
Projet de Master RO

2021-2022

Section de Microtechnique

Conditional imitation learning with pyramid
perception modules
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Abstract

In this thesis, we train a driving agent to predict waypoints directly from a forward-
facing camera, following the work done in Cheating by Segementation [1], itself inspired
by Learning by Cheating [2]. End-to-end learning lets the neural network find its own
representation of the environment, without restraining it to human-readable features. It
leads to models that are lighter and that could theoretically be closer to the optimal.
From traffic lights to vehicles, the model should be able to perceive objects of various sizes
in order to construct an accurate representation of the environment. The objective is to
change the network architecture in order to reduce the number of infractions made by the
agent.

We compare two approaches aiming at letting the network build a better representation.
(i) Using a Pyramid Pooling Module [3], we bring global context into the feature maps.
(ii) Using a Feature Pyramid Network [4], we fuse outputs coming from different layers
to obtain semantically strong and spatially accurate features. Both agents demonstrate a
lane keeping rate of more than 94% on the NoCrash [5] benchmark. The one relying on the
Feature Pyramid Network manages to have a number of traffic light infractions per hour
of 10.6 in test conditions, which is in the same range as state-of-the-art implementations
Learning by Cheating and Learning to drive from a world on rails [6].
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Chapter 1

Introduction

Driving assistance has taken a considerable spot in everyday driving since the introduction
of the anti-lock blocking system (ABS) by Bosch in 1980. From rear sensors signaling ob-
stacles to adaptive cruise control maintaining a constant speed, relying on these assistance
systems has become common.

Since the mid 2010’s, several manufacturers propose self-driving cars that technically
enable their driver to let go of the vehicle commands, although for legal reasons the driver
is still required to have their hands on the steering wheel. In 2021, Honda in Japan and
Mercedes in Germany received the authorization to deploy a vehicle where the driver is
allowed to let the car drive itself, as long as they do not exceed a speed of 60km/h and are
able to take back control if needed.

Self-driving vehicles currently available in the industry are based on a modular ap-
proach, where perception, planning and control are separated from one another. In the
past decade, the use of convolutional neural networks (CNN) has exploded, thanks to the
increased power of computers. It is now widely used for perception tasks, as it enables to
learn a model capable of recognizing objects from a large amount of annotated images.

Besides, it has opened the door to end-to-end learning, an alternative to the modular
method [7]. In the case of autonomous cars, it consists in proposing control commands
directly from a sensory input, letting the network learn the intermediate features. Thus,
these learned features are not human-readable and there is no longer the need to define
explicit rules for every situation the vehicle might encounter. There is also no need to
build a model of the environment.

Imitation learning is, alongside the emerging reinforcement learning approach, the main
method to perform end-to-end learning for autonomous cars. It consists in training a model
to reproduce the actions an expert would have performed if presented to the same situation.

Many models rely on data collected by a human driver [8], however driving simulators
such as Car Learning to Act (CARLA) [9] are more and more used as they are getting very
realistic. Most importantly, a simulator allows to put the autopilot in challenging situa-
tions, thereby showing the neural network how to recover without putting anyone at risk.
Secondly, it enables to have scenarios where other cars and pedestrians are disrespecting
traffic rules, which is important in order to learn a robust policy.
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Figure 1.1: Illustration of CARLA simulator, widely used for autonomous driving [5]

The sensory input consists in almost every implementation of at least a RGB camera,
as it is the only sensor that enables to distinguish the traffic light state, while providing
also enough information to the network about the environment. Some works use additional
sensors such as depth camera [10] or LiDAR [11], relying for instance on transformers [12]
to smartly fuse the different inputs together.

Nonetheless, [5] managed to have competitive results using only a RGB image from
a driver point of view as input. This could allow to easily collect data using existing
cars driven by everyday commuters, to perfect a model pre-trained on a simulator to the
particular driving environment of a country.

Cheating by Segmentation (CBS) [1], modified Learning by Cheating (LBC) [2], one of
the best performing driving policy on CARLA simulator, to rely only on images coming
from a driver perspective instead of a bird’s-eye view (BEV). It lead to promising results,
however the number of collisions and traffic lights infractions increased.

Thus, this thesis pursues the goal of generating a robust end-to-end imitation learning
driving policy using RGB and semantically segmented images from a driver perspective as
only inputs. The focus is on reducing the number of traffic light infractions and collisions.
In order to do this, we rely on pyramid perception modules that are described in the
following section.

