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Summary 
 
Genetic networks are models used to depict interactions between genes. With the advent of 
microarray technology enabling the measurement of gene expression values of thousand of genes 
simultaneously, inferring these networks from data has recently received considerable attention. In this 
thesis, the suitability of a probabilistic model called Bayesian networks for the recovery of biological 
networks from microarray data is investigated. Using standard techniques, Bayesian networks are 
applied on two different problems, in a way representing extremes of genetic network reconstruction 
using microarray data.   
 
At one extreme, Bayesian networks are learned from data without using any prior knowledge about the 
presence or absence of interactions between genes. A biological simulator is used to generate 
synthetic microarray data for networks with different properties. A Bayesian network inference 
algorithm is then used to recover networks from this data. It is shown that, given sufficient number of 
samples, it is possible to recover the structure of these networks using only this data. However, the 
number of samples required for good recovery grows enormously with the number of regulators per 
gene in the network. These results are discouraging, as microarray datasets tend to be small in 
practice.   
 
In contrast, at the other extreme, as more knowledge about pathways is gathered, researchers have 
made attempts to complete biological networks that are already nearly fully specified. This problem is 
known as the “missing genes” problem. Here, a probably novel approach based on Bayesian networks 
is proposed. Using synthetic data, it is shown that networks can be completed with considerably less 
samples, when compared to learning the complete structure using data only. The method is then 
applied with at least some partial success on ‘real’ data from Saccharomyces Cerevisiae (baker’s 
yeast), involving microarray measurements for 6207 genes.  
 
Concluding, when learning networks from scratch, the number of samples required for good recovery 
grows enormously with the number of regulators per gene in the network. As datasets tend to be small 
in practice, it does not seem reasonable to expect to infer complex structures completely using gene 
expression values only. However, for the completion of nearly complete networks, the “missing genes” 
problem, results suggest that sample size requirements are reduced considerably. It seems that with 
the sample size of current datasets, Bayesian networks can be used to complete genetic networks 
with some success. 
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1 Introduction 
 
Deoxyribonucleic acid (DNA) contains the genetic instructions for the development and functioning of 
living organisms. Genes are DNA segments which encode instructions for making proteins essential 
for biochemical processes. Every cell of a particular organism has the same DNA, but at any time, 
uses only a small part of its genes to produce proteins. Which, how much and when proteins are 
created, determines the structure and function of cells. In order for a cell to function properly, the 
amount of each protein produced must be precisely regulated. Understanding the way genes operate 
and interact with each other could lead to advances in the diagnosis and treatment of diseases. An 
important goal of molecular biology is therefore to understand the regulatory processes involved in 
protein synthesis. 
 
The process by which cells produce proteins from the DNA code is called gene expression. In 
essence, gene expression can be considered a two step process: first, specialized proteins transcribe 
a segment of DNA (a gene) into a RNA molecule (also called a transcript); then, other proteins 
process the RNA transcript and translate it into a protein. A gene is expressed when its corresponding 
RNA and/or protein are present. During both steps, the concentration and form of products can be 
influenced by regulatory molecules (see Figure 1). These regulators are usually fullyformed proteins, 
but any of the intermediate products (RNA, polypeptides, or proteins) can act as regulators of gene 
expression (Gardner et al, 2005).  Hunter (1993) describes gene expression as an elaborate dance 
with thousands of participating biological substances; genes code for products that turn on and off 
other genes, which in turn regulate other genes, and so on.  
 
 
 
 
 
  

regulators 

PROTEIN 

1. transcription 2. translation  
 
 
 
  

DNA RNA 

Figure 1: Gene expression is a two step process. First, a segment of DNA – a gene – is transcribed into RNA. 
Second, RNA is translated into a protein. During both steps, the concentration and forms of the product can be 
influenced or regulated by other proteins (regulators).  

 
The translation of genes into proteins is not all proteins do in the biochemical activity in a cell. Proteins 
are in large part responsible for the management of energy-flow, the synthesis, degradation and 
transport of materials, sending and receiving signals, exerting forces on the world, and providing 
structural support (Hunter, 1993). These processes are collectively referred to as metabolism. The 
substances consumed and produced in metabolism are called metabolites. The biochemical 
processes in metabolism considered here are catalyzed reactions. That is, these reactions are hard to 
trigger at normal temperatures and pressures, and would hardly take place without the help of other 
compounds called catalysts or enzymes. Combinations of these reactions, which accomplish tasks like 
turning foods into useable energy or compounds, are called metabolic pathways. 
 
The relatively new DNA microarray technology has enabled researchers to efficiently measure the 
concentration of all RNA transcripts in a cell. Measuring protein and metabolite regulators of gene 
expression is more difficult in general, and such data are not often available (Gardner et al, 2005). In a 
nutshell, microarray technology consists of glass slides or silicon chips containing thousands of DNA 
probes, each of which is complementary to a specific RNA species in the cell. Each probe can bind to, 
and quantitatively measure, the concentration of an individual RNA species. Due to variations in probe 
sensitivities, the technology can reliably measure only relative changes in RNA concentrations. So, 
RNA measurements are reported as concentration ratios for each transcript relative to its baseline 
state. (Gardner et al, 2005). 
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The advent of microarray data offered the possibility to infer, or “reverse-engineer”, models 
representing gene networks (or metabolic pathways). A variety of network inference algorithms have 
recently been proposed for this task. Of these, Bayesian network (BN) inference algorithms seem 
promising (Handley, 2002; Smith et al., 2002, 2003; Husmeier, 2003). They were first applied to the 
problem of reverse engineering genetic networks from microarray expression data by Friedman et al. 
(2000), Pe’er et al. (2001) and Hartemink et al. (2001).  A BN is a probabilistic graph model describing 
the multivariate probability distribution for a set of variables. Within the context of genetic networks, the 
expression level of each gene should be seen as a random variable, and regulatory interactions 
between genes as dependencies between the variables. Due to their probabilistic nature, BN can cope 
with the noise present in microarray measurements, while their graphical nature makes it easy to 
convey dependencies between genes. BN can capture (non linear) relationships between all the 
variables in the domain (rather than only between variables and a target variable). BN algorithms can 
be extended to dynamic Bayesian networks (DBN) to model time series (Friedman et al 1998).  
Another interesting feature of BN is that prior knowledge can be incorporated into them. For instance, 
it might be known that some genes are (not) related. Finally, algorithms for learning BN from data are 
well understood (Heckerman et al 1996).  
 
The inference of networks from microarray data is not easy however, and remains a challenging area 
of research. Challenges mainly arise from the characteristics of the data; typically noisy, high 
dimensional, and significantly undersampled (Gardner et al, 2005). Quoting Berlo et al (2003), “due to 
the high costs of microarrays, the number of time-course measurements are, generally, few with 
respect to the number of genes (thousands)”.  Husmeier (2003) states “ … the application of reverse-
engineering techniques to gene expression data is particularly hard in that interactions between 
hundreds of genes have to be learned from very sparse data sets, typically containing only a few 
dozen time points during a cell cycle”.  
 

2 Objectives and overview 
 
In this thesis, the viability of Bayesian networks for learning genetic networks from microarray data is 
investigated. Using standard techniques, the suitability of Bayesian networks is assessed using two 
different problems encountered in literature, in a way representing two extremes of genetic network 
reconstruction using microarray data. At one end, learning networks from data without using any prior 
biological knowledge is examined. At the other end, attempts are made to complete biological 
networks that are already nearly fully specified. Reflecting this, this thesis is presented in two parts.  
 
In part 1, ‘learning from scratch’, networks are inferred from synthetic data assuming no a priori 
biological knowledge about the presence or absence of connections between genes. The effect of 
network topology (i.e. structural details of the networks) on the number of samples required for good 
recovery is investigated using a known simulator of biological networks. Networks of known structure 
are used to generate synthetic microarray datasets and attempts are then made to recover the 
structure of these networks from the data using a Bayesian network inference algorithm. Results show 
that, given enough samples, Bayesian networks can be completely recovered from the data. However, 
sample size requirements for good recovery grow rapidly with the number of regulators to a gene 
present in a network, maybe even to an extent that the collection of this data is not practical.   
 
As more and more information about genomes is collected, biologists are able to reconstruct large 
parts of gene networks. In many cases however, these partially known network contain gaps, meaning 
that evidence exists that a gene should be present at a particular location in a network, but it is 
unknown which gene should fill the function. The identification of the genes in a well characterized or 
nearly complete network has been referred to as the “missing genes” problem (Osterman et al, 2003), 
or as “filling gaps in metabolic pathways” (Kharchenko et al, 2004). The missing genes problem is the 
focus of the second part of this thesis. A probably novel approach based on Bayesian networks is 
proposed. The viability of the approach is demonstrated using a synthetic network. Gaps are created 
in this network, and the number of samples required to fill the gaps is investigated. Results show that 
single gaps can be filled using considerably less data than when learning networks from scratch, 
which of course is an encouraging result. Then, leaving the relatively small synthetic problems behind, 
the missing genes problem is investigated using ‘real’ data from Saccharomyces Cerevisiae (a well 
known species of yeast), involving a genetic network of hundreds of nodes and microarray 
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measurements for around 6200 genes. Like before, attempts are made to fill self-made gaps. 
Experiments demonstrate that discretization is a critical factor in the performance of the Bayesian 
gene placement algorithm and should be chosen with care. Finally, although the Bayesian approach 
achieves some reasonable results, it does not outperform a non-Bayesian approach encountered in 
the literature (Kharchenko et al 2004). 
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Part 1  Learning from scratch 
 
With the availability of large-scale expression data, effort has been made towards learning gene 
networks using Bayesian networks and other techniques, as already mentioned in the introduction. In 
this part of this thesis, the suitability of learning dynamic Bayesian networks from microarray datasets 
is investigated in a simulation study. In particular, it is explored how the sample size required for good 
performance depends on the topology of the network, i.e. structural details of the network to be 
inferred. To this end, both networks consisting of genes regulated by at most one regulator and 
networks containing a gene regulated by multiple genes are designed in a more or less systematic 
manner. Using a simulator, datasets of various sizes are sampled from the networks and fed to the 
inference algorithm. The number of samples required by the algorithm to recover the structure of the 
known networks is then estimated. It is beyond the scope of this research to develop new Bayesian 
approaches, or to provide a comparison of existing approaches in order to determine witch is 
somehow best suited for the task. Here, the focus is on learning Bayesian networks from microarray 
data using a common, available technique, configured using reasonable assumptions. Finally, 
although all networks used have known structure, none of this information is supplied to the inference 
algorithm. All learning is performed without any prior knowledge about the presence or absence of 
relations between genes; i.e. the structures are learned ‘from scratch’.  
 
The most important reason for using artificial data instead of ‘real’ data in this research is the need to 
understand and control the problem under investigation. With a simulator, networks with different 
properties can be simulated at will, and any number of datasets of desired size can be sampled from 
them according to the purpose of the experiments. As the networks used to generate the data are fully 
known, the performance of the inference algorithm can be evaluated relatively easily by comparing the 
known and inferred networks. In contrast, when using real data, recovered relations between genes 
can not always be validated easily. If the inference algorithm finds a relation that has not been 
documented in literature, it is not possible to judge its validity without conducting biological 
experiments. To circumvent this problem, Smith et al (2002), followed by Husmeier (2003), propose 
using a simulation framework for the evaluation of learning algorithms. As Yu et al (2004) mention, the 
simulator does not need to be an exact match to, or even model all features of, a real regulatory 
network, as long as many of the important biological features are modelled. The simulator is useful as 
long as the qualitative phenomena present in biological systems are exhibited. 
 
Results show that the quality of recovered solutions depends on the amount of gene expression data 
available to the network inference algorithm. It is found that, given enough samples, Bayesian 
networks can be completely recovered from the data. However, sample size requirements for good 
recovery grow considerably with the number of regulators to a gene present in a network. As currently 
available datasets tend be small, these results are not encouraging. It is however stressed that results 
are meant to be comparative and should not be taken as absolute for the number of samples required 
to recover any particular network structure in general. Results are potentially affected by a large 
number of parameters and it is not possible to investigate them all within this thesis. 
 
The remainder of this part is structured as follows: first, in the following sections, methods used in this 
research are described, including the biological simulator, Bayesian networks and ways of learning 
these. In 2.7, a detailed description of experiments conducted in this research is given and results are 
presented. Finally, results are briefly summarized, followed by a discussion. 
 

2.1 Approach & methods 
 
The experimental framework used for artificial microarray data in this research can globally be 
described as follows: first, the biological network under investigation is simulated using a plausible 
simulator. During simulations, the data is sampled at the desired frequency (the sampling rate), as 
researchers would from a real biological system. The sampled data is fed to a network inference 
algorithm that attempts to discover the structure of the network used to generate the data. The quality 
of the recovered network is then determined by comparing it to the network used to generate the data; 
the more similar the networks, the better the quality of the recovered network. Ideally, both networks 
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are identical.  These concepts are illustrated in Figure 2. This experimental framework was introduced 
by Smith et al (2002) and applied by for instance by Husmeier (2003) and Berlo (2003). 
 
 

 
 
 
 
 
 
 
 

Biological 
Simulator 

Synthetic 
Microarray 

Data 

Network 
Inference 
Algorithm 

Figure 2: experimental framework for synthetic data experiments.  A known gene network is fed to a biological 
simulator. During simulations, the data is sampled at the desired rate, as researchers would from a real biological 
system. The sampled data is passed to a network inference algorithm that attempts to discover the structure of the 
network used to generate the data. Finally, the performance of the algorithm can be determined by comparing the 
networks. Adapted from Smith et al (2002). 

 
The biological simulator used in this research, GeneSim is a tool designed by Yu and colleagues 
(2002, 2004) to model genetic networks and sample artificial microarray datasets. With GeneSim, 
gene networks of arbitrary structure can be simulated and values for gene expression levels can be 
obtained at discrete time steps. The networks simulated by GeneSim are not Bayesian, introducing a 
mismatch with the representation used for inferred networks. This contributes to the realism of the 
experiments, as presumably such mismatches are to be expected in practice. GeneSim is described in 
detail in 2.2. 
 
The network inference algorithm applied in this research uses Bayesian networks to model biological 
systems and infer these from microarray data. An introduction to Bayesian networks is given in 2.3, 
and in 0 different existing strategies to infer these Bayesian networks from data are described. Then, 
Banjo, the software package used for learning Bayesian networks from data in this research, is 
presented.  
 
Since the structure of the network used to generate data is known, the performance of the network 
inference algorithm can be evaluated by comparing the structures of the original or reference network 
and the recovered network. The metrics used to measure performance are given in 2.6.  
 

