles.

[image: image257.jpg]250

— 10cm
— 100 cm
—— 200 cm
—— 500 cm
—— 1000 cm

I
o 0 0
< ®

30

65

o 0
=} I B <

uonez|[e20| OjEd SjUoL Buish UoRISOd [BNIOE WO SJUAIIYIP

number of steps

Figure 4-9: The difference in Euclidean distance between the actual location of

 the robot and the estimated location using Monte Carlo localization

Consider figure 4-9. As was the same with the previous experiments, at the start there is a considerable margin of error between the actual location of the robot and the estimated position, which is a result of the average x- and y-coordinates of the particles. This is off course because the particles are uniformly distributed throughout the whole environment.

As the experiment goes on, the particles which lie in the vicinity of nearest neighbors get a higher likelihood. As a result of that, the average coordinates come closer to the actual position. This can be seen in the figure by the decrease in the error after the start. In the rest of the experiment the error in the Euclidean distance varies between 35 and 45 cm.

4.3.5 Distance from actual position using APF with equal nearest neighbor weights

As in the previous experiment, this experiment also guarantees that the nearest neighbors all get the same weight. Figure 4-10 resembles figure 4-9 for the greatest part. All of the lines depicting a different kernel-size follow roughly the same path. First the uniform distribution of the particles takes place, then the particles start to come closer to nearest neighbors, and with that hopefully to the actual position of the robot. It can be seen in the figure that they are, because the error in distance decreases. After a while the average error becomes somewhat constant, it varies between 35 and 45 cm.

[image: image258.jpg]— 10cm

— 100 cm
—— 200 cm
—— 500 cm
—— 1000 cm

Jayy sjaied Aserjixne Buisn uonisod [enjoe Woly 3oulAYIP

30

250

200

150

100

50

number of steps

Figure 4-10: The difference in Euclidean distance between the actual location of

 the robot and the estimated location using the auxiliary particle filter

There is however a slight difference between figure 4-9 and 4-10. Notice that the error in Euclidean distance does not get over 45 cm for the auxiliary particle filter. This was not the case when we used the Monte Carlo localization method. Furthermore, it can be observed that the margin of error over the whole series of tests in this experiment is a fraction smaller than in the previous experiment (figure 4-9). This could indicate that the auxiliary particle filter performs better than Monte Carlo localization.

4.3.6 Comparing results from APF and MCL with equal nearest neighbor weights

In this final paragraph in which results are shown, we discuss the comparison between the auxiliary particle filter and Monte Carlo localization. To compare the two methods we use the results obtained from the two experiments we discussed in the two previous paragraphs. As was the case with the comparison of the auxiliary particle filter and Monte Carlo localization with a sliding scale for determining the weights for the nearest neighbors, we first take the results from the auxiliary particle filter and then subtract the results from Monte Carlo localization from it. The result can be seen in figure 4-11.

[image: image259.jpg]auxiliary particle filter - monte carlo localization

10cm
100 cm
200 cm
500 cm
1000 cm

50

100

number of steps

150

200

250

Figure 4-11: Comparing the auxiliary particle filter with Monte Carlo localization.

 < 0 means that the auxiliary particle filter is better. > 0 means that Monte

 Carlo localization is better. 0 means that the two methods are equally good

The expectation was that the auxiliary particle filter would perform better than the Monte Carlo method. This was because we already noticed by comparing figures 4-9 and 4-10 that the auxiliary particle filter had a smaller error in the measure of Euclidean distance. And indeed, when looking at figure 4-11, it can be observed that for every kernel-size the auxiliary particle filter performs better. Especially the kernels with size 10 and 100 cm have an error that is on average 2 cm or more smaller compared to the tests conducted with the Monte Carlo method.

4.3.7 Discussion

In the previous six paragraphs we have shown the results we obtained during the course of the various experiments and displayed them in figures 4-6 to 4-11. As a result, we can make some observations.

Figure 4-6 and 4-7 resemble each other very closely. The main difference is that the kernel with size 100 cm does not introduce an extra error with respect to Euclidean distance. The other kernel-sizes are roughly the same. The error in the distance will become constant between 35 and 40 cm. This means that the average displacement from the actual position is about 25 to 28 cm.

Figure 4-9 and 4-10 also resemble each other very closely. Here it can be seen that the auxiliary particle filter (figure 4-9) performs slightly better than Monte Carlo localization (figure 4-10). This is clear because the average error is constantly lower. After some time, for both methods the error becomes constant between 35 and 45 cm. This results in an average displacement from the real location of the robot of about 25 to 32 cm.

It becomes clear that that the technique of giving nearest neighbors a weight according to the sliding scale method has better results compared to the option of giving every nearest neighbor the same weight. Although the minimum displacement error is the same, the maximum error can differ 4 cm. It is only a small difference, but it nevertheless means that assigning weights by using the sliding scale method yields better results.