7



Chapter 2

Theory

In this section, the methods and theoretical concepts that are essential to this thesis are
introduced.

2.1 Conditional imitation learning

Imitation learning is an end-to-end method, which means that, in the case of autonomous
driving, it maps observations inputs directly into vehicle commands [5]. There is no longer
separate modules for sub-tasks that are find in decomposed learning such as path planning
or obstacle avoidance. This has the advantage of not constraining the model to human-
readable features and rules, which are rarely exhaustive and not necessary for the computer.
Besides, the dataset is easily collectable, as it consists only of sensory inputs and measured
vehicle commands.

However, complex functions are required to map sensory inputs to vehicle commands,
therefore the network must have a high capacity to learn a model capable of performing
this mapping. In addition, it is much harder for its developers to examine the reasons
that lead the model to a specific output, as there is no intermediate representation or
classification made that could be used to check the correct behaviour of the model.

Imitation learning relies on demonstrations by a driver, which can be a person in
the real-world or the autopilot of a simulator, referred as ”expert”. These demonstrations
enable to construct a dataset made of sensory inputs (such as RGB image or LiDAR scan),
vehicle commands (steering angle, throttle, brake) and vehicle state (position, orientation,
speed). The network tries to learn a model which, given the same inputs as the expert,
outputs similar vehicle commands and thereby learns to imitate the expert.

Conditional imitation learning (CIL) addresses an issue that is characteristic of imita-
tion learning: given a same environment and its associated observations, an expert can take
different actions from one run to another. This is often the case in driving when the car
arrives at a crossing: there is no wrong direction to take, it depends only on the intentions
of the driver. Therefore, for the network to learn correctly, it is important to include them
in the model. Such intentions can take the form of a directional command, for instance
”turn left” or ”go straight”. This allows to use multiple identical heads in the network,
that are trained exclusively with data corresponding to their associated command. The
resulting agent selects the action predicted by the head associated to the provided current
intention of the driver.
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2.2 Knowledge distillation

An important quality for a model is to be able to generalize well on never seen before data.
This requires to be trained on large datasets and using a rather complex network, especially
when performing end-to-end learning. Therefore, the resulting model is often too heavy to
be run in real-time. There come into use knowledge distillation, often implemented in the
form of a teacher-student network.

This method consists in training two models with different networks instead of one.
First, a heavy network is trained offline on large datasets. It is called the ”teacher”. Once
trained, it supervises a lighter network, the ”student”, on a common output. The resulting
student model is the one that is actually deployed.

The teacher-student method can also be used to decompose the learning of a task into
two stages. They must have a common output so that the teacher is able to supervise the
student. In this approach, the student network is not necessarily lighter than the teacher.

2.3 Perception

2.3.1 Convolutional neural network

A convolutional neural network (CNN) is a neural network especially adapted for images.
It takes as input a set of images, each expressed as a matrix of pixels, and assembled
into a unique tensor of size (number of images, height, width, number of channels). A
CNN consists of a sequence of convolutional layers that have their own set of kernels.
These kernels have the same number of channels as the input images but a smaller spatial
dimension. Convolution is performed by sliding the kernel over the input. Each kernel
produces a single-channel neuron output that represents the presence of a particular feature
in the image. This process has the advantage of preserving the spatial dependencies in the
image.

Then, it goes through an activation function, which role is to introduce non-linearities
in these neurons outputs, thus making it possible for the network to learn more complex
models. The output of the activation function is called an activation map. The activation
map obtained by each kernel of a convolutional layer are stacked together and passed to
the next layer. Layer after layer, the features gain in semantic level. Pooling operations
can be introduced between layers to reduce the dimensions of the activation maps and at
the same time avoid an overfit of the exact location of a feature. It consists in separately
dividing each activation map into a grid and keeping for each cell its maximum or average
value.

2.3.2 Residual neural network

Residual neural network (ResNet) [13] is a CNN widely used as a feature extractor, that
has the particularity to use skip connections, which consists in adding the output of the
previous convolutional layer to the next one, just before the activation function. The
idea behind this comes from the observation that both the training and testing error of a
network with 56 layers are higher than with only 20 layers.
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We might assume that the deeper model could simply learn the same features as the
lighter network in the first 20 layers and then learn an identity mapping so that its training
error is not greater. As it failed to do so, reformulating the mapping to solve by adding
the contribution of the last layer makes the identity mapping much easier to approach for
the solver, as it now corresponds to weights of zero.