2.2 Biological simulation: GeneSim 
 
GeneSim is a tool designed by Yu et al (2002, 2004) to model gene networks and produce artificial 
microarray datasets. With GeneSim, genetic networks of arbitrary structure can be simulated and 
values for gene expression levels can be obtained at discrete time steps like during microarray 
experiments.  
 
Genetic networks are encoded in matrices and expression levels are adjusted as a function of the 
expression level of a gene’s regulator(s) and regulation strength. In particular, the expression values of 
genes are governed by the following equation: 
 

Yt +1 − Yt = M Yt − T( )+ ε  
 

In this equation, Yt is a vector representing the expression levels of all genes at a given time t. To 
prevent expression levels to become negative or very large, they are kept between 0 and 100 by 
applying a floor and ceiling function at each update.  
 
M is the matrix encoding the relations existing between the genes in the network. Each column and 
row of the matrix represents one gene, while matrix cells represent relationships between the genes. 
Positive values for an element indicate activation of the target gene while negative values indicate 
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inhibition of the target gene. Of course, zero values means the genes do not influence each other. 
Figure 3:  below shows an example network and its corresponding matrix. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 A B C D E 
A 0 0 0.2 0 0 
B 0 0 0.1 0 0 
C 

0.2 

0.2 0.1

A 

C 

D 

B E 

0 0 0 0.2 0 
D 0 0 0 0 0 
E 0 0 0 0 0  

Figure 3: regulatory network consisting of five genes A,B,C,D and E. On the left, a graphical representation of 
the gene network is given. To the right, the corresponding matrix GeneSim used by GeneSim.  Genes A and B 
are regulators of gene C, which in turn regulates gene D. Gene E is independent of all other genes since its has 
neither incoming nor outgoing connections (in the matrix, both the row and column for E contains only zero 
values). 

T holds “constitutive” expression values for each gene in the network (Yu et al 2004).  The influence of 
a gene on a child depends on its difference with its constitutive value (here, all constitutive values are 
set to 50, halfway the minimum and maximum). If the parent gene is present at a level above its 
constitutive value, then the effect on its target genes occurs as specified in A; the higher the 
regulator’s level, the stronger the effect on its children. In contrast, if the regulator gene is present at a 
level below its constitutive value, then its effect is in the opposite direction of that specified in A; the 
lower the regulator’s level, the stronger the opposite effect on its target genes. According to Yu et al 
(2004), “this is meant to capture basic processes that are not explicitly modelled, such as mRNA 
degradation or release from repression, that act to return the target gene to its constitutive expression 
level”. 
 
ε is a parameter that is included to model noise. At each time step, for each gene, e is drawn uniformly 
from -10 to 10 and added to the expression level of the gene.  
 
During simulations, the data are sampled in pre-specified intervals and the samples are saved in a 
text-file. For example, using a sampling rate of 5 (collecting data every five time steps) the output is 
the series of expression level vectors (Y0, Y5, Y10, ….) analogous to data gathered in a microarray time 
course experiment. 
 
Example. Suppose that at a given timestep t, for the network given above, the following expression 
values are known for genes A, B and C:  At=60, Bt=70and Ct=40. At t+1, recalling that all constitutive 
values are set to 50,  C will be computed as follows:   
 

Ct +1 = Ct + 0.2 ∗ At − 50( )+ 0.1∗ Bt − 50( )+ ε  
Ct +1 = 40 + 2 + 2 + ε  

 
For convenience, the “effect” of other genes is not included in the equations since their net 
contribution to C is zero according to the matrix. Ignoring the noise factor ε, the value for C will be 
increased with 4 to 44. Note that if Bt=30, the change to C would be 0, as B is below its constitutive 
value and its contribution to C would cancel out A’s contribution. 
 

 6



Suitability of Bayesian Networks for the Inference and Completion of Genetic Networks using Microarray Data 
 

2.3 Bayesian networks 
 
A Bayesian network is a probabilistic graph model which describes the probability distribution for a set 
of variables. (Pearl (1988); Heckerman et al (1996); Friedman et al (2000)). The main idea behind 
these networks is that to describe the world, it is not necessary to build a huge joint probability table in 
which the probabilities for all possible combinations of events are described. Most events are 
(conditionally) independent of each other, so the way they interact does not have to be considered. 
Instead, a more compact representation describing groups of events that do influence each other is 
possible. 
 
Nodes in the graph correspond to observed variables and directed edges (or links, connections, arcs) 
in the graph denote dependencies between the nodes. If there is a link from a node A to a node B, A is 
called a parent of B, and B is called a child of A. The absence of edges denotes conditional 
independence. If there is no link between two nodes A and B, there is a set of variables C such that A 
and B are independent given C. In more biological terms, the observed variables represent measured 
gene expression levels, and dependencies between variables denote regulatory interactions between 
the genes. Parents to variables are referred as regulators. 
 
Stated more formally, a Bayesian network BN for a set of random variables X = {X1, ..., XN} is a pair  
<G, P>, where G represents a directed acyclic graph (DAG) on X and P is a joint probability 
distribution on X such that the following Markov condition is satisfied: each variable is independent of 
its non-descendants, given its parents in G. 
 
The graph G encodes conditional independence assumptions that allow the joint distribution P to be 
described economically, since, using the Markov condition and the chain rule of probability, the joint  
distribution can be rewritten into the following product: 
 

P Xi,..., Xn( )= P
i=1

n

∏ Xi parents Xi( )( ) 

 
where parents(Xi) denotes the set of parents for each variable Xi. Conditional probabilities given 
parents can be stored at each node in so called conditional probability tables (or CPTs).  
 
Figure 4 shows an example of a Bayesian network consisting of the variables X = {A, B, C, D, E}.   
 

P(B)P(A) A B 

D 

C 

E 

P(D|C)

P(C| A,B)

P(E)

Figure 4: simple Bayesian network consisting of 5 variables A,B,C,D,E.  Conditional probabilities given parents 
are stored at each node.  Variable C has two parents, A and B. Variable C is D’s parent. In more biological 
terminology, this is a simple gene network consisting of 5 genes. Gene C is regulated by genes A and B. Gene C 
is gene D’s regulator.  
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Using the chain rule of probability, the joint probability function P(A,B,C,D,E) can be rewritten as: 
 

P A,B,C,D,E( )= P D A,B,C,E( )P C A,B,E( )P A ,B,E( )P E( ) 
 
Then, using that each variable is only dependent on its parents and independent of the rest, the joint 
probability distribution can be written as the product of local dependencies:  
 

P A,B,C,D,E( )= P DC( )P C A,B( )P A( )P B( )P E( ) 
 
In the figure it is amongst other represented that E is independent of all other variables, that A and B 
are independent of each other,  that C is independent of other variables given A and B, and that D and 
all other variables are independent of each other given C.  
 
A dynamic Bayesian network (DBN) is a Bayesian network that models the stochastic evolution of a 
set of variables over time (see e.g. Friedman et al (1998), Neapolitan (2003)). When modelling 
networks of genes using DBNs, it is assumed that the expression values for genes at a given timestep 
can be determined using the expression values of the gene itself and its parents at the previous 
timestep only (variables with Markov lag 1), and never using information from, for instance, 3 steps 
ago (variables with Markov lag 3). This assumption is called the “first-order Markov assumption”.  
Another important assumption that is made is that the model is stationary, meaning that the transition 
probabilities do not change over time (thus, “dynamic network” in this context does not mean that the 
network itself changes over time). Using these assumptions, several researchers have shown that 
DBNs can be inferred from expression data, see for example Smith et al (2002), Berlo et al (2003). 
One big advantage of these networks over their “static” counterpart is their ability to model feedback 
loops, since temporal information is contained in the DAG. 
 
Consider Figure 5. On the left, a dynamic Bayesian network is depicted. It can be used to illustrate the 
assumptions just described: the expression value for genes is predicted using expression values from 
the previous timestep only. At t=2, the expression value for B is predicted using the expression values 
of A and B at t=1. Further, the transition probabilities do not change over time, meaning that the same 
probabilities are used for transitions from t=1 to t=2, but also from t=2 to t=3 and so on.   
 

A 

B 

A 

B 

A 

B 

t=1 t=2 t=3

A 

B 

Figure 5: on the left, a dynamic Bayesian network explicitly denoting time. Using that all dependencies are from 
the previous time slice (first-order Markov assumption), the network can be ‘collapsed’ along the time 
dimension into the one shown on the right. Time has now become implicit (note that self-loops are not shown 
either, but are assumed). This figure is taken and slightly adapted from Husmeier (2003). 

 
In the remainder of this thesis however, the factor time is not shown explicitly in graphical examples of 
networks. Since all dependencies between genes are by definition dependencies from the previous 
time slice, the temporal aspect can be left out for convenience. This applies for self-loops (transitions 
from a gene at time t to the same gene at t+1) as well. Each time, it should be evident what kind of 
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network is meant from the context. Thus, the dynamic network on the left is represented by the graph 
on the right. Note that this graph is not a Bayesian network, since it is cyclic.  

2.4 Learning Bayesian networks 
 
Initially, Bayesian networks were constructed by domain experts (Neapolitan 2003). Unfortunately, 
eliciting Bayesian networks from experts is not easy, especially in the case of large networks. This has 
motivated researchers to design methods that can learn the networks from data.  The problem of 
learning Bayesian networks from data can be stated as follows: given a dataset, find a Bayesian 
network BN = <G, P> that best matches this dataset. In order to do this, algorithms for learning 
Bayesian networks from data consist (at least) of two components: a scoring metric and a search 
procedure. The scoring metric computes a score indicating how well a given network fits the data. The 
search procedure tries to generate network structures with high scores. The score and search 
methods used in this research are the focus of this section. The following is for the largest part based 
on Heckerman et al (1996) and a textbook by Neapolitan (2003), both tutorials on learning Bayesian 
networks. 

2.4.1 Scoring criterion 
 
A scoring criterion for a Bayesian network is a function that assigns a value to each network under 
consideration based on the data (Neapolitan 2003). The metric used in this research to evaluate a 
network given a dataset is the Bayesian Dirichlet equivalent or BDe metric (Heckerman et al 1995). 
The metric is statistically motivated, derived from the posterior probability of the network structure. 
Using Bayes’ rule the posterior probability can be written:  
 

P B D( )=
P D B( )P B( )

P D( )
 

 
In this equation, P(B) is the prior probability of the network structure, P(D|B) is the marginal likelihood 
of the data given the Bayesian network. P(D) does not depend on the network and is not required to 
compare networks (meaning that P(B|D) is taken to be proportional to P(D|B) P(B)). 
 
The Bayesian scoring metric (BSM) can be generally described (Heckerman et al 1996) as: 
 

Score B : D( )= logP B D( )= logP D B( )+ logP B( )− logP D( ) 
 
The likelihood of the data given a network structure P(D|B) can be computed by conditioning on the 
associated network parameters: 
 

P DB( )= P DB,Q( )∫ P QB( )dQ 
 
Cooper et. al. (1992) derive a Bayesian metric, called the BD (Bayesian Dirichlet) metric, for learning 
networks containing only discrete variables, based on multinomial distributions. Building on this work, 
Heckerman et al. (1995) derive a new metric, the BDe metric (Bayesian Dirichlet equivalent), which 
has the property of likelihood equivalence. Likelihood equivalence means that the data cannot help to 
discriminate structures which denote the same independencies. The BDe metric requires the prior 
over parameters P(Q|B) to have Dirichlet prior distributions and a uniform prior P(B) for the structure. 
The latter acts as a penalty for complexity, which is essential when learning the structure of Bayesian 
networks, since the maximum-likelihood network is usually the completely connected network 
(Friedman et al 1998).  
 
Some properties of these priors are relevant when the data is complete, that is, each instance in the 
set contains the values of all the variables in the network (Friedman et al 2000). In this case, the 
following properties hold. First, the priors are structure equivalent, i.e., if two graphs are equivalent 
they are guaranteed to have the same score. Second, the score is decomposable. That is, the score 
can be rewritten as a sum where the contribution of every variable to the total network score depends 
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only on its own value and the values of its parents. Finally, these local contributions for each variable 
can be computed using a closed form equation (see Heckerman et al 1995 for full details). 
 
The BDe criterion is a common criterion and has been applied to learn networks from simulated data 
by for example Smith et al (2002), Berlo et al (2003).  

2.4.2  Searching 
 
Finding the optimal network for a given dataset is not as straightforward as it perhaps may seem at 
first glance. The number of networks that can be constructed is forbiddingly large, to the extent that it 
is computationally too expensive to generate and evaluate all possible networks and simply pick the 
best one. For this reason, researchers have developed heuristic search methods such as greedy 
search and simulated annealing to identify Bayesian networks with high scores. After a brief 
discussion of the complexity of structure learning, the Bayesian criterion used in this research and a 
number of commonly used heuristic methods for searching are described.  

2.4.2.1 Complexity of structure learning 
 
For very small problems, all possible networks can be generated and evaluated against the data. The 
model with the best score can then be determined with certainty. However, this approach is 
computationally infeasible for larger problems. Neapolitan (2003) gives a recursive formula derived by 
Robinson (1977) for the number of static networks f(n) that can be constructed using a given number 
of nodes n: 
 

f n( )= (−1)i+1

i=1

n

∑
i

n⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 2 i n− i( ) f n − i( )  n > 2

 
f 0( )= 1 

 
f 1( )= 1 

 
For illustration purposes:  F(3)=25,  F(5)=29,000 and F(10) = 4.2 * 1018.  For dynamic networks, the 
number of possible structures G is for a given number of nodes n even larger. Under the assumptions 
described in the methods section, the following equation can be given for the number of dynamic 
networks: 
 

G N( )= 2n n−1( )  
 
DAGs can be constructed given n nodes. Thus, G(3)=64, G(5)=1,048,576, G(10)=1.23794 * 1027. 
Chickering (1996) has proven that the problem of finding the best network is NP-complete. 
 

2.4.2.2  Heuristic methods 
 
In general, search methods for Bayesian networks make successive mutations to the network, using 
that the effect of local changes can be computed efficiently without recomputing the score for the 
whole network. At each iteration, the following changes are possible: an existing link between 
variables can be reversed, or it can be removed. New links can be created to connect variables that 
were not connected previously. It should however be ensured that all changes result in an acyclic 
network. If a link to a node X is added or removed, only the scores of X given its parents need to be 
recomputed to determine the effect of the change. If a link between X and Y is reversed, only the 
scores for X given its parents and Y given its parents need to be recomputed. 
 