From the figures comparing the two localization methods, it is clear that the auxiliary particle filter performs overall better than the Monte Carlo method.

Chapter 5

Conclusions

In this thesis we compared two localization methods, the auxiliary particle filter and Monte Carlo localization. To motivate the use of these methods for robot localization, we also described two traditional localization methods, the Kalman filter and Markov localization. We showed what problems these methods have and how the auxiliary particle filter and the Monte Carlo method could overcome these problems. The Monte Carlo method, often called the particle filter, has its positive points, but encounters problems which hinder more precise localization. Therefore a slight variation of the particle filter has been developed, the auxiliary particle filter.

As said, the objective was to compare the two different particle filters, in the meantime expecting that the auxiliary particle filter would perform better. After conducting several experiments, with several different parameters, we come to the conclusion that the auxiliary particle filter yields better results with respect to localization of a robot than Monte Carlo localization. The difference between the two methods is however fairly small.

The important thing to note is that the performance of the auxiliary particle filter improves relative to Monte Carlo localization when the size of the kernel becomes smaller. This reveals the potential of the auxiliary particle filter to handle cases with low sensor noise.

5.1 Future work

There are several aspects of this research which could be improved. This would not take a large amount of time or a lot of other resources. They could however result in improved localization performance, so they should be taken into account.

In our research we only considered two different options with respect to assigning weights to nearest neighbors:

· Every nearest neighbor receives the same weight, thereby neglecting the percentage of likeliness between the measurement and the nearest neighbors.

· The sliding scale method. When a nearest neighbor resembles the measurement very much, according to PCA, it gets a high weight. The least likely nearest neighbor gets a very low weight.

As we observed in our experiments, the sliding scale method yields better results compared to giving every nearest neighbor the same value. However, there could be other methods that could give better results. For example we could use a decreasing exponential function. With this method a very likely nearest neighbor would receive a very high weight, even higher than when using the sliding scale method. All of the following nearest neighbors would consequently receive a lower weight, less than with the best method we used in our research. With this method we expect an improvement, albeit a minor one.

A second option for further research would be to determine whether the grid we used to obtain nearest neighbors could be improved. We used a grid where the grid-points were 50 cm from each other. It is however tricky. When the grid-points are set even further from each other, it is likely that the results from localization will deteriorate. On the other hand, when decreasing the distance between the grid-points, the estimation will be more precise. While this obviously is a situation you really would like to have, it could also cause a problem. The smaller the distance between the grid-points, the larger the number of potential nearest neighbors. This means that a measurement should have to be compared to an enormous amount of possible nearest neighbors. In the environment used for this research, this could be extended towards about 8000 grid-points. This would cause an enormous computational problem, therefore it is not advised. The challenge is to find the right distance between the grid-points, which could be done with a lot of tuning.

Another option for further research has to do with the size of the kernel. When the size of the kernel is taken too large, particles which are far away from nearest neighbors still would receive a fairly high likelihood. This would result in a much slower progress towards finding the actual location of the robot, or even a wrong location. Multiple hypotheses would remain for a long time in the process of localization, which hampers localization. On the other hand, when using a kernel-size that is too small, there is a chance that particles which are located around the actual location could be dismissed. This could end up in bad localization. In our research, when using the sliding scale method, the different kernel-sizes all ended up with a displacement between 25 and 28 cm. It should be taken in account that the smaller sized kernels, those with size 10 and 100 cm, performed slightly better in our research. This is exactly what we expected by the use of the auxiliary particle filter.

Bibliography

[Burgard et al 2000]
Wolfram Burgard, Dieter Fox, Daniel Hennig, and Timo Schmidt. Estimating the Absolute Position of a Mobile Robot Using Position Probability Grids. Proc. 13th Nation. Conf. on Artificial Intelligence, Portland, Oregon, pages 896-901, 1996.

[Dam et al 2000]
J. van Dam, A. Dev, L. Dorst, F.C.A. Groen, L.O. Hertzberger, A. van Inge, B.J.A. Kröse, J. Lagerberg, A. Visser, and M. Wiering. Organisation and Design of Autonomous Systems. Lecture notes. University of Amsterdam, 2000.

[Dellaert et al 1999]
Frank Dellaert, Dieter Fox, Wolfram Burgard, and Sebastien Thrun. Monte Carlo Localization for Mobile Robots. IEEE International Conference on Robotics & Automation (ICRA’99), Detroit, Michigan, May 1999.

[Doucet et al 2001]
A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte Carlo Methods in Practice. Springer-Verlag, 2001.

[Fox et al 1999]
Dieter Fox, Wolfram Burgard, and Sebastian Thrun. Markov Localization for Mobile Robots in Dynamic Environments. Journal of Artificial Intelligence Research, 11:391-427, 1999.