2.3.3 Receptive field

The receptive field (RF) of a layer in a CNN is the size of the region in the input image
that has an influence on the neuron output. Thus, the RF is the same for all neurons
in a given layer. The RF increases after each convolutional layer added to the network,
and depends on the size of the kernels used to perform the convolution. This concept is
illustrated in Figure 2.1.

Figure 2.1: Illustration of the receptive field in a CNN [14]

Small objects can be perceived in early layers already, whereas larger objects need a
bigger receptive field and often more complex features. However, to properly detect small
objects, context information about its surroundings is also needed.

In the case of traffic lights, early layers of the feature extractor backbone are able to
determine the state (color) and location of a traffic light, but might mistake a rear car
light for a traffic light due to the small receptive field resulting in a lack of information
about its wider environment [15].

One thing to note as well is the difference between the theoretical receptive field de-
scribed briefly above and the effective receptive field (ERF) which measures the importance
that each of the pixels within the receptive field have on the neuron output. It has been
shown in [16] that it follows a Gaussian law in most of the cases, where the pixels at the
center of the receptive field have more impact than the outer ones. Besides, in contrast to
the theoretical RF, the ERF decreases after each convolutional layer, as it gives more and
more importance to the central pixels.

2.3.4 Pyramid Scene Parsing Network

Pyramid Scene Parsing Network (PSPNet) [3] was introduced in 2017 and aim to increase
the effective receptive field and add context to the final feature maps of a feature extractor
backbone such as ResNet. The heart of the PSPNet is the Pyramid Pooling Module
(PPM), illustrated in Figure 2.2. For different scales, adaptive average pooling is applied
on these feature maps, followed by an up-sampling step to bring them back to their original
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dimensions. Then, the newly obtained maps are concatenated to the original ones. This
provides for each pixel multiple level of context: from global context (whole image) to local
context (small sub-region around the pixel). In other words, by looking at all the feature
maps at a same specific location, information about features concerning the pixels outside
its receptive field is also provided.

Figure 2.2: Architecture of a Pyramid Pooling Module [3]. Average pooling is performed on
each of the backbone feature maps at different scales: from global pooling (in red), to a small
sub-region pooling (in green).

2.3.5 Feature Pyramid Network

Feature Pyramid Network (FPN) [4], also introduced in 2017, is quite similar to PSPNet.
However, its outputted feature maps are coming from different layers, not only the last one.
They are obtained by concatenating the intermediate feature maps of one layer with the
up-sampled feature maps of the next layer. Thus, combining the good spatial resolution of
the earliest layers with the higher semantic level in the features of the latest. This enables
to include more complex features in spatially more accurate maps, as well as considering
small objects that would not have been detected with the feature maps of the latest layer
only. The architecture is presented in Figure 2.3.

Figure 2.3: Architecture of a Feature Pyramid Network [4]
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Chapter 3

Related work

The main concepts used for this thesis having been presented, we propose now an overview
of the latest state-of-the-art and related previous work aiming to train in a end-to-end
fashion an autonomous agent to drive using CARLA simulator.

3.1 Conditional imitation learning

3.1.1 Learning by Cheating

Learning by Cheating (LBC) [2] proposes a novel way of training an agent to learn a robust
driving policy. It separates the learning process in two: learning to act, and learning to
perceive using a teacher-student network approach.

1. A privileged agent (teacher) that has access to a ground truth 192x192x7 bird’s-
eye view (BEV) semantically segmented image (and thus does not need to learn
perception but only to act) is trained offline with the supervision of a dataset of
expert trajectories.

2. A sensorimotor agent (student) that has only access to a standard forward-facing
384x160x3 RGB picture is trained offline and online, with the supervison of the
teacher. The learned student policy thus does not need any privileged information
and is end-to-end.

Both the teacher and student agents have multiple prediction heads connected to the
backbone, which outputs for each of the possible directional command (turn left, turn right,
go straight, follow lane) heatmaps that are converted into waypoints using a soft-argmax
operation. These waypoints are then converted to vehicle commands by a PID controller.

The dataset of expert trajectories is collected directly in the simulator using an agent
based on CARLA autopilot. It collects both the BEV semantically segmented image and
the forward facing RGB image. Data augmentation is performed by rotating the BEV
to simulate steering noise. Multiple driving episodes are gathred in different traffic and
weather conditions.