One of the simplest heuristic methods is the greedy hill-climbing search. The method starts with an 
initial network structure, typically an empty graph, a random graph or a domain specific prior network. 
At each cycle, possible changes are applied to the current network and the resulting network with the 
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highest score is retained as the current network. The search is terminated when a better network 
cannot be obtained by applying one of the local changes.  
 
A common problem with greedy search is that the algorithm gets stuck in a local optimum and halts 
without returning the optimal model. A local optimum in this case is a Bayesian network that is better 
than all other networks that can be produced by applying one of the local changes. This problem is 
partly overcome by repeating the greedy search several times, each time starting with another 
(random) initial network (e.g. Heckerman 1996, Berlo et al 2003,  Yu et al 2004). Stopping criteria for a 
search could be a maximum number of restarts, a number of evaluated networks or simply a specified 
period of time a researcher is willing to wait. Although this procedure does not necessarily find a global 
maximum, it is reported to perform well in practice (see for example Hartemink et al 2002). 
 
Simulated annealing is another heuristic search method (Heckerman 1996,  Hartemink et al 2002). 
Designed to escape local maxima, it allows some changes that cause the score of the network to 
decrease. It starts with an initial network structure and picks an edge change from the set of possible  
mutations to the network at random. The change is accepted as an improvement to the current 
network if its score is higher. If its score is lower, it is accepted with a probability based on a system 
parameter T known as the “temperature”. As the process is repeated, the value for T is lowered 
gradually. At the start of the process, when the temperature is high, a lot of changes are accepted, 
even if the score is not improved. As the temperature decreases, less changes are accepted. The idea 
here is to do enough exploration of the space of possible networks early on so that the final solution is 
relatively insensitive to the starting state. This should lower the chances of getting caught at local 
maxima. 
 
The discussion of search algorithms is limited to the ones given above as these are part of the 
software package used in this research. Naturally, other search heuristics exist. For instance, 
(Heckerman 1996) also mention “best-first search”. In this approach, the space of all network 
structures is searched systematically using a heuristic measure that determines the next best structure 
to examine. Another example can be found in (Berlo et al 2003), where “beam-search” is applied. This 
algorithm starts by selecting from all possible structures with a single parent the K networks with the 
highest score. Only for these networks are all combinations with a second parent evaluated. Again, the 
best K are selected upon which the procedure is repeated. (Yu et al 2004) describe an “evolutionary 
algorithm” to search for high scoring networks.  
 

2.5 Banjo 
 
Banjo (Bayesian Network Inference with Java Objects) is the software application used in this 
research for learning the structure of Bayesian networks from data, implementing the concepts 
described earlier. Banjo is developed under the direction of Alexander J. Hartemink in the Department 
of Computer Science at Duke University. Banjo focuses on structure inference of (static and dynamic) 
Bayesian networks. Available heuristic search strategies include greedy hill-climbing and simulated 
annealing (as described earlier). Networks are evaluated with the Bde scoring metric as described by 
Heckerman (1996). Banjo can return any number of highest scoring networks that were found in the 
search.  Banjo can be downloaded from [Banjo Homepage]. 
 
Banjo’s behaviour is determined by a set of parameters stored in a settingsfile. In this file, users can 
specify the location of the dataset, which discretization methods and search strategy should be used 
etc. The file and settings that are most relevant to this research are discussed in 2.5.1.  In order to 
give the reader a good impression of Banjo’s workings, a sample run and screenshots are provided in 
2.5.2.  It is however beyond the scope of this section to describe all Banjo’s features in detail; the 
interested reader is referred to the User Guide ([Banjo Homepage]). 

2.5.1 Configuring Banjo 
 
Before attempting to find high scoring networks with Banjo, several decisions have to be made. For 
example, it should be decided what kind of networks should be inferred (e.g. static or dynamic), which 
discretization method, scoring metric should be applied etc. These choices can be passed to Banjo as 
arguments in the command line or using a settingsfile (plain text). This file can be divided in a number 
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of sections, as described below. Only the most important and relevant sections for this research are 
described (see the User Guide for a complete description [Banjo Homepage]).  
 
 
Scoring metric 
 
There is currently only one metric available in Banjo to compute a network’s score: the BDe metric 
(see the methods section). The value of setting evaluatorChoice in the settings file determines the 
metric that will be used. The valid choices are “default” and “EvaluatorBDe” which will both cause 
Banjo to select the BDe metric for the evaluation of networks. 
 
Discretization 
 
If the data used is continuous, it has to be discretized as the BDe score is based on discrete 
multinomial distributions. Banjo provides 2 simple discretization strategies: interval and quantile 
discretization. Discretization policy is controlled by two settings. The first, called discretizationPolicy, 
specifies a default policy for all variables; the second, called  discretizationExceptions, specifies a list 
of potential exceptions to the default policy. The default policy can be either the token “none” or a 
token like “q2” or “i4”. The latter start with “q” for quantile discretization or an “i” for interval 
discretization, followed by a number specifying the desired number of discrete values.  
 
Network properties 
 
Banjo can learn static and dynamic Bayesian networks from data. This is determined by the settings 
minMarkovLag and maxMarkovLag. To learn static networks, the minMarkovLag and maxMarkovLag 
are set to 0. For the inference of dynamic networks, both are to set to 1, under the first-order Markov 
assumption (meaning that the expression value of a gene at a given step can be predicted using 
expression values of genes at the previous step only). 
 
Another parameter that affects network structure is maxParentCount. This parameter determines the 
maximum number of parents any node is allowed to have. This is useful to limit the number of possible 
networks and memory requirements. The User Guide warns: “Note that any number greater than 4 or 
5 probably won’t make much sense for the underlying problem. Generally, numbers greater than 7 will 
raise the memory requirements for Banjo substantially.”   
 
 
Search specifications 
 
Banjo implements two basic search strategies: greedy search with restarts and simulated annealing 
(setting searcherChoice).  The way changes to the current network are applied is determined by 
setting proposerChoice: a local mutation can be chosen at random (randomLocalMove), or all changes 
arising from a single addition, deletion, or reversal of an edge in the current network (AllLocalMoves) 
can be applied to the current network. 
 
The greedy algorithm will accept a new network as the current if and only if its score is better than or 
equal to that of the current network. The simulated annealing algorithm will accept a network if its 
score is higher, a network with a lower score is accepted with a probability based on system 
parameter known as the temperature. 
 
The exact behaviour of the greedy search algorithm with random restarts in Banjo is configured with 
the following parameters in the settings file: 
 
- maxProposedNetworks: the total number of networks the algorithm is allowed to evaluate during 

the search before exiting and returning the results of the search. 
 
- minProposedNetworksAfterHighScore: the minimum number of search iterations that Banjo will 

execute after it has found a new high score, before a restart is initiated.  
 
- minProposedNetworksBeforeRestart: the minimum number of search iterations that Banjo will 

execute after a restart, before the next restart is initiated. 
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- maxProposedNetworksBeforeRestart: the maximum number of search iterations that Banjo will 

execute after a restart, before the next restart is initiated. 
 
The minimum and maximum number of restarts can then be estimated from the above settings as 
follows: 
 
- minimum number of restarts is maxProposedNetworks divided by 

maxProposedNetworksBeforeRestart 
 
- maximum number of restarts: maxProposedNetworks divided by 

minProposedNetworksBeforeRestart 
 
Stopping criteria 
 
There are a number of ways to define stopping criteria for a search. A search can be stopped after an 
amount of time (as specified by maxTime), or after a certain number of networks is evaluated 
(maxProposedNetworks).  Another way is to stop after a certain number of restarts, as specified by 
Maxrestarts (or using settings maxProposedNetworks and the number of proposed networks before a 
restart, as described above in search specifications). 
 
Initial network  
 
Banjo can be supplied with an initial network structure. This structure can be used as starting point for 
a search. Also, it is possible to supply a network and let Banjo only compute the score of the network  
given the data, by setting the maxProposedNetworks parameter to 0. This feature of Banjo is used 
extensively in this research: in part 1, to determine the score of a known network used to generate a 
particular dataset and compare it to the score of the best network returned by the inference algorithm; 
in part 2, the feature is used to evaluate candidates for gaps in known networks. 
 
The text file containing the initial structure can be specified using the setting initialStructureFile. The 
format in which the network should be supplied will be discussed later, as Banjo uses the same format 
to output recovered solutions. 
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2.5.2  Sample Output  
 
Banjo is not provided with a windows based graphical user interface; it can be executed from the 
command line or shell.  Results of the search are displayed on screen and to a specified text-file. 
When executed, Banjo first displays the settings it has been supplied with:  
 

----------------------------------------------------------------------------- 
- Banjo                        Bayesian Network Inference with Java Objects - 
- Release 1.0.5                                                 30 Nov 2005 - 
- Licensed from Duke University                                             - 
- Copyright (c) 2005 by Alexander J. Hartemink                              - 
- All rights reserved                                                       - 
----------------------------------------------------------------------------- 
- Project:                                              banjo dynamic example 
- User:                                                                  demo 
- Data set:                                10-vars-1500-temporal-observations 
- Notes:                                   dynamic bayesian network inference 
----------------------------------------------------------------------------- 
- Searcher:                                                    SearcherGreedy 
----------------------------------------------------------------------------- 
- Settings file:                            data\dynamic\dynamic.settings.txt 
- Input directory:                                         data/dynamic/input 
- Observations file:                                                    1.dat 
- Output directory:                                       data/dynamic/output 
- Report file:                                                          1.txt 
- Variable count:                                                          10 
- Number of observations:                                                1500 
- 'Effective' number of observations with DBN:                           1499 
- Discretization policy:                                                   i3 
- Discretization exceptions:                                             none 
- Min. Markov lag:                                                          1 
- Max. Markov lag:                                                          1 
- DBN mandatory lag(s):                                                     1 
- Equiv. sample size:                                                     1.0 
- Max. parent count:                                                        5 
- Initial structure file:                                                     
- 'Must be present' edges file:                                               
- 'Must not be present' edges file:                                           
- Max. time:                                                                  
- Max. proposed networks:                                               10000 
- Max. restarts:                                                              
- Min. networks before checking:                                         1000 
- Number of best networks tracked:                                          3 
- Number of progress reports:                                              10 
- Write to file interval:                                                     
- Statistics:                                                RecorderStandard 
- Proposer:                                             ProposerAllLocalMoves 
- Evaluator:                                        defaulted to EvaluatorBDe 
- Cycle checker:                                              CycleCheckerDFS 
- Decider:                                         defaulted to DeciderGreedy 
----------------------------------------------------------------------------- 
- Min. proposed networks after high score:                               1000 
- Min. proposed networks before restart:                                 3000 
- Max. proposed networks before restart:                                 5000 
- Restart method:                                          use random network 
-   with max. parent count:                                                 3 
----------------------------------------------------------------------------- 

 
 
The feedback about settings is given in a number of sections. Below the general header info indicating 
the Banjo version being used, the general project information is listed, including four free-form settings 
‘project’, ‘user’, ‘data set’, and ‘notes’.  Then, the general parameters that set up a search, including 
the names and locations of input and output files, discretization of the supplied data, stopping criteria 
(in terms of time, number of networks, or number of restarts), number of high-scoring networks tracked, 
frequency of intermediate feedback and writing results to file, and the names of the core components. 
Finally there is a section of parameters that are specific to the search strategy being selected.  
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In this case, as can be seen, Banjo is supplied with 1500 samples (‘number of observations’) which 
are to be discretized into 3 intervals of equal width (as indicated by ‘i3’ for parameter ‘Discretization 
policy’). Banjo is directed to learn a dynamic network (since both Markov-lags are set to 1) and is 
allowed to evaluate 1000 networks (maxProposedNetworks) during the greedy search.  
 
Immediately after that, Banjo displays a discretization report that lists some important characteristics of 
the data supplied. Here, the 10 variables are all discretized into 3 intervals of equal width (i3) and have 
values between 0 and 100.    

 
----------------------------------------------------------------------------- 
- Pre-processing                                        Discretization report 
----------------------------------------------------------------------------- 
 Variable | Discr. | Min. Val. | Max. Val. |  Orig. |  Used  |                
          |        |           |           | points | points |                
----------------------------------------------------------------------------- 
      0   |    i3  |      0.0  |    100.0  |  1381  |     3  | 
      1   |    i3  |      0.0  |    100.0  |   646  |     3  | 
      2   |    i3  |      0.0  |    100.0  |   240  |     3  | 
      3   |    i3  |      0.0  |    100.0  |   146  |     3  | 
      4   |    i3  |      0.0  |    100.0  |  1392  |     3  | 
      5   |    i3  |      0.0  |    100.0  |  1379  |     3  | 
      6   |    i3  |      0.0  |    100.0  |  1374  |     3  | 
      7   |    i3  |      0.0  |    100.0  |  1396  |     3  | 
      8   |    i3  |      0.0  |    100.0  |  1381  |     3  | 
      9   |    i3  |      0.0  |    100.0  |  1378  |     3  | 
----------------------------------------------------------------------------- 
 

 
Banjo then provides periodic feedback on its progress, and, when the search is completed, it supplies 
the final results. In this particular case this includes the 3 highest scoring networks, the statistical 
information about the search, and a basic output of the best network for generating a graph in dot.  
 
The best networks are displayed in the following format (here, only the best network is shown, as no 
purpose is served by displaying them all):  

 
Network #1, score: -6308.514426, first found at iteration 271 
10 
 0   0:   0                 1:   1 0             
 1   0:   0                 1:   2 0 1           
 2   0:   0                 1:   2 1 2           
 3   0:   0                 1:   2 2 3           
 4   0:   0                 1:   1 4             
 5   0:   0                 1:   1 5             
 6   0:   0                 1:   1 6             
 7   0:   0                 1:   1 7             
 8   0:   0                 1:   1 8             
 9   0:   0                 1:   1 9             
 

 
The first line indicates the ranking of the network (here: #1), and its associated BDe score (in this case: 
-6308.514426), first encountered at iteration 271. The second line indicates the number of variables 
used to model the problem, in this case 10.   
 
Recall that the network is dynamic under the first-order Markov assumption, e.g. it is assumed that the 
expression values for genes at a given timestep can be determined using the expression values of the 
gene itself and its parents at the previous timestep only (variables with Markov lag 1, see 2.3). For 
each node, the parents in each lag are listed in a separate “block”, starting with the respective Markov 
lag and a colon (“:”). The last 10 lines (one for each of the 10 variables) first list the id of a variable, the 
block for Markov lag 0 (here, “0: 0” indicates that there is no parent of Markov lag 0), and then the 
block for Markov lag 1 (here, for node id = 1, “1: 2 0 1” indicates that variable id = 1 has 2 parents of 
Markov lag 1, namely variable id = 0 and variable id = 1). The network represented here will be 
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displayed further on. (As already alluded to, the format shown here for networks is the same used to 
supply a known network to Banjo). 
 