[Gutmann et al 2002]
Jens-Steffen Gutmann, and Dieter Fox. An Experimental Comparison of Localization Methods Continued. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’02), 2002.

[Harbison et al 1995]
Samuel P. Harbison, and Guy L. Steele Jr. C, a reference manual. Prentice Hall, fourth

edition, 1995.

[Kröse et al 2001]
B.J.A Kröse, N. Vlassis, R. Bunschoten, and Y. Motomura. A probabilistic model for appearance-based robot localization. Image and Vision Computing, 19(6):381-391, April 2001.

[Pitt et al 1999]
Michael K. Pitt, and Neil Shephard. Filtering via Simulation: Auxiliary Particle Filters. Journal of the American Statistical Association, 94(446): 590-599, June 1999.

[Stroustrup 1997]
Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, third edition, 1997.

[Thrun 2000]
S. Thrun. Probabilistic Algorithms in Robotics. AI Magazine, 21(4): 93-109, 2000.

[Thrun et al 2001]
Sebastian Thrun, Dieter Fox, Wolfram Burgard, and Frank Dellaert. Robust Monte Carlo Localization for Mobile Robots. Artificial Intelligence, 128(1-2):99-141, 2001.

[Vlassis et al 2002]
Nikos Vlassis, Bas Terwijn, and Ben Kröse. Auxiliary Particle Filter Robot Localization from High-Dimensional Sensor Observations. In Proc. IEEE Int. Conf. on Robotics & Automation (ICRA’02), Washington D.C., May 2002.

[Welch et al 2002]
Greg Welch, and Gary Bishop. An introduction to the Kalman Filter. Technical Report TR 95-041, University of North Carolina, Department of Computer Science, 1995.

Time update (“predict”)

Measurement update (“correct”)

Time update (“predict”)

(1) Project the state ahead

� EMBED Equation.3 ���

(2) Project the error covariance ahead

� EMBED Equation.3 ���

Measurement update (“correct”)

(1) Compute the Kalman gain

� EMBED Equation.3 ���

(2) Update estimate with measurement � EMBED Equation.3 ���

� EMBED Equation.3 ���

(3) Update the error covariance

� EMBED Equation.3 ���

Initial estimates for � EMBED Equation.3 ��� and � EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

PAGE
5

[image: image267.wmf]1

-

k

P

[image: image268.wmf]3

y

[image: image269.wmf]1

y

[image: image270.wmf]2

y

[image: image271.jpg]

[image: image272.jpg]\
o — particles ! likelihood

| - auxiliary particles ’,’ 1P

prior p(x) i

[image: image273.jpg]

[image: image274.jpg]weight

0.1

0.08

0.05

0.02

I
8 10 12
number of nearest neighbors

20

[image: image275.jpg]et
sy

O

[image: image276.jpg]

_1117280676.unknown

_1117287762.unknown

_1118047221.unknown

_1118482893.unknown

_1119424472.unknown

_1119427965.unknown

_1131395466.unknown

_1131395779.unknown

_1131395833.unknown

_1131395845.unknown

_1131395477.unknown

_1121845182.unknown

_1121845216.unknown

_1121854212.unknown

_1121845237.unknown

_1121845198.unknown

_1121786424.unknown

_1121787473.unknown

_1121690523.unknown

_1121690769.unknown

_1121690788.unknown

_1119428214.unknown

_1119426963.unknown

_1119427222.unknown

_1119427264.unknown

_1119427203.unknown

_1119426847.unknown

_1119426889.unknown

_1119426814.unknown

_1118498376.unknown

_1118500892.unknown

_1119265900.doc
[image: image1.png]