Having the teacher in between the expert and the student enables to train it for all
possible commands at once and to have a supervision for any state of the environment, and
not only the one shown by the expert. The teacher uses a randomly initialized ResNet18
backbone while the student uses a ResNet34 pre-trained on ImageNet.
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When the paper was published in the end of 2019, it reduced the number of traffic
lights infractions and collisions by an order of magnitude, compared to the state-of-the
art on the CARLA simulator at the time, Exploring the limitations of behavior cloning for
autonomous driving [5].

3.1.2 Cheating by Segmentation

Although the student of LBC could be transferred to the real-world without too much
difficulties according to the authors, the teacher used to train it relies on the ground-
truth BEV semantic segmentation image which could be difficult and expensive to gather.
Cheating by Segmentation (CBS) [1] addresses this by replacing it by a 120deg field-of-
view forward-facing camera. This would enable to use pre-existing large datasets such as
Waymo [17] to train the student.

CBS gives promising results, but has difficulty anticipating braking actions, which
results in a much higher amount of collisions and traffic light infractions than LBC on the
NoCrash [5] benchmark. According to its author, it could be a consequence of the change of
perspective in the segmentation camera from BEV to forward facing: close objects appear
bigger which results in a shorter-term behaviour.

3.2 Reinforcement learning

3.2.1 World on rails

Learning to drive from a world on rails (WOR), published in 2021 by the same authors
as LBC, proposes a model-based reinforcement learning method. It relies on a model of
the ego-vehicle, which enables to simulate the outcome of the agent’s actions. This model
is learned by training a network to predict the next agent’s state (location, orientation,
speed) given its initial state and an action (steer, throttle, brake). This is done using
pre-recorded driving logs from CARLA.

The main assumption of the paper is that the world is on rails, meaning that the agent
has no influence on its environment. Consequently, the latter does not depend on the
agent’s state or actions which means the initial world state determines the entire sequence
of world states. As the agent is unable to change this sequence, the state transitions for
the world are simply the ordered sequence of pre-recorded world states from the driving
logs.

The model of the ego-vehicle (and the known sequence of world states) are used along-
side a reward function to compute the Q-value, Qt(s, a), for all possible combination of
agent state s and action a at timestep t. The Q-value is the reward received for taking
a given action in the current state plus the discounted estimated optimal return on the
long term that it will get in the state it ends up in. It is called discounted, because it is
weighted by a factor ∈ [0, 1] to ponder it depending on how much it should care about
future rewards. It is computed for each directional command.

The reward function is designed in a way to encourage the vehicle to stay within the
target lane as well as to stop for a pedestrian or a traffic light, and is penalized otherwise.
It once again relies on the information provided by the driving logs.
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Finally, the Q-value table is used to supervise a visuomotor agent that takes a RGB
image and the vehicle speed as input. The RGB image is fed to a feature extractor,
flattened, concatenated with the speed and fed to fully connected layers. It is supervised
on all directional commands.

The learned policy performs better than LBC, which was in the meantime established as
the state-of-the-art on the NoCrash benchmark. Besides, it is able to learn to perform safe
actions directly, whereas in imitation learning it is needed to show mistakes and recoveries.

In addition, it is more data efficient than model-free reinforcement learning approaches
as it does not require to actually perform all actions thanks to the ego-vehicle model and
the Q-value table.
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Chapter 4

Approach

The approach taken in this thesis uses as starting point CBS: a teacher learns to drive
from a dataset of forward-facing semantically segmented images and predicts waypoints in
the image frame. It then supervises a student, that has the same image perspective as the
teacher but with an RGB image input. Finally, the learned student model is used alone
in the environment and its predicted waypoints are converted by a controller into vehicle
commands.

In this thesis, the goal is to modify the student network architecture using two pyramid
perception modules, PPM and FPN, previously presented in respectively Section 2.3.4 and
2.3.5. Besides, we bring the number of categories provided by the semantically segmented
images from 13 to 5, keeping only the most important ones, which will be described in this
chapter.

4.1 Environment

This work uses CARLA simulator, which provides a realistic driving environment and
proposes various town models as well as multiple weather conditions. Besides, a wide
range of sensors is available to integrate into the agent’s vehicle. It is also possible to set
the traffic conditions, such as the number of cars or pedestrians.