For the highest network it has found, Banjo creates a set of instructions in so called “dot format”.  This 
is a format used by the free GraphViz library from AT&T.  Given a text file in this format, GraphViz dot 
lays out graphs and then generates images.  In this case, the following dot commands are generated 
for the best network: 

----------------------------------------------------------------------------- 
- Post-processing                                  DOT graphics format output 
----------------------------------------------------------------------------- 
 
digraph abstract {  
 
label = "Banjo Version 1.0.5\nHigh scoring network, score: -6308.51\nProject: banjo 
dynamic example\nUser: demo\nData set: 10-vars-1500-temporal-observations\nNetworks 
searched: 10801";  
labeljust="l";  
 
    0->1; 
    1->2; 
    2->3; 
} 
 

 
 
Then, after copying this string into a textfile, the following graphical representation can be generated 
with GraphViz dot:  
 

 
Figure 6: example dynamic Bayesian network generated  

using GraphViz dot 

 
 
Recall that although time is not represented explicitly in Figure 6, the network is dynamic, i.e. the links 
between genes in the figure denote dependencies in time. The expression value of genes is 
determined using the expression values of the genes at the previous timestep only (see the Bayesian 
networks section for more details). 
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2.6 Evaluating performance 
 
The performance of the Bayesian network inference algorithm is evaluated by comparing the 
reference networks (those used to create the data) with the networks recovered by the algorithm from 
the data. The more similar the networks, the better the quality of the solutions. Ideally, reference and 
recovered networks are identical, meaning that all the links in the reference network are recovered, 
and that the recovered network does not contain connections that do not exist in the reference 
network. This leads to the following definitions: 
 
- If a link exists both in the reference network and the recovered network, it is considered a true 

positive (TP)  
- If a link exists in the reference network but is not recovered, it is called a false negative (FN).  
- When an edge is absent in both networks, it is counted as a true negative (TN).  
- Finally, if a recovered link does not exist in the reference network, it is called a false positive (FP).  
 
These measures are then used to calculate the quality of a recovered network in terms of its sensitivity 
and specificity. The sensitivity of a model is the proportion of true positives and is computed as follows: 
 

Sensitivity =
TP

TP+ FN
 

 
The specificity or the fraction of true negatives is calculated as follows: 
 

Specificity =
TN

TN + FP
 

 
These measures are well known; see for instance Husmeier (2003). If the discovered network contains 
all the links present in the reference network (or more), the sensitivity is 1 (or 100%). The specificity on 
the other hand, is 1 when no spurious link is found. Both are 1, the perfect score, only when the 
structure of the discovered and reference networks are identical. 
 

2.7 Results 
 

The experimental framework is applied to investigate the recovery of dynamic Bayesian networks from 
artificial microarray data. The experiments are made no more complicated than necessary. The aim of 
the experiments presented here is to investigate the impact of the network structure on the required 
number of samples for good recovery, and not the impact of the network size. As will become 
apparent, this effect of structure can be investigated with very small networks. Again, it is stressed that 
results presented in this section are meant to be comparative and should not be taken as absolute for 
the number of samples required to recover any particular network structure in general. Results are 
potentially affected by a large number of parameters and it is not possible to investigate them all within 
this thesis. 
 
It is shown empirically that the topology of the network, i.e. structural details of the network, is an 
important factor for the number of samples required for good structure recovery. More specifically, the 
required amount of data is strongly influenced by the maximum number of parents per node in a 
network rather than by the number of connections in the network. To show this, regulatory networks 
with different structures are designed in a more or less systematic manner, and required sample size 
for good recovery is estimated.  
 
The remainder is structured as follows: first, experiments with regulatory networks consisting of only 
single parent connections are conducted. The networks used are described in detail and required 
sample size for recovery of the networks from the data is investigated. The same procedure is then 
repeated for networks containing a gene regulated by an increasing number of parents. In 2.7.3, the 
choices made for the search parameters used in the experiments are clarified. Finally, results are 
summarized and discussed.  
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2.7.1 Learning single parent networks 
 
The first experiments with synthetic data presented here involve networks of genes consisting of a 
number of single parent connections only. Four networks of 10 genes containing 1 to 9 connections 
are constructed and sampled using GeneSim. The networks used are depicted below. 
 

 

 
Network 1:  network of 10 genes with only 1 connection. Genes 3 

1 2 3 10 

To 10 are not regulated and act as distracters. 
 

 
Network 2:  network of 10 genes with 3 connections. Genes 5 to 
10 are not regulated and act as distracters. 
 

 

 
Network 3:  network of 10 genes with 9 connections. All genes are regulated  
except gene 1. There are no distracter genes in this network.  

1 2 4 3 5 10 

1 2 9 10 ...

 

 
 

Network 4:  network with 7 single parent connections distributed over 2  
independent subnetworks. Gene 1 is connected to 4 other genes. 

 
 
Genes that are not regulated by any other gene behave according to the noise level in GeneSim. 
Genes not connected to other genes at all act as distracters to the DBN inference algorithm. In all 
networks depicted, connections between genes are assigned positive regulation strength of 0.2. This 
corresponds to the highest value used in Yu et al (2002, 2004). 
 

1 

2 4 3 5 

9 8 

7 

6 

10 
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All experiments with the single parent networks are conducted using datasets of 7 different sizes 
ranging from 50 to 5000 in the number of samples. For each sample size, 10 independent datasets 
were generated, effectively yielding a total of 70 datasets per network. As Yu et al (2004) obtained the 
best results using a sampling interval of 5 time steps with GeneSim and a discretization into 3 
categories, the same settings were used in these experiments. The DBN inference algorithm was 
applied 5 times on each dataset using greedy search with random restarts, considering all possible 
local moves at each iteration. The algorithm was allowed to evaluate a maximum of 100000 networks 
after which the search was terminated. The choices for the particular search strategy and settings are 
clarified in section 2.7.3. 
 
Table 1 shows the obtained sensitivity and specificity scores for the described single parent networks. 
The table shows average scores since the experiments were repeated 5 times on 10 independent 
datasets for each sample size.  
 
For interest, the (Banjo) BDe scores of the ‘true’ networks were computed for each dataset and 
compared to the scores obtained by Banjo during each of the runs. Every network returned by Banjo 
was found to be at least as good as the true network. In other words, every time Banjo did not return 
the true network, this was justified by the BDe score of the recovered network and this was not caused 
by the particular choice of search strategy and settings.   
 
Not surprisingly, these results show that the quantity of data is an important factor in the recovery of 
the structures. The sensitivity scores increase for all four networks as a function of the available 
number of samples. Close to perfect scores for both sensitivity and specificity are obtained with 
datasets consisting of 250 to 500 samples.  
 
  Network 1 Network 2 Network 3  Network 4 
Samples Sens. Spec. Sens. Spec.  Sens. Spec . Sens. Spec. 
50 50.00 95.86 68.00 94.27 77.56 95.30 38.57 90.84 
100 60.00 99.49 80.00 98.66 93.33 96.81 70.86 93.05 
250 100.00 99.80 93.33 99.48 100.00 99.12 95.14 97.83 
500 100.00 100.00 100.00 99.90 100.00 99.78 100.00 100.00 
750 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
1000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
5000 100.00 98.99 100.00 99.18 100.00 98.79 100.00 97.85 

Table 1: average sensitivity and specificity scores obtained by the Bayesian inference algorithm on the single 
parent networks. Averages are calculated on 10 datasets for each sample size. A sensitivity of 100 means that all 
the links in the original network have been recovered. A specificity of 100 means that no spurious links were 
recovered. When both are 100 the original and recovered networks are identical. (Very close to) perfect scores 
are obtained using 250 to 500 samples. For these networks, the number of connections does not seem to have 
significant impact on the number of samples required for perfect recovery. 

 
In spite of the different number of links in the networks, no substantial difference in the required 
dataset size for good recovery is observed between the networks consisting of 3, 7 or 9 links, 
especially when compared to the results of the multi-parents experiments of 2.7.2.   
 
Although specificity initially increases with sample size, it is lower for the datasets consisting of 5000 
samples for all networks.  With these larger datasets, the DBN algorithm starts to learn connections 
that are not present in the original networks used to generate the data (false positives). This effect has 
been observed and reported by Yu et al (2004); these researchers attributed this to the fact that the 
original networks are not Bayesian. Because of the mismatch between the dynamic Bayesian network 
and GeneSim, supplying more data results in over-fitting the network to the data, leading to the 
inclusion of false positives.   
 
When comparing the sensitivity scores for regulatory networks 1, 2 and 3, at first glance it seems 
surprising that higher scores are obtained for networks 2 and 3 when using datasets of size 50 and 
100 samples in spite of the larger number of connections. In order to understand this better, the 
recovered networks for networks 1 and 3 are examined more closely for the datasets consisting of 100 
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samples since the difference for this sample size seems most outspoken. The first thing noticed is that 
for both networks, the 5 runs for each of the 10 datasets resulted in the same top network so the 
results can be discussed as if only 1 run was conducted on each of the datasets. For network 1, the 
only link present in the network (from gene 1 to gene 2) is recovered by the DBN inference algorithm 6 
times out of 10. Recalling that the sensitivity is calculated as the number of connection recovered that 
are also present in the original network divided by the total number of connections present in the 
original network,  this results in an average sensitivity of  60% for network 1.   
 
For network 3, the situation is slightly more complicated since more links are involved:  
 
In 6 cases out of 10, all 9 links present in the original network are recovered. This results in a 
sensitivity of 100% in 60% of the trials. 
 
In two cases, 8 links out of 9 are recovered, but the link from gene 1 to gene 2 is not found. This 
results in a sensitivity of 88.89% in 20% of the trials. 
 
In the remaining two cases, 7 links out of 9 are recovered, again without finding the link from gene 1 to 
gene 2. This results in a sensitivity of 77.78% in 20% of the trials. 
 
The average sensitivity for network 3 is then calculated as (0.6*100) + (0.2*88.89) + (0.2*77.78) = 
93.33%. The fact that the other connections besides the connections from gene 1 to gene 2 are 
frequently recovered results in a higher sensitivity for network 3. 
 
The link from gene 1 to gene 2 is recovered as frequently for both networks (6 times out of 10). For 
network 3, the remaining links are recovered in almost all trials. Since gene 1 is the only gene without 
a parent in both networks, these findings suggest that when a gene has a grandparent (the gene’s 
parent has a parent), the DBN inference algorithm is more likely to recover the connection between 
the gene and its immediate parent.  
 
Knowing GeneSim’s dynamics, the behaviours of (un)regulated genes can be explained as follows: at 
any given time step, the expression level of an unregulated gene is determined by its value in the 
previous time step and the specified noise level in GeneSim. This means that in the long run such a 
gene performs a random walk between the minimum and maximum expression levels (in this case 0 
and 100). On the other hand, the expression level of a regulated gene depends on its previous value, 
the noise and also on the expression level of its regulator at the previous time step. For each time step 
that the expression level of the regulator is (below) above its constitutive level (in this case 50), the 
expression level of the regulated gene is (decreased) increased according to the equation described in 
the methods section. This means that - unless the regulator oscillates very close to its constitutive 
level - a gene with a parent is directed towards its minimum or maximum expression levels and it is 
less likely to have an expression value in between. To illustrate this, a large dataset sampled from 
network 3 is selected and the expression levels of genes 1, 2 and 3 for 300 consecutive samples are 
plotted (Figure 7). The plot confirms the analysis just given.   
 
For a more quantitative view, expression values in the selected dataset are discretized into three 
categories ‘low’, ‘normal’ and ‘high’ (in the same way as Banjo would, each category spanning one 
third of the range 0..100). For genes 1, 2 and 3 in the datasets relative frequencies for each value are 
determined, as shown in Table 2.  As expected, the table shows that the three categories are 
approximately equally probable for gene 1. For the regulated genes 2 and 3,  the frequencies confirm 
that the values ‘low’ and ‘high’ are much more probable than the value ‘normal’.  
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 Relative frequencies (%) 
Gene  Low Normal High 
1 34.67 32.19 33.14 
2 47.30 7.58 45.12 
3 49.36 3.04 47.60 

Table 2: relative frequencies of values for  
the genes in network 3 

 
Then, the conditional probabilities of the values of gene 2 given the previous value of gene 1 and of 
gene 3 given the previous values of gene 2 were computed as shown in table 4 and 5 respectively.  
 
  P(Gene 2| Gene 1) 
Value Gene 1 P(Gene 1=Value) Low normal High 
Low 34.67 96.05 2.77 1.18 
Normal 32.19 42.47 16.62 40.91 
High 33.14 0.97 3.8 95.23 

Table 3: conditional probabilities (%) for the expression levels of gene 2 given  
the levels of gene 1. 

 
  P(Gene 3| Gene 2) 
Value Gene 2 P(Gene 2=Value) Low normal High 
Low 47.3 97.4 2.24 0.36 
Normal 7.58 40.9 13.98 45.12 
High 45.12 0.42 2.02 97.56 

Table 4: conditional probabilities (%) for the expression levels of gene 3 given 
the levels of gene 2. 

 
These figures indicate the following:   
 
- if the regulator has the value ‘low’ or ‘high’ then its child will have the same value in the next step in 
more than 95% of the cases. The conditional probabilities in both tables for these values look similar. 
 
- if the regulator has the value ‘normal’, its child will have the value ‘low’ or ‘high’ in more than 80% of 
the cases, and these individual values are almost equally probable. The value ‘normal’ is not as 
predictive for the values of the regulated gene as the values ‘low’ or ‘high’.  
 
Gene 1 has the value ‘normal’ in approximately one third of the cases, whereas gene 2 has this value 
in only 7 to 8% of the cases in favour of the more predictive values ‘low’ and ‘high’. This means that a 
larger portion of the cases in the dataset is predictive for the connection from gene 2 to gene 3 than 
for the link from gene 1 to gene 2. This is why the DBN inference algorithm needs fewer samples to 
recover the link between gene 2 and gene 3 than the link between gene 1 and gene 2. Or more 
generally, in the single parent networks used within GeneSim, a link between a gene G and its child C 
can be recovered using fewer samples when G is regulated by another gene than when it is not. 
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Figure 7: expression levels for genes 1, 2 and 3 in network 3 for 300 consecutive time steps. Gene 1 is not 
regulated and moves according to the noise level in GeneSim. Gene 2 is regulated by gene 1. Gene 3 is 
regulated by Gene 2.  It can be seen that the expression levels of regulated genes (genes 2 and 3) are more 
often at the extremes (0 and 100) than the unregulated gene 1.  
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2.7.2 Learning multi parent networks 
 
In the previous experiments, networks with different number of connections were constructed, thereby 
making sure that no gene had more than one regulator. In contrast, in this paragraph networks 
containing genes with multiple regulators are investigated. In particular, different networks containing a 
gene with 1, 2, 3 and 4 parents are constructed systematically, as shown below.  
 