_1119344155.unknown

_1119348839.unknown

_1119351775.unknown

_1119351858.unknown

_1119348779.unknown

_1119344130.unknown

_1118502201.unknown

_1118502202.unknown

_1118500999.unknown

_1118501266.unknown

_1118500933.unknown

_1118500153.unknown

_1118500753.unknown

_1118500121.unknown

_1118494895.unknown

_1118498271.unknown

_1118498344.unknown

_1118495394.unknown

_1118487943.unknown

_1118489036.unknown

_1118482957.unknown

_1118053046.unknown

_1118481280.unknown

_1118482109.unknown

_1118482213.unknown

_1118482274.unknown

_1118482159.unknown

_1118481574.unknown

_1118482084.unknown

_1118481340.unknown

_1118054186.unknown

_1118480629.unknown

_1118480823.unknown

_1118480867.unknown

_1118480890.unknown

_1118480645.unknown

_1118057301.unknown

_1118480592.unknown

_1118057016.unknown

_1118053566.unknown

_1118054149.unknown

_1118053064.unknown

_1118049008.unknown

_1118050670.unknown

_1118052800.unknown

_1118052832.unknown

_1118051464.unknown

_1118050233.unknown

_1118050612.unknown

_1118049935.unknown

_1118049954.unknown

_1118050201.unknown

_1118049224.unknown

_1118048292.unknown

_1118048814.unknown

_1118048935.unknown

_1118048980.unknown

_1118048846.unknown

_1118048578.unknown

_1118048715.unknown

_1118048437.unknown

_1118047412.unknown

_1118047455.unknown

_1118047309.unknown

_1117288574.unknown

_1117965619.unknown

_1117966593.unknown

_1117971594.unknown

_1117971664.unknown

_1117971690.unknown

_1117971646.unknown

_1117971548.unknown

_1117966431.unknown

_1117966569.unknown

_1117965671.unknown

_1117965458.unknown

_1117965519.unknown

_1117965539.unknown

_1117965473.unknown

_1117354032.unknown

_1117959769.unknown

_1117965433.unknown

_1117354156.unknown

_1117354657.unknown

_1117354691.unknown

_1117354222.unknown

_1117354076.unknown

_1117353827.unknown

_1117353964.unknown

_1117288748.unknown

_1117288199.unknown

_1117288366.unknown

_1117288482.unknown

_1117288524.unknown

_1117288452.unknown

_1117288309.unknown

_1117288331.unknown

_1117288235.unknown

_1117287983.unknown

_1117288084.unknown

_1117288145.unknown

_1117288008.unknown

_1117287936.unknown

_1117287960.unknown

_1117287803.unknown

_1117287858.unknown

_1117285226.unknown

_1117286426.unknown

_1117287099.unknown

_1117287448.unknown

_1117287605.unknown

_1117287738.unknown

_1117287493.unknown

_1117287159.unknown

_1117287352.unknown

_1117287117.unknown

_1117286657.unknown

_1117286916.unknown

_1117287031.unknown

_1117286763.unknown

_1117286495.unknown

_1117286527.unknown

_1117286443.unknown

_1117285925.unknown

_1117286204.unknown

_1117286256.unknown

_1117286338.unknown

_1117286232.unknown

_1117286085.unknown

_1117286117.unknown

_1117286004.unknown

_1117285708.unknown

_1117285822.unknown

_1117285852.unknown

_1117285759.unknown

_1117285539.unknown

_1117285571.unknown

_1117285435.unknown

_1117281941.unknown

_1117282169.unknown

_1117284955.unknown

_1117285081.unknown

_1117285153.unknown

_1117284992.unknown

_1117284710.unknown

_1117284759.unknown

_1117282193.unknown

_1117282011.unknown

_1117282099.unknown

_1117282154.unknown

_1117282067.unknown

_1117281975.unknown

_1117281993.unknown

_1117281959.unknown

_1117281696.unknown

_1117281779.unknown

_1117281885.unknown

_1117281918.unknown

_1117281855.unknown

_1117281743.unknown

_1117281761.unknown

_1117281716.unknown

_1117280745.unknown

_1117281665.unknown

_1117281679.unknown

_1117281597.unknown

_1117280719.unknown

_1117280732.unknown

_1117280706.unknown

_1117278530.unknown

_1117279123.unknown

_1117280206.unknown

_1117280405.unknown

_1117280623.unknown

_1117280641.unknown

_1117280492.unknown

_1117280299.unknown

_1117280347.unknown

_1117280271.unknown

_1117280096.unknown

_1117280155.unknown

_1117280181.unknown

_1117280126.unknown

_1117279430.unknown

_1117279547.unknown

_1117279153.unknown

_1117278754.unknown

_1117278950.unknown

_1117279041.unknown

_1117279072.unknown

_1117279005.unknown

_1117278808.unknown

_1117278907.unknown

_1117278782.unknown

_1117278657.unknown

_1117278694.unknown

_1117278730.unknown

_1117278677.unknown

_1117278611.unknown

_1117278639.unknown

_1117278553.unknown

_1117277445.unknown

_1117277954.unknown

_1117278365.unknown

_1117278461.unknown

_1117278504.unknown

_1117278390.unknown

_1117278142.unknown

_1117278304.unknown

_1117277979.unknown

_1117277768.unknown

_1117277910.unknown

_1117277932.unknown

_1117277844.unknown

_1117277480.unknown

_1117277496.unknown

_1117277460.unknown

_1117277198.unknown

_1117277353.unknown

_1117277390.unknown

_1117277416.unknown

_1117277370.unknown

_1117277301.unknown

_1117277325.unknown

_1117277224.unknown

_1117277042.unknown

_1117277090.unknown

_1117277134.unknown

_1117277061.unknown

_1117276906.unknown

_1117276934.unknown

_1117276863.unknown