4.2 Data

4.2.1 Collection

The dataset consists in multiple driving episodes gathered by deploying a collector agent
in the simulator. The agent is based on the one implemented in WOR and is given a set
of waypoints to reach in a given CARLA town. Rewards are attributed to the agent for
attaining these waypoints and for braking at red traffic lights as well as for pedestrians
and cars.

Information about the agent’s surroundings is based on the semantically segmented
BEV retrieved from the simulator. For example, attributing a non-zero reward for braking
for a pedestrian is possible only if the latter is visible in the BEV. The BEV is centered on
the ego-vehicle and has a range of 32 meters in each cardinal direction. Finally, the agent
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performs the action that maximize the Q-value, in order to optimize its return on the long
term.

The dataset collected for this work is created by gathering at each timestep the following
information:

• Ego-vehicle absolute world pose: pos: {x,y,z} [coordinates], rot: {pitch, yaw, roll}
[deg]

• Ego-vehicle directional command: cmd ∈ {1:Left, 2:Right, 3:Straight, 4:LaneFollow}
• Ego-vehicle forward speed: spd [m/s]

• Camera absolute world pose: cam pos: {x,y,z} [coordinates], cam rot: {pitch, yaw,
roll} [deg]

• Semantically segmented image: SSI (384x160x5, 120deg fov)

• RGB image: RGB (384x160x3, 120deg fov)

• Bird’s eye-view map: BEV (96x96x12)

• Relevant traffic light state: RTLS ∈ {0:Green, 1:Yellow/Red}

The BEV is used only to compute the rewards for the collector agent. The semantically
segmented and RGB images are used to train respectively the teacher and the student.
The 5 channels of the semantically segmented image are the following (in parenthesis is
given the corresponding CARLA label).

1. Pedestrian (#4)

2. RoadLine (#6)

3. Road (#7)

4. Vehicles (#10)

5. TrafficLight (#18) (post-processed)

Also, the TrafficLight channel of SSI does not encompass the state of the traffic light
(in contrast to the BEV used for training the teacher in LBC that has a separate channel
for each state). Therefore, CARLA built-in utility function is used to detect the relevant
red traffic light state RTLS from a chosen threshold distance (3 meters). It is post-processed
following CBS’s approach, presented in (4.1).

SSI[i, j,TrafficLight] =

{
SSI[i, j, TrafficLight], if RTLS = 1

0, otherwise
(4.1)

Thus, the resulting channel shows the location of all the lights in the vicinity of the
vehicle if the relevant traffic light is red. Otherwise, the channel is empty. The filtered
TrafficLight channel of SSI according to the traffic light state is illustrated in Figure 4.1.
This is a simplification made, since to have a proper red state channel, the locations of
the non-red traffic light should be filtered out. As this does not prevent the teacher from
learning correctly to stop, we keep this approximation.
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Figure 4.1: Left: post-processed TrafficLight channel of SSI according to (4.1). Right: corre-
sponding RGB image. As only one channel is used for traffic light information in the semantically
segmented image, their presence indicates to the vehicle that it must stop. Therefore, the traffic
light is masked when it turns green.

Besides, the following changes are made to the WOR collector agent in order to be
compatible with the CBS framework:

• Changing the camera position and resolution

• Adapting the order of the returned orientation angles from {roll, pitch, yaw} to
{pitch, yaw, roll}

• The collector agent starts to brake too soon for a traffic light compared to what is
needed for our implementation. Indeed, a non-zero reward for braking is attributed
as soon as it appears in BEV. Thus, we filter out the BEV channel corresponding to
the red traffic light using RTLS in the exact same way as done for SSI in (4.1). It is
then given as input for the Q-value computation. Therefore, a non-zero reward for
braking is now only possible if closer than 3 meters from the traffic light.

4.2.2 Ground truth waypoints

To compute the ground truth waypoints, which are used to supervise the teacher, the
approach taken in CBS is employed, which consists in sampling the ego-vehicle pose at
different timesteps:

Parameters:

• NSTEPS: Number of future waypoints to predict

• GAP : Gap between sampled timesteps

The recorded ego-vehicle trajectory is used to compute the ground truth waypoints: at
timestep t, NSTEPS waypoints are obtained by sampling the future position of the vehicle
every GAP timesteps. If the relevant traffic light is red and within the defined threshold
(RTLS = 1), all the waypoints are placed on the ground just in front of the vehicle and thus
lead to a stop. This is done by adding to the vehicle position an offset in the direction
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of its forward vector. This offset is found heuristically and depends on the height of the
camera.