  
  

 
Network 1: network with 1 parent 

 
Network 2: network with 2 parents 
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Network 3: network with 3 parents 
 

 
Network 4: network with 4 parents 
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Figure 8: networks used in the experiments to assess the influence of the number of regulators on the required 
sample size for good structure recovery. All networks consist of 5 genes. Connections between genes all have 
strength of 0.2  

Since the largest number of parents investigated is 4, the minimal number of genes for the largest 
network investigated required is 5. To keep the number of possible networks constant and measure 
the influence of the different number of regulators only, all networks are constructed using 5 genes. 
Note that network 1 has the same structure as network 1 in the previous paragraph and that only the 
total number of genes in the network differs. For these experiments, more and larger datasets are 
used than in the previous paragraph. Datasets of 12 different sizes ranging from 50 to 10000 in the 
number of samples are used. Except for this difference, the experiments are conducted using the 
same settings as in the previous paragraph. 
 
Table 5 shows the average sensitivity and specificity scores on the networks with genes with different 
number of parents. To make the comparison easier, sensitivity scores are also presented in graphical 
form in Figure 9. As the specificity scores are fairly constant no graph is provided for them.  
 
As in the previous section, these results show that the quantity of data is an important factor in the 
recovery of the structures. As the sample size grows larger, network structures are recovered more 
completely and networks with 1, 2 and 3 parents are recovered entirely (also note the similar results 
for the 1 parent network and network 1 in the previous section). However, the graph indicates that the 
performance of the DBN first deteriorates with growing sample size before rising to higher levels. This 
unexpected behaviour was not observed with the experiments in the previous section and 
unfortunately, no explanation was found for this. It cannot be explained away as merely coincidental, 
since the shape is observed for all the networks with multiple parents.  
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 1 parent 2 parents 3 parents 4 parents 
Samples Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. 
50 50.00 97.50 25.00 98.26 16.67 97.27 17.50 96.19 
100 50.00 100.00 20.00 99.57 6.67 99.09 10.00 100.00 
250 100.00 100.00 25.00 100.00 6.67 100.00 0.00 100.00 
500 100.00 100.00 20.00 100.00 3.33 100.00 0.00 100.00 
750 100.00 100.00 10.00 100.00 0.00 100.00 0.00 100.00 
1000 100.00 100.00 80.00 100.00 0.00 100.00 0.00 100.00 
1500 100.00 100.00 100.00 100.00 0.00 100.00 0.00 100.00 
2000 100.00 100.00 100.00 100.00 13.33 100.00 0.00 100.00 
4000 100.00 97.50 100.00 100.00 40.00 100.00 7.50 100.00 
5000 100.00 95.83 100.00 100.00 63.33 100.00 20.00 100.00 
7500 100.00 95.83 100.00 100.00 100.00 100.00 25.00 100.00 
10000 100.00 95.83 100.00 99.13 100.00 99.55 25.00 100.00 

Table 5: average sensitivity and specificity scores obtained by the DBN inference algorithm on the multi-parent 
networks (averages calculated on 10 datasets for each sample size and 5 runs of the DBN algorithm per dataset). 
A sensitivity of 100 means that all the links in the original network have been recovered. A specificity of 100 
means that no spurious links were recovered. When both are 100, the original and recovered networks are 
identical. The number of samples required for perfect score increases rapidly with the number of parents.  

 
The effect of adding a connection - in this case adding a regulator to a gene - on the required sample 
size for perfect recovery is considerable: for 1 parent, at most 250 samples are required, for 2 parents 
at least 1000 samples and for 3 parents the required sample size is at least 5000. With the used 
sample sizes and settings, the DBN inference algorithm was not able to recover the entire 4 parents 
network (with 10000 samples, only 1 link was recovered with each of the 10 datasets). The effect of 
adding a connection such that the maximum number of parents is increased clearly has a much larger 
impact than adding one or more single parent nodes as in the experiments of 2.7.1. 
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Figure 9: sensitivity graph for the networks containing multi-parent node. The graph shows the effect of sample 
size on sensitivity for networks with different number of parents. Note that the scale is not linear, masking the 
effect of increasing the number of regulators. 
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Earlier, it was shown that connections to genes with a grandparent are easier to learn than genes 
without grandparent. This is the case with the networks used in this section as well. To demonstrate 
this, networks 1 through 4 are simulated again in GeneSim in the following way: a parent is added to 
each regulator such that, in each network, gene 5 has as many grandparents as parents (stated 
otherwise, each parent of gene 5 now has a parent of its own). New datasets are sampled as before 
using the GeneSim simulator, but the expression levels of the new grandparents are omitted. This 
results in datasets containing expression levels for gene 1 to 5 as before with the difference that the 
parents to gene 5 behave as if they were regulated by another gene (see Figure 10 for an illustration 
for network 2). As far as the DBN inference algorithm is concerned, it is processing a dataset 
consisting of 5 variables like before. In the following, these networks will be referred to as the multi 
parents network ‘within a context’ to distinguish them from networks 1 to 4. 
 

  

 
 

Figure 10: the networks are simulated again in GeneSim after a 
parent is added to each regulator in the network.  For example, in 
network 2 shown on the left, genes 1 and 2 are the regulators.  
Two parent genes 1’ and  2’ respectively are added to each of 
these. New datasets are sampled from this network, but the 
expression levels for the ‘new’ genes 1’ and 2’ are omitted when 
passed to the DBN inference algorithm. The algorithm is passed 
datasets consisting of 5 variables with the regulators behaving as 
if they in turn were regulated. 
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Table 6 shows the average sensitivity and specificity scores on the networks with increasing number 
of parents within a context. Sensitivity scores are presented in a graph in Figure 11. 
 
Required sample sizes for good recovery are sharply lower when compared to the results shown in 
Figure 9. For instance, only 1500 samples are needed to consistently recover the 3 parents network 
versus 7500 samples earlier. The 4 parents network is consistently recovered using 7500 – 10000 
samples, whereas earlier only 1 link was recovered with the largest datasets. 
 
Although considerably fewer samples are needed, it can still be observed that the effect of adding a 
connection such that the maximum number of parents is increased clearly has a very strong impact.  
 

 1 parent 2 parents 3 parents 4 parents 
Samples Sens.   Spec. Sens.   Spec. Sens.   Spec. Sens.   Spec. 
50 100.00 97.50 20.00 94.35 30.00 91.82 25.00 93.33 
100 100.00 98.33 20.00 100.00 43.33 99.09 15.00 98.10 
250 100.00 100.00 10.00 100.00 36.67 100.00 5.00 100.00 
500 100.00 100.00 60.00 100.00 40.00 100.00 5.00 100.00 
750 100.00 100.00 100.00 100.00 80.00 100.00 0.00 100.00 
1000 100.00 100.00 100.00 100.00 80.00 100.00 0.00 100.00 
1500 100.00 100.00 100.00 100.00 100.00 100.00 0.00 100.00 
2000 100.00 100.00 100.00 100.00 100.00 100.00 0.00 100.00 
4000 100.00 100.00 100.00 100.00 100.00 100.00 10.00 100.00 
5000 100.00 100.00 100.00 100.00 100.00 100.00 35.00 100.00 
7500 100.00 99.17 100.00 100.00 100.00 100.00 92.50 100.00 
10000 100.00 97.08 100.00 100.00 100.00 100.00 100.00 100.00 

Table 6:  average sensitivity and specificity scores obtained by the DBN inference algorithm on the multi-parent 
networks within a context (averages calculated on 10 datasets for each sample size and 5 runs of the DBN 
algorithm per dataset). A sensitivity of 100 means that all the links in the original network have been recovered. 
A specificity of 100 means that no spurious links were recovered. When both are (almost) 100, the original and 
recovered networks are (almost) identical.   
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Figure 11: sensitivity graph for the networks containing a multi-parent node within a larger network (within a 
context). The graph shows the effect of sample size on sensitivity for networks with different number of parents. 
Note that the scale is not linear, masking the effect of increasing the number of regulators. 

2.7.3 Choice of search strategy & settings 
 
The choice for the search strategy used in this research is based on the work of Yu et al (2002, 2004). 
In these papers, 3 different search strategies were compared: greedy search with random restarts 
(considering all local changes at each iteration), simulated annealing and an evolutionary algorithm. 
Both the greedy and simulated annealing algorithm frameworks are described by Heckerman (1996)  
and are implemented in Banjo. The evolutionary algorithm was designed by Yu et. al for their research 
and is not offered in Banjo. In both papers, Yu et al report that the 3 strategies return (nearly) identical 
networks but greedy search was favoured owing to the considerable shorter running times (greedy 
search was reported to be at least 10 times faster than simulated annealing).  Another argument in 
favour of greedy search is given by Chickering et al (1996) who have shown that for a fixed amount of 
computation time, greedy search with multiple restarts outperforms simulated annealing (amongst 
others). For these reasons, greedy search with random restarts was chosen for the experiments in this 
research.  
 
As already discussed in the methods section, the exact behaviour of the greedy search algorithm with 
random restarts in Banjo is configured with the following parameters in the settings file: 
 
- “maxProposedNetworks”, the total number of networks the algorithm is allowed to evaluate during 

the search before exiting and returning the results of the search. 
- “minProposedNetworksAfterHighScore”, the minimum number of search iterations that Banjo will 

execute after it has found a new high score, before a restart is initiated. 
- “minProposedNetworksBeforeRestart”, the minimum number of search iterations that Banjo will 

execute after a restart, before the next restart is initiated. 
- “maxProposedNetworksBeforeRestart”, the maximum number of search iterations that Banjo will 

execute after a restart, before the next restart is initiated. 
 
The minimum and maximum number of restarts can then be estimated from the above settings as 
follows: 
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- minimum number of restarts is “maxProposedNetworks” divided by 
“maxProposedNetworksBeforeRestart” 

- maximum number of restarts:  “maxProposedNetworks” divided by 
“minProposedNetworksBeforeRestart” 

 
In order to find values for these settings representing a reasonable trade-off between quality of 
returned solutions and running time, Banjo was executed using three different configurations using 
one of the single parent networks (network 4 of section 2.7.1) and one of the multi parent networks 
(network 3 of section 2.7.2). The configurations considered are shown in Table 7 below. 
 

Setting Configuration 1 Configuration 2 Configuration 3 
maxProposedNetworks 100000 1000000 1000000 
minProposedNetworksAfterHighScore 1000 1000 1000 
minProposedNetworksBeforeRestart 3000 3000 6000 
maxProposedNetworksBeforeRestart 5000 5000 10000 
Restarts (derived, not banjo’s setting) 20 to 33 200 to 330 100 to 166 

Table 7: parameters considered for the greedy search using random restarts and all local changes at each 
iteration. 

 
For both networks, datasets of 4 different sizes were sampled using GeneSim. For each given sample 
size, 10 independent datasets were generated. To average out the stochastic effects of random 
restarts, Banjo was executed 5 times on each of the datasets. Results of these experiments are 
presented in  Table 8 and Table 9. 
 
For the single parent network, only small differences are observed between configurations 1 and the 
others. Configurations 2 and 3 yield the same results. For the multi parent network, no difference is 
found at all between any of the configurations. Perfect scores on sensitivity and specificity are 
obtained with the same amount of data independent of the chosen configuration. Hardly any variance 
is observed across runs in the results obtained: the only variance found is in the experiments with the 
single parent network and datasets of 100 and 250 samples. Since only small differences in results 
exist across configurations, it is concluded that applying Banjo 5 times on each dataset is sufficient. 
 

 Configuration 1 Configuration 2 Configuration 3 
 Samples Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity
100 70.86 93.05 71.43 92.80 71.43 92.80 
250 95.14 97.83 94.29 97.63 94.29 97.63 
500 100.00 100.00 100.00 100.00 100.00 100.00 
750 100.00 100.00 100.00 100.00 100.00 100.00 

  Table 8: results for network 4 of 2.7.1 (consisting of 7 single parent links) using the different 
configurations of the greedy search.  

 
  Configuration 1 Configuration 2 Configuration 3 
 Samples Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 
2000 13.33 100.00 13.33 100.00 13.33 100.00 
4000 40.00 100.00 40.00 100.00 40.00 100.00 
5000 63.33 100.00 63.33 100.00 63.33 100.00 
7500 100.00 100.00 100.00 100.00 100.00 100.00 

Table 9: results for the 3 parent network (network 3 of 2.7.2) using the different configurations  
of the greedy search. 

 
To check if the ‘true’ networks could be found more frequently by evaluating more networks, the Banjo 
BDe scores of the true networks were computed for each dataset and compared to the scores 
obtained by Banjo during each of the runs. Every network returned by Banjo was found to be at least 
as good as the true network. This means that every time Banjo did not return the true network, this 
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was justified by the BDe score of the recovered network and that changing the parameters of the 
search would not have resulted in finding the true network more often. 
 
Given the observations above, and the fact that execution times are factors shorter using configuration 
1, this configuration was favoured to conduct the experiments in this research.  
 

2.8 Discussion & conclusion 
 
With the availability of large-scale gene expression data, effort has been made towards learning gene 
networks using Bayesian networks and other techniques. In this research, the suitability of Bayesian 
networks for this task was examined. Using a known biological simulator, regulatory networks with 
different topologies were simulated and values for gene expression levels were sampled from 
simulations at discrete time steps, like during real microarray experiments. The obtained data was fed 
to a standard Bayesian network inference algorithm and sample sizes required for good recovery   
was estimated. In particular, the required amount of data for the recovery of networks containing only 
single parents was contrasted with the amount required for networks containing a gene with multiple 
parents.  
 