Doing this enables to make it clear that the vehicle should stop when the light is red.
As the expert driver starts stopping when RTLS = 1, there are a few frames where it is
still moving. Also, the waypoints would otherwise anticipate a restart just before the light
turns green, which would mislead the network as there are no visual cues that the light
is about to change its state. The formula for the waypoints computation is presented in
(4.2).

wt,k =

{
pos[t] + 5.5 · [cos(rot.yaw), sin(rot.yaw), 0], if RTLS = 1

pos[t+ k ·GAP], otherwise
(4.2)

where k ∈ [0, NSTEPS - 1]

The waypoints are then converted to the image coordinate system with the help of the
camera pose. It can happen that some of them are not visible in the forward-facing camera
perspective, for instance just before a turn. In this case, the missing ones are found by
interpolation directly in the image frame. But if there are less than two waypoints available
and an interpolation is not possible, they are replaced by waypoints leading to a stop (as for
a red traffic light). Figure 4.2 shows the RGB image captured by the ego-vehicle’s forward
camera, with the ground truth waypoints overprinted, that is used for debugging purposes.
Figure 4.3 shows the situation where the ground truth waypoints are not computed from
the recorded vehicle trajectory but imposed to lead to a stop.

Figure 4.2: Ego-vehicle’s driver perspective RGB image used for debugging with ground truth
waypoints overprinted in blue. In yellow, from left to right: the relevant traffic light state (RTLS),
the forward speed (spd), the directional command (cmd), as well as the method used to generate
the waypoints are also displayed. In this case, it is ’InFrame’, which means that all waypoints
are already visible in the camera frame and there is no need for interpolation.
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Figure 4.3: As the traffic light is red, the waypoints are imposed to lead to a stop even though
the vehicle is still moving (spd=3.54). This allows to ease the task of the teacher network to
associate red traffic lights with a stop.

4.2.3 Augmentation

Data augmentation follows the approach of WOR. It is applied during data collection by:

• Adding Ornstein-Uhlenbeck (O.-U.) noise to the ego-vehicle steering wheel angle

• The weather conditions are constantly changing during the episode

The following augmentations are performed afterwards on the RGB image, each with
a probability of 20% and in a random order:

• Gaussian blur

• Additive Gaussian noise

• Pixel dropout

• Scaling

• Linear contrast

• Conversion to grayscale

• Elastic transformation (pixels moved around locally)

As we use imitation learning and not reinforcement learning, the agent cannot explore
at will and learn from it, but is restricted to the experiences of the expert. Therefore, the
latter has to show how to act correctly in an unusual situation. Adding noise to the expert
steering command demonstrates how to recover and get back to the desired trajectory.
However, adding to much noise can make the agent drive in zigzag, as shown in Figure
4.4. For this reason, the noise intensity is reduced compared to what is done in WOR.
The value is found heuristically by decreasing it until the shaky behaviour disappears.
Ornstein-Uhlenbeck process is Gaussian, therefore it can be defined by its amplitude θ,
mean µ and standard deviation σ.
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Figure 4.4: Ornstein-Uhlenbeck noise set with the initial WOR values {µ = 0, σ = 0.1, θ = 0.1}.
The trained agent learned to imitate the steering noise of the expert, and repeatedly goes into
the opposite lane. The noise must be reduced to avoid this behaviour but not too much to still
be able to learn to recover.

4.3 Network Architecture

This section presents the network architecture on which this thesis relies. The learning
process uses a teacher-student approach. The teacher is supervised by the ground truth
waypoints presented before and, once trained, is used to supervise a student. Figure 4.5
illustrates the whole framework. In the following sub-sections, the teacher and student are
presented in details.

Figure 4.5: Illustration of the network architecture. The teacher takes a semantically segmented
image as input, while the student gets an RGB image. Feature maps are obtained by passing it
through a feature extractor. They are concatenated with the speed and fed to one of the four
waypoint prediction heads according to the directional command. The teacher is supervised by
the ground truth waypoints and the student by the teacher’s. If a pyramid module (PPM or
FPN) is included, there are twice as much output feature maps.
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4.3.1 Teacher

The teacher architecture is unchanged from CBS. The network gets as input the forward
speed of the ego-vehicle spd and the forward-facing semantically segmented image SSI

representing roads, road lines, red traffic lights, cars and pedestrians. The