Results show that the quantity of data is a critical factor in the recovery of the structures. Although 
unexpected results were obtained for networks with multiple parents using smaller datasets, 
performance clearly increased with sample size. It was observed that required sample size for good 
recovery is strongly influenced by the number of regulators to a gene. Although the single parents 
networks used in 2.7.1 contained a different number of connections - ranging from 1 to 9 connections - 
the difference in the required sample size for good recovery seems insignificant when compared to the 
multiple parents experiments of 2.7.2 which contained a maximum of only 4 connections. This strong 
effect of the number of regulators on required amount of data is also reported in the literature. For 
instance, Berlo et al (2003) claim in their analysis that an exponential increase in the number of 
samples is necessary to obtain a reliable hypothesis when the number of parents increases. Yu et al, 
(2002, 2004) report difficulties identifying more than one parent for genes with multiple parents (using 
up to 5000 samples) and regard this as “a serious problem for genetic pathway recovery, as 
combinatorial regulatory control is a basic property of genetic pathways”.  As microarray datasets tend 
to be small in practice, these results are not encouraging.  
 
On a more positive side, it has been noted by Philip et al (2004) that the inference algorithm does not 
have to recover the complete structure in order to be useful; learning only a part of the network with 
reasonable certainty would be an accomplishment from the biologist’s point of view. Another promising 
way to cope with the small amount of current datasets is combining prior biological knowledge with the 
gene expression data. There are many potential sources of such prior knowledge about edge 
relationships such as the scientific literature, or experimental data, as Philip et al (2004) mention. 
Hartemink et al. (2002), Imoto et al. (2003), Husmeier (2003), and more recently Bernard et al (2005) 
have used prior knowledge from different sources along with gene expression data. In a synthetic 
study, Phillip et al. (2004) attempt to quantify the effect of using prior knowledge on required sample 
size, and conclude that “incorporating prior knowledge into the learning scheme greatly reduces the 
data required, allowing these reverse engineering techniques to be used to learn regulatory 
interactions from microarray data sets of realistic size”.  
 
It was found that specificity scores initially increase with sample size, but decrease when large 
datasets are used. This was also observed by Yu et al (2004) who attributed this to the fact that the 
original networks are not Bayesian networks. Because of the mismatch between the dynamic 
Bayesian network and GeneSim, supplying more data results in over-fitting the network to the data, 
leading to the inclusion of false positives. Experiments (not included in this paper) conducted with data 
sampled from ‘real’ Bayesian networks and datasets of up to 10000 samples seem to confirm this. 
Whether the algorithm would include false positives when larger datasets are used remains an open 
question.   
 
As stated in the introduction, the figures presented in this section are meant to be comparative and 
should not be taken as absolute for the number of samples required to recover network structures in 
general. A large number of factors not examined in the experiments could influence structure recovery, 
for example the exact configuration of the DBN inference algorithm, strength of the connections in the 
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network, the sampling interval used to generate the datasets, the number of discretization categories 
and the way networks are simulated. It was beyond the scope of this study to investigate these factors, 
but each is reviewed briefly in the remainder. 
 
The experiments in this research were carried out using greedy search with random restarts for 
reasons already detailed in 2.7.3. However, it is not clear that greedy search would yield equally good 
results as simulated annealing or genetic algorithm in all cases. In general, greedy search algorithms 
are more likely to get stuck in local maxima than simulated annealing and genetic algorithms. Another 
aspect of the DBN inference algorithm that could potentially impact results is the scoring function. 
Currently, the BDe metric is the only one implemented in Banjo, but other Bayesian metrics exist. For 
instance,  Yu et. al (2002, 2004) applied the Bayesian Information Criterion (BIC) and concluded it did 
not work as well as the BDe metric with small datasets because BIC applies a strong penalty for the 
complexity of a structure (yielding networks with fewer edges or no edges at all). Which search 
strategy and metric are the best suited for the recovery of networks from expression data remains an 
open question. 
 
In all networks used in the experiments above, the strength of the connections between genes was set 
to 0.2. This corresponds to the highest value used in Yu et. al (2002, 2004) and was kept constant in 
this research in order to investigate the effect of the increased number of connections only. Early 
experiments on 2 parent networks conducted at the start of this research showed that (without 
changing other parameters) more samples were required to recover networks with weaker 
connections. Also, if the connections in the 2 parent network are of different strength (for instance 0.2 
and 0.1), the algorithm finds the stronger connection more frequently than the weaker one. The exact 
amount of data required for complete recovery of the generating structure will depend on the strength 
of the connections in the network and perhaps it will not be practical to recover connections with small 
strength (close to zero). 
 
Another critical factor in the recovery of structure is the sampling rate. The true continuous signals are 
sampled at discrete time points, yielding a loss in information, especially if the sampling intervals are 
not matched to the relaxation times of the true biological processes (Husmeier (2003)). In Yu et. al, 
(2004) it was found that the best results were obtained applying a sampling interval of 5 (the sampling 
interval used in the present research is based on this result, although early experiments indicated that 
intervals of 3 or 4 yielded comparable results). But they also note that the optimal interval varies with 
the number of data points measured and that it is presumably determined by the internal dynamics of 
the system at hand. Smith et al (2003) suggest a strategy for finding the optimal sampling regime for a 
biological system by slowly increasing the interval. According to Yu et. al (2004), educated guesses 
about system’s dynamics have to be made in order to infer the most accurate network.  
 
After the data is sampled, it has to be discretized before it can be presented to the network inference 
algorithm. When discretizing data, one has to decide on both a discretization method and a number of 
categories or bins (i.e. the number of discrete values). As discussed in the methods section, Banjo 
offers two discretization methods: equal range and equal frequency (or quantile) discretization. Based 
on the comparison given by Yu et al (2004) and on experiments conducted at the start of this research, 
discretization into 3 bins of equal range was used for the experiments (when 4 categories were used, 
more data was required for good recovery. Using 2 categories led to the inclusion of many false 
positives). However, no silver bullet can be given for discretization, and researchers use the method 
they somehow find appropriate. For instance, Berlo et al (2003) use a method known as K-means 
clustering to discretize their data into three categories. Friedman et. al (2000) discretize values into 3 
categories depending on whether the expression rate is significantly lower than, similar to, or greater 
than a control value, respectively (wherein the control expression level of a gene can be the average 
expression level of the gene across experiments but can be also be determined experimentally in 
other ways). When discretizing his data, the researcher somehow needs to finds a method and a 
number of categories such that the discretization is neither too coarse, and associated loss in 
information too high, nor too fine, leading to more parameters than perhaps necessary. 
 
Finally, results can be influenced by details of the simulation used to generate the data. The simulator 
used here obviously models regulatory networks in a heuristic way (for instance, it does not model 
transcription and translation steps in protein production). However, as stated earlier, the simulator 
does not need to be an exact match to, or even model all features of, a real regulatory network, as 
long as many of the important biological features are modelled. The simulator is useful as long as the 
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qualitative phenomena present in biological systems are exhibited. In this research, the underlying 
networks were not Bayesian networks and, as noted earlier, this was presumably the reason that the 
learning algorithm included false positives when using large datasets.  
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Part 2 Filling gaps in metabolic networks 
 
Genetic networks present many opportunities for machine learning techniques. Being of the most 
fundamental processes in the cell, metabolic processes are involved in virtually all other processes. As 
such, their reconstruction is crucial for understanding metabolic diseases. In part 1, at one extreme of 
network reconstruction, Bayesian networks were applied to infer genetic networks from microarray 
data without using any biological prior knowledge about the structure of the network. It was shown 
using artificial data experiments that genetic networks with various topologies could be recovered 
successfully given sufficient data, but also that sample size requirements for good performance 
increase dramatically with the number of regulators per gene. As the sample size of microarray 
datasets tend to be small in practice, these results were not particularly encouraging. 
 
In this part, the focus is on the other extreme of network reconstruction: the completion of almost fully 
known networks. As more and more information about genomes is collected, biologists are able to 
reconstruct large parts of gene networks. In many cases however, these partially known networks  
contain gaps, meaning that evidence exists that a gene should be present at a particular location in a 
network, but it is unknown which gene should fill the function. The identification of the genes in a well 
characterized or nearly complete network has been referred to as the “missing genes” problem 
(Osterman et al, 2003), or as “filling gaps in metabolic pathways” (Kharchenko et al, 2004). In the 
following, the suitability of Bayesian networks for the missing genes problem is investigated.  An 
automated method for completing a partially known metabolic network using microarray data only is 
described. Given a (single gene) gap G in a supplied network, and a set of candidate genes for the 
gap, the placement algorithm ranks the list of candidate genes: the first gene in the list being the most 
probable candidate for the gap represented by G, and the last gene being the least probable 
candidate. The ordering is determined by a Bayesian metric which assigns a score to each candidate 
indicating how likely the data was generated by the network containing the candidate. 
 
The approach described is based on the work presented by Kharchenko et al (2004), who propose a 
concrete instance of the missing genes problem involving Saccharomyces Cerevisiae, more 
commonly known as Baker’s yeast. Their approach however does not rely on Bayesian networks, but 
on a metabolic network with undirected links, while candidates are sorted according to a similarity 
metric. By the time of writing, we have not been able to find a similar application of Bayesian networks, 
so the approach proposed here is probably a novel one. The viability of the approach is demonstrated 
using a synthetic network. Gaps are created in this network, and the number of samples required to fill 
the gaps is investigated. Results show that single gaps can be filled using considerably less data than 
when learning networks from scratch, which of course is an encouraging result. Then, following 
Kharchenko et al (2004), the performance of the gene placement algorithm is assessed on yeast data. 
The Bayesian method does reasonably well, but it does not outperform Kharchenko et al (2004). 
 
The remainder is structured as follows: first, the approach and methods used in this study are 
described in detail. Then, the viability of the proposed Bayesian gene placement method is 
demonstrated using a relatively small synthetic problem. The impact of sample size on performance is 
investigated. After this, experiments with the yeast data are described. Impact of discretization on 
performance is investigated and two different methods for filling gaps are evaluated. One method 
relies on the structure provided in the supplied metabolic network whereas the other assumes 
conditional independence between genes given a candidate. Finally, results of this project are briefly 
summarized and discussed. 
  

2.9 Approach & Methods 
 
The gene placement algorithm described here is designed to evaluate candidate genes for filling gaps   
in a known genetic network. Given a gap in a known network, a set of candidate genes for the gap, 
and gene expression information, the gene placement algorithm sorts the list of candidates according 
to how well they fit the gap according to a Bayesian criterion. Stated like this, the evaluation of 
candidates for a given gap seems straightforward: simply fill a given gap with each candidate in turn in 
the network as a whole, and evaluate each using the data and the Bayesian scoring algorithm.  
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However, biological networks can contain hundreds or thousands of genes (for instance, the metabolic 
yeast network used in this research contains around 800 genes, while the total number of yeast genes 
considered in this study is 6207). It is not practical to fill gaps and evaluate candidates in networks 
taken as a whole.  Fortunately, it turns out that it seems reasonable to evaluate candidates using only 
a small subnetwork consisting of genes somehow close to the gap (so called “Markov Blanket”) 
instead of the whole network. One important limitation in the evaluation of candidates however, is that 
given the software package used in this research as is, only networks consisting of genes with no 
more than 10 parents can be evaluated. Networks containing more parents caused memory related 
errors. It turns out that with this limitation, the approach can be tested using around a third of the gaps 
in the yeast network than would be the case ideally. It is assumed here that this should provide 
enough experiments to give a good indication of the performance of the proposed method, and it was 
decided to accept this limitation without altering the software. 
 
Further, using Bayesian networks imposes a number of constraints on both the data and the structure 
of the networks used. As the Bayesian algorithm used can handle only discrete values, a suitable 
discretization scheme has to be selected. In addition, the subnetwork used to evaluate candidates 
should be both directed and acyclic. Unfortunately, the network supplied for yeast in this research is 
not acyclic, as it contains many connections going back and forth between pairs of genes. Some 
method is required to eliminate cycles from this network before the Bayesian gene placement method 
can be applied on this problem.  
 
Summarizing the above, the Bayesian gene placement algorithm proposed here can be globally 
described as follows. Given a partially known network, a gap, a list of candidates for the gap, and gene 
expression data: 
 
1. (If necessary), discretize the data. 
2. Determine the subnetwork around the gap that will be used to evaluate candidate genes. 
3. For each candidate in the list: 

a. Fill the gap in the subnetwork with the candidate.  
b. Prepare a dataset containing the expression information for the genes in the subnetwork. 
c. Compute the Bayesian score of the subnetwork given the dataset. 

4. Order the list of candidates on the Bayesian score, the first in the list being the most probable 
candidate and the last one in the list being the least probable.  

 
The methods used in this research are described in further detail in the remainder. First, the rationale 
for using a subnetwork around gaps is given and two different ways to build the subnetwork for gaps 
and deal with cycles are detailed. Then the metric used to evaluate the performance of the placement 
methods, the self-rank, is presented. Finally, the supplied yeast network and microarray data are 
described.  

2.9.1 Determining the subnetwork 
 
As stated before, it is not practical to fill gaps and evaluate candidates in networks taken as a whole.  
However, it turns out that it seems reasonable to evaluate candidates using only a small subnetwork 
consisting of genes close to the gap (the so called “Markov Blanket”) instead of the whole network. A 
procedure for the evaluation of candidates for directed acyclic graphs is illustrated in section 2.9.1.1.   
 
If the network supplied is cyclic – as is the case with the yeast network used in this research – some 
reasonable means to eliminate cycles is required before the Bayesian gene placement method can be 
applied. One way to solve cycles would be to eliminate them in the supplied network taken as a whole 
and then apply the method for DAGs just mentioned. On the other hand, since the method described 
involves evaluating only the Markov Blanket of a given gap, it makes sense to attempt to eliminate 
cycles within such a subnetwork only instead of the complete network. An important advantage of this 
approach, as will become apparent, is that the removal of cycles can be tailored to the gap under 
investigation, which would not be possible in the complete network. Mainly for this reason, it was 
decided to remove cycles in network neighbourhoods rather than in the network as a whole. This 
procedure, which is an extension of the one presented for DAGs, is detailed in 2.9.1.2
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With the methods just mentioned for determining the subnetwork for a gap, care is taken to preserve 
the structural information given in the supplied metabolic network (while deleting cycles if necessary). 
For interest, a placement method largely ignoring this structural information supplied is also 
investigated. Genes are placed assuming conditional independence between genes given a candidate, 
i.e. the candidate is made parent to all genes in the subnetwork ignoring known connections. This 
approach is described in 2.9.1.3. 

2.9.1.1 Markov Blanket 
 
A Bayesian network can have a large number of nodes and the behaviour of a given node can be 
affected by a distant node. However, it can be shown that knowledge about a set of nodes ‘close’ to 
the given node is sufficient to determine the behaviour of that node. Such a set of nodes shielding the 
node from the rest of the network is called a Markov Blanket.  Neapolitan (2003) defines a Markov 
Blanket M(X) of a node X to be “any set of variables such that X is conditionally independent of all the 
other variables given M(X)”.  Further, Neapolitan (2003) shows that for any node X, the set of all 
parents of X, children of X and parents of children of X is a Markov Blanket of X (in the remainder, this 
particular Markov Blanket will be referred to as the Markov Blanket).  
 
This means that in order to determine the behaviour of a given node, it is sufficient to have knowledge 
about the parent of the node, the children of the node and the parents of the children of the node. It is 
not necessary to determine the behaviour of all the nodes in the network. Given this, it seems a 
reasonable assumption to make that when evaluating candidate genes, a ranking of scores for Markov 
Blankets would be similar to a ranking of scores for complete networks. Using this assumption, 
candidate genes can be evaluated using much smaller networks. 
 
This is illustrated in Figure 12. The subnetwork around the gap consists of the genes in the Markov 
Blanket of the gap and the set of all connections between these genes. If the network neighbourhood 
happens to contain other gaps besides the one being tested, these are simply removed, since they 
cannot contribute any information relevant to the gap being investigated. If the network from which the 
network neighbourhood is taken is a DAG, the network neighbourhood is also a DAG and can be 
evaluated using the Bayesian metric. 
 

 

?

Figure 12: to evaluate candidates for a given gap, only the Markov Blanket of the gap (denoted by the question 
mark) is considered. The Markov Blanket of a node consists of the subnetwork containing the parents of the 
node, the children of the node, and the parents of the children of the node (shown within the dotted circle). The 
remainder of the network (light grey) is not used in the evaluation of candidates. 
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2.9.1.2 Dealing with cyclic networks 
 
If the network supplied is cyclic – as is the case with the yeast network used in this research – some 
reasonable means to eliminate cycles is required before the Bayesian gene placement method can be 
applied. Such a method should remove cycles from the network, while somehow preserving as much 
of the information present in the supplied network as possible. Here, no elaborate procedure to 
eliminate cycles in graphs is described, but effort is made to eliminate cycles caused by connections 
going back and forth between two genes (“bidirectional” links or “local loops” in the remainder), as 
most of the cycles in the supplied yeast network are caused by this type of connections.  
 
An obvious way to solve a cycle caused by a bidirectional link is to simply remove one of the links 
involved in it. Since there is in general a priori no reason to prefer one link over the other, the choice 
for the link to be removed is arbitrary. In some cases however, an argument could be made in favour 
of a certain link. Consider for instance a bidirectional link between a gene and the gap under 
investigation. To solve this loop, two possibilities exist: (1) deleting the link from the gene to the gap or 
(2) deleting the link from the gap to the gene. If the link from the gene to the gap is removed – the 
gene becomes a child of the gap – it is not possible to measure the effect of the gene on the candidate 
combined with the effect of other co-parents to the candidate. This means that potentially valuable 
information could be lost. Thus, it is felt that the link from the gap to the gene should be removed, 
making the gap a child of the gene. Similarly, when considering a bidirectional link between a gene 
and one of the gap’s children, the gene is made a parent to the child so the combined effect of that 
gene, the gap and other parents of the child can be measured on the children of the gap. In all other 
cases, local loops are solved by removing one of the links arbitrarily. 
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Figure 13: determination of the subnetwork for cyclic networks. On the left, a partially known metabolic 
network containing a gap is displayed. This is not a Bayesian network, since it contains cycles caused by the 
bidirectional links. Removing cycles with the procedure described results in the network shown on the right. 
This is the subnetwork that will be used to evaluate candidates. Gene B is kept as a parent to the gap (the link 
from the gap to B is removed), so the combined effect of A and B on the gap can be measured. Similarly, D is 
kept as a parent to C (the link from C to D is removed), so the combined effect of D with the gap on C can be 
measured.  
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Given the ideas above, the procedure described for DAGs to determine the network neighbourhood of 
a given gap G can then be modified into the following: 
 
- The set of all parents of G, including all genes with a local loop with G.   
- The set of children of G, excluding any gene with a local loop with G.  
- The set of parents of children of G, including all genes with a bidirectional link with one of these 

children. 
 
The network neighbourhood for the gap consists of the genes thus gathered and the set of 
connections between these genes. Then, any local loops in the neighbourhood are eliminated by 
keeping only one of the links as follows:  
 
- A local loop between a gene and the gap, keep the link from the gene to the gap. 
- Otherwise, a local loop between a gene that is not a child of the gap and a gene that is: keep the 

link from the gene to the child of the gap. 
- In all other cases, retain one of the links arbitrarily (although making sure not to create a local loop) 
 
This is illustrated in Figure 13. As before, if gaps other than the gap investigated are encountered in 
the neighbourhood, they are simply removed from it. The procedure described above produces a 
network without bidirectional links between genes, but does not guarantee that the graph is acyclic. 
The procedure results in a sufficient amount of gaps with an acyclic network for the purposes of this 
research and no further effort is made to solve these cycles. Thus, any cyclic networks that remain 
after removal of local loops are excluded from the experiments. 

2.9.1.3 Naive Bayes 
 
With the previous methods for determining the subnetworks, care was taken to preserve the structural 
information contained in the supplied network. Here, a rather different approach is followed. The genes 
involved in the subnetwork are determined as described earlier for cyclic networks, but the structural 
information present in the supplied network is largely ignored and the gap is simply made parent to all 
the genes in the subnetwork. This in fact represents the assumption that all genes in the 
neighbourhood of a gap are conditionally independent of each other given the candidate (the 
assumption of conditional independence is used in a supervised learning context in so called “naive 
Bayes classifiers”; see [Wiki – Naive Bayes] for an informal introduction). 
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Figure 14: “naive Bayes” approach for the evaluation of candidate genes for gaps for the network in Figure 13. 
The same genes are involved in the subnetwork as before, but the structural information in the known metabolic 
network is ignored and the gap is made parent to all the genes in the subnetwork. This corresponds to the 
assumption that all genes in the subnetwork are conditionally independent of each other given the candidate gene. 
The resulting subnetwork is always acyclic and each gene (except the gap) has exactly 1 parent, making the 
approach less demanding in resources than the previous approach. 
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The potential loss of information is obvious, but it is interesting to compare the performance of this 
method to the more “conservative” approaches described earlier. However, the approach is 

cyclic, 
s implicit.  Second, the maximum number of parents in the neighbourhood is 
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tware 
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it. The candidate set 

o 
 

 
he gene placement method is evaluated on a synthetic problem. GeneSim is 

microarray data for a self created network. GeneSim has already been 

 
a metabolic network for the Saccharomyces 

r this organism was compiled based on 
iological knowledge (Forster et al., 2003) and attempts are made to fill these using an available 

implemented for comparison purposes only. It is not the aim here to somehow determine the “best” 
naive subnetwork for a given gap; the same genes are used as before, while ignoring known 
connections.  
 
This simple approach has the following advantages: first, the resulting subnetwork is always a

s elimination of cycles ia
always 1, making the scheme less demanding in resources and requiring a relatively simple 
implementation (no complex network structure is needed). Using this strategy, it is in theory possible 
to tackle all the gaps in the supplied network given the implementation of Bayesian networks used in 
this research. 

2.9.2 Bayesian score 

The gene placement algorithm e
 given criterion. Given a gap G in the suppliea

placement algorithm ranks the list of candidate genes: the first gene in the list being the most likely 
candidate for the gap represented by G, and the last gene being the least likely candidate. In the 
Bayesian approach proposed here, the ordering is determined by a Bayesian metric which assigns a
score to each candidate indicating how likely it is that the data was generated by the network 
neighbourhood. 
 
The Bayesian metric used in this research is the BDe metric, as implemented in Banjo, the sof

ackage used in p
fill the gap and a dataset containing gene expression information for the genes in the network, Banjo 
computes the BDe score of the network. The score indicates how likely it is that the data was 
generated by the given network, and thus how likely it is that the gap should be filled by the candidate
Note that the standard search capabilities of Banjo are not used for this task as the network structure 
is already determined and only the score for the data is required for each of the available candidates. 
The BDe criterion is described in 2.4.1; details about Banjo are given in 2.5

2.9.3 Evaluation of performance through self-ranking 

The gene placement method is evaluated by applying the algorithm to known 
re created deliberately in the partially known network by removing genes from a

for filling the gap consists of (a subset of) the genes not comprised in the known partial network plus 
the gene being tested. The self-rank of a known gene is its rank in the candidate gene list ordered 
using the score of the candidate. The self-rank can range anywhere from 1 to the number of 
candidates. A self-rank of 1 indicates that the “correct” gene was determined to be the top candidate t
fill the gap. A perfect prediction algorithm would return a self-rank of 1 for every known gene, and a
random prediction would result in a uniform distribution from 1 to the number of candidates. The 
overall performance of the algorithm is quantified by calculating the fraction of well-ranked genes, i.e. 
the fraction of genes that rank among the top K candidates, where K is chosen according to the 
desired stringency (for example, 20% of the genes are ranked within the top 100 candidates). The self-
rank performance criterion is taken from Kharchenko et al (2004).  

2.9.4 GeneSim 

As a proof of concept, t
sed to generate synthetic u

described in detail in 2.2. 

2.9.5 Saccharomyces Cerevisiae 

The gene placement method is evaluated using 
erevisiae, a species of yeast. A partially known network foC

b
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microarray dataset (Hughes et al., 2000). The remainder is structured as follows: first, some 
background information on the organism is given. Then, the way the metabolic network was compile
is explained. Finally, a description of the microarray dataset is given. 

2.9.5.1 Background information 
 

d 
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cient times in baking and brewing (brewer’s yeast and 
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shares 
al 
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stablished by common metabolites, like ATP, are not likely to connect genes with similar metabolic 
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 generating a cyclic graph. In fact, the 

 
 
 
 
                                                     

"Saccharomyces" derives from Greek, and 
means "of beer". It has been used since an
b
skins of grapes. It is one of the most intensively studied eukaryotic model organisms (cells with a 
nucleus) in molecular and cell biology, much like Escherichia coli as the model prokaryote (cells 
without nuclei). It is the micro-organism behind the most common type of fermentation. 
Saccharomyces Cerevisiae cells are round to ovoid, 5–10 micrometers in diameter. It reproduces by a 
division process known as budding (please see [Wiki - Yeast] for more details). 
 
Yeasts are interesting organisms for biologists to study. They are safe, easy and cheap to culture, and 
widely available. Although simple organisms, their study can provide information
p
involved in metabolism, biosynthesis, cell division, and other crucial areas of biology have come from 
the investigation of yeasts (Hunter 1993). According to [Wiki – Yeast], it is estimated that yeast 
about 23% of its genome with that of humans. As some of the most valuable methods in biologic
research are invasive, or require organisms to be killed, or require several generations of observation, 
or very large populations, much of this work is impractical or unethical to carry out on humans (Hunter 
1993). Yeasts can form an alternative, as the latter is less of a problem with these organisms.  
 

2.9.5.2 Metabolic Network  
 
The genetic network for yeast used i
curated metabolic network model of 
fo
nodes: 581 nodes representing known genes and 204 nodes representing gaps or “missing” genes.
The network contains a total of 5122 connections, each corresponding to dependencies established 
by metabolic reactions.  
 
Dependencies between genes were established according to the following definition: a gene X is a 
parent of (regulates) Y if 
 
(1) Produced by a reaction catalyzed by the product of gene X and  
(2) Consumed by a reaction catalyzed by the product of gene Y. 
 
Genes comprised in the metabolic network are in the remainder refe
genes”.  While any metabolite can be used to deduce dependenc
e
functions. In building a global metabolic dependency graph all metabolites were considered, exclu
the following highly connected metabolites: ATP, ADP, AMP, CO2, CoA, glutamate, H, NAD, NADH, 
NADP, NADPH, NH3, orthophosphate and pyrophosphate.  
 
Note that although for the Bayesian gene placement scheme a directed acyclic graph is required, the 
definition used to establish dependencies does not guard from

 
1 Assistant professor,  Bioinformatics Laboratory 
Department of Clinical Epidemiology, Biostatistics and Bioinformatics 
Academic Medical Center, University of Amsterdam 
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network generated for Saccharomyces Cerevisiae contains many cycles, often caused by connections
going back and forth between two genes.  

2.9.5.3 Microarray dataset 

 

gene expression information to measure how well candidates 
t a given gap. The microarray dataset used in this research is known as Rosetta’s ‘compendium’ 
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.10 Results 
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f of co acement method is first assessed 
sing a relatively simple synthetic problem before it is applied to the more complex ‘real world’ data. 

e 

e of the gene placement algorithm, 
e self-rank of each the 20 genes in the known network was determined using datasets of different 

the placement algorithm improves with increasing 
umber of samples. Using 50 samples, the algorithm replaced 13 genes out of 20 perfectly (i.e. the 

8 

 
The gene placement algorithm relies on 
fi
dataset (Hughes et al., 2000). This dataset measures 300 expression profiles of 6207 genes. The 300 
samples were obtained across 287 deletions and 13 chemical perturbations. The data is ‘static’, i.e
does not represent a time series.  

2.9.6 Discretization meth
 
Microarray measurements used (both synth
B
have to be discretized before they can be presented to the Bayesian algorithm. In this research
discretization schemes are used: interval discretization, quantile discretization, K-means and a 
statistically motivated method. Each of these methods is described briefly below: 
 
• With interval discretization, measurements for a given variable are divided into

• With quantile discretization, the values for variables are divided in a number of bins, thereby 
making sure that each bin contains the same amo

• The third method used in this research is the so called K-means method. The K-means algori
divides the data into K discrete categories, thereby attempting to find the c
clusters in the data by minimizing the total variance within each category. Berlo et al (2003) 
applied this scheme within the context of learning biological networks from data. 
Finally, the fourth discretization scheme is a statistically motivated method taken from Friedm
al (2000). Values are discretized into 3 categories: under-expressed, normal, and
depending on whether the expression level is significantly lower than, similar to, or greater than a 
control value (here, the average expression value across experiments). Values with ratio to control
lower than 2-0.5 are considered under-expressed, and values higher than 20.5 are considered over-
expressed.  

 first two sche
th
 

2

2.10.1 Ex
 
As a proo ncept, the performance of the Bayesian gene pl
u
Using GeneSim, datasets of various sizes are sampled from the network depicted in Figure 15. Th
network consists of a total of 50 genes of which 30 are independent. All connections in the network 
have strength 0.2. Data was sampled at a rate of 5, and discretized into 3 intervals of equal width 
using Banjo (these are the same settings that were used in part 1).  
 
To determine the influence of the quantity of data on the performanc
th
size. Each gene was ranked against 31 candidates: the 30 genes not in the network and the gene 
being ranked. Results are shown in Table 10.  
 
These results show that overall performance of 
n
self-rank obtained was 1). This number increases with sample size and when using 300 samples, 1
genes are replaced perfectly. 
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Figure 15: tal of 50 
genes of which 30 are independent (not displayed).  All connections in the network have strength 0.2. he 

Number of samples in dataset 

network used with GeneSim in the synthetic data experiments. The network consists of a to
 T

network is used to evaluate the Bayesian gene placement method by determining the self-rank of each of the 
genes. 

 
 
 
 50 100 300 1000 5000 
Top1  13 16 19 18 18 
Top 5 17 17 18 20 20 
Top 10 18 18 18 20 20 
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datasets of various size (50, 100, 300, 1000 and 5000 samples).  

 
In Table 11, results for individual genes are presented. For 
th
the hardest to replace. Of the 7 genes “misplaced” when using 50 samples, only genes 3 and 4 have a
parent and their self-rank is almost perfect. When using 100 samples or more, only genes without 
parents are not replaced perfectly. This is consistent with the results in part I, where it was shown that 
more samples were required to recover connections from a gene without a parent. It is at least 
remarkable to see that genes with multiple parents (like genes 6, 9 and 10) are found using 50 
samples only. In part I, hundreds of samples were needed to recover this kind of structure comp
from scratch.  
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 Number of samples in dataset 
Gene 50 100 300 1000 5000 
1 10     
2 21 5    
3 2     
4 2     
5 4 25 8 1 1 1  
8 5 8 5   1 3 2
19  31 17    
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 that these particular examples were selected as illustrations here because they can 
e displayed conveniently. Many networks however, consist of more genes and can contain many 

 of th erim with e
fo

tw h
s (

ow

Genes are ranked against 31 candidates (the 30 independent variables and the gene itself). Only the ranks for 
genes that were not replaced perfectly by the algorithm are displayed (i.e. only the genes with a self-rank other 
than 1).  

2.10.2 
 
In this sec esults for self-rank experiments inv
d
selection of genes for the self-rank experiments is first described. Then, to provide an impression of 
the subnetworks involved in the evaluation of candidates, examples of subnetworks for self-made 
gaps are given. Then, a reasonable discretization method is selected experimentally for the problem 
hand by determining the self-rank of a small number of genes using a number of discretization 
techniques. Finally, the self-rank of the selected genes is determined using the supplied structure and 
the naive method. 

2.10.2.1 Se
 
A selection of known metabolic genes is made as follow
k
methods section (see 2.9.1.2). Any gene for which the subnetwork is still cyclic after the removal of
bidirectional connections or contains one or more genes with more than 10 parents is removed from 
the selection. In total, 233 known genes qualified on the parent count.  Of these, 194 genes had an 
acyclic subnetwork after removal of bidirectional links. This represents a little more than 33% of the 
total number of genes in the known metabolic network, enough to provide a good impression of the 
performance of the gene placement approach proposed. 

2.10.2.2 Examples of subnetworks 
 
To give the er an impression of the subnetwork
e
and GraphViz, as described earlier in the methods section (see 2.5.2). The names of the genes are 
not given; the numbers correspond to the internal references used by Banjo to output networks. The 
question mark denotes the gap under investigation (the mark was added by hand and is not part of 
Banjo’s output). 
 
It should be noted
b
connections between genes, making them hardly suitable for display.  
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Figure 16: example subnetwork for yeast, consisting of 10 genes including the gap.  

In this case, the gap has 6 co-parents to gene number 2. 

 
 
 

 

Figure 17:  example subnetwork for yeast, consisting of 8 genes including the gap 

 

2.10.2.3 Experiments with discretization 
 
Before the score of any given candidate can be computed by Banjo, the continuous expression data 
needs to be discretized into a number of categories. It is however a priori not clear which discretization 
method and the number of bins are most appropriate for the particular problem at hand. Here, a 
reasonable discretization method is selected experimentally by determining the self-rank of 10 genes 
selected randomly from the set of 194 genes against a set of 500 candidates (out of the possible 5626) 
using the following four discretization schemes: interval, quantile, K-means and a statistically 
motivated method followed by Friedman, as described in the methods section. As stated before, the 
first two schemes are implemented in Banjo. The latter two were implemented for the purpose of these 
experiments. Results of these experiments are presented below. 
 
For comparison purposes, a random gene placement method would on average result in 1 gene 
ranked in the top 50 and 5 genes in the top 250.   
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It can be seen from Table 12 that interval discretization does not perform any better than a random 
placement method. With interval discretization, none of the 10 genes is ranked within the top 50. 
Results seem to get worse as the number of used bins grows. Using quantile discretization, the 
Bayesian placement algorithm does perform better than a random placement strategy. Best results are 
obtained using 3 bins, yielding 4 genes being placed within the top 20, and 7 in the top 250.  Table 14 
shows the results obtained with K-means. Using 4 bins, it seems to perform as well as with quantiles.  
As performance seems to improve with the number of bins, this method is also investigated using 5 
bins, but this resulted in a drop in performance. 
 
 

Rank 2 bins 3 bins 4 bins
<=10 0 0 0
<=20 0 0 0
<=50 0 0 0

<=100 2 0 1
<=250 5 3 4

Table 12: results using interval discretization 

 
Rank 2 bins 3 bins 4 bins
<=10 2 3 2
<=20 2 4 3
<=50 4 4 3

<=100 4 4 4
<=250 6 7 6

Table 13: results using quantile discretization 

 
Rank 2 bins 3 bins 4 bins 5 bins
<=10 0 0 2 2
<=20 0 0 2 2
<=50 1 2 2 2

<=100 2 2 3 2
<=250 5 5 7 4

Table 14: results obtained using K-means discretization 

 
Rank 3 bins
<=10 2
<=20 2
<=50 2

<=100 3
<=250 4

Table 15: results obtained using the  
statistically motivated method. 

 
Concluding, quantile and K-means perform best. It seems that K-means with 4 bins is competitive to 
the quantile scheme with 3 bins. However, with quantiles, more genes are ranked better: 4 genes are 
found in the top 20, versus only 2 using K-means. These results indicate that quantile discretization in 
3 bins seems to be a reasonable method to discretize the data and this method will therefore be used 
to conduct the remainder of the experiments. 
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2.10.2.4 Self-rank of known metabolic genes 
 
The Bayesian gene placement method is evaluated by determining the self-rank of each of the 
selected metabolic yeast genes. Based on the results of the experiments with discretization, quantile 
discretization is used to discretize the data into 3 bins. For practical reasons, not all the genes are 
ranked against all the 5626 candidates available, rather it is determined which genes can be ranked 
within the top 100 by the gene placement algorithm. This is done by first computing the score of the 
removed gene itself and then evaluating candidates for the gap until at least 100 candidates with a 
better score are found or there are no more candidates left. This scheme greatly reduces computing 
time. Results are presented in Table 16 and Figure 18. 
 

 Supplied structure Naive Bayesian Random 
Self-Rank Number of 

genes 
 Percentage  of 
genes  

Number of 
genes 

 Percentage  of 
genes  

Percentage of 
genes 

Top 1 1 0.52 5 2.6 0.02 
Top 5 3 1.55 7 3.6 0.09 
Top10 11 5.67 15 7.7 0.18 
Top 20 18 9.28 25 12.9 0.36 
Top 50 30 15.46 36 18.5 0.89 
Top 100 38 19.59 47 24.2 1.78 
* 194 100 194 100 100 

Table 16:  Validation of known metabolic yeast genes. The table shows the distribution of self-ranks for the 194 
genes selected from the known metabolic network, as predicted by the algorithm. Data was discretized using 
quantile discretization into 3 bins. For comparison, the right column shows the results that can be expected for a 
random gene replacement method. 
 

0
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Top 1 Top 5 Top10 Top 20 Top 50 Top 100

Supplied Naive Random placement

 
Figure 18: Percentage of known yeast genes that were ranked within given thresholds for different placement 
methods, using the structure in the supplied metabolic network and naive ranking. For comparison, results that 
would be obtained using a random placement strategy are shown as well. 
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2.11 Conclusions & discussion 
 
A strategy for evaluating candidates for filling gaps in a partially known network was described. The 
Bayesian gene placement algorithm is designed to evaluate candidate genes for a particular gap. 
Given a gap in the supplied network, a set of candidate genes, and gene expression information, the 
placement algorithm ranks the list of candidate genes: the first gene in the list being the most probable 
candidate for the gap, and the last gene being the least probable candidate. The ordering is 
determined by a Bayesian metric which assigns a score to each candidate indicating how likely it is 
that the data was generated by the supplied network neighbourhood.  
 
To demonstrate its viability, the Bayesian gene placement method was first evaluated on a relatively 
small synthetic network simulated using GeneSim, with datasets of different size. The results showed 
that overall performance of the method increases with the number of samples, as the number of genes 
replaced perfectly grew with sample size. It was shown that - in GeneSim - genes without regulators 
were the hardest to replace. Genes with multiple regulators however, were replaced using 50 samples. 
In contrast, in part 1, hundreds of samples were needed to recover structures with multiple parents 
from scratch. Although these figures are comparative, they suggest that data requirements for 
completing biological pathways are considerably lower than when learning networks from scratch 
using gene expression values only. This is an encouraging result, as generally, microarray datasets 
tend to be small.  
 
The method was also evaluated on a known problem involving a yeast (Saccharomyces Cerevisiae) 
network. It was shown that discretization is a critical factor on the performance in self-rank 
experiments. The following four methods were examined: interval discretization, quantile discretization, 
k-means and a statistically motivated method. Worse than random results were obtained using interval 
discretization, while best results were obtained using quantile discretization with 3 bins. These results 
show that discretization has to be chosen with care before attempting to fill gaps with the Bayesian 
networks approach. A suitable discretization method could be selected using self-rank experiments on 
known genes before trying to fill real gaps, as was done in this research. 
 
Two different methods for determining the network neighbourhood were tested on a third of the genes 
in the supplied yeast network. Using the structure of the network neighbourhood given in the supplied 
network, 15% of the genes were predicted within the top 50, and 19% within the top 100 (out of 5626 
possible candidates). Using the naive approach, ignoring the relations given in the supplied network 
and assuming conditional independence between genes given a candidate, 18% of the genes were 
predicted within the top 50 and 24% within the top 100. It is interesting to see that the naive approach 
performed better in spite the far-reaching simplifying assumptions of conditional independence. An 
explanation for this could be that the dataset used is too small to justify the relatively complex structure 
of the supplied subnetworks; with subnetworks containing genes with many parents, it is possible to 
overfit or ‘explain away’ the data. With the much simpler structure of the naive subnetworks, this is 
less likely.  
 
Although results are reasonable for a first attempt with Banjo ‘out of the box’, neither Bayesian gene 
placement methods performed better than Kharchenko et al (2004), as they claim that their method  
ranked more than 20% of the genes within the top 50. No clear reason can be given for this, and a 
number of issues render an exact comparison difficult. Slightly different metabolic networks were used 
in the studies. As mentioned before, Kharchenko et al (2004) use a representation for networks with 
undirected edges. Perhaps this representation is more suited for the problem at hand, recalling that 
many links in the Bayesian network used in this study were bidirectional. Further, experiments in this 
study were conducted on a limited number of genes, whereas Kharchenko et al (2004) used all genes 
in the known metabolic network. Although it is felt that the selection of genes was large enough to give 
a good idea of the performance of the Bayesian gene placement method, it is of course possible that 
different selections of genes would yield different impressions of the performance.  
 
However, no definitive conclusions can be drawn about Bayesian networks and the missing genes 
problem in general based on the experiments presented in this thesis. Several factors could affect 
results, for example implementation details of the approach used, the way the metabolic network was 
prepared, or the particular organism studied. It was not possible to investigate the impact of all these 
factors within this thesis, but some of these are briefly reviewed in the following. 
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All missing genes experiments were carried out with a standard implementation of Bayesian networks, 
without any modifications to the algorithm. One Bayesian metric, the Bde score, was used to rank 
candidates, and it is quite possible that different results could be obtained with other existing Bayesian 
metrics (see Heckerman (1996) for an overview of often used metrics). Also, for practical reasons, 
only gaps for which the subnetwork contained a limited number of parents per gene were investigated. 
Perhaps that including networks with a larger number of parents in the experiments would provide a 
different impression of the performance of the placement algorithm.  
 
Another important factor that could affect results is the way the metabolic network is prepared. Here, 
as described in the methods section, the network was built considering a single enzyme at a time as 
catalyst for a given reaction between metabolites. It is however conceivable that a combination of 
enzymes should be considered instead; perhaps some metabolites would react in a different way in 
the presence of several enzymes. This could yield a metabolic network which is quite different than the 
one used in this study (and possibly one which will be harder to model accurately with a naive Bayes 
approach). Another crucial step in the preparation of the network is the determination of the 
subnetwork around gaps. Here, the network contained many bidirectional links, and a strategy for 
removing these cycles had to be devised. Of course, the resulting network will depend on details of the 
particular scheme chosen. For instance, when building subnetworks using the approach described in 
2.9.1.2 “Dealing with cyclic networks”, it was decided that a gene with a bidirectional link with the gap 
was to be kept as a parent to the gap in the subnetwork. This seemed reasonable, but the gene could 
have been made a child to the gap instead (this applies to genes with a bidirectional links with the 
gap’s children as well). This would result in different subnetworks, and possibly, in different self-
rankings. 
 
Finally, in this thesis, attempts were made to complete genetic networks for one organism only. 
Although yeast is a model eukaryotic organism (with a lot in common with human beings), results 
cannot be generalized with certainty to other eukaryotic organisms. Good (or bad) performance of the 
gene placement algorithm in the completion of pathways for yeast does not necessarily imply that 
similar results on pathways for say human beings. As more knowledge is accumulated, and more 
genetic pathways are reconstructed, it will be interesting to see how the proposed Bayesian gene 
placement approach performs on other organisms.  
 
To conclude, it was shown in part 1 that when learning networks from scratch, the number of samples 
required for good recovery grows rapidly with the number of regulators per gene in the network. As 
datasets tend to be of small sample size in practice, it does not seem reasonable to expect to infer 
complex structures completely using gene expression values only. However, for the completion of 
nearly complete networks, the “missing genes” problem, results in this part of this thesis suggest that 
sample size requirements are reduced considerably. It seems that with the sample size of current 
datasets, Bayesian networks can be used to complete genetic networks with some success. 
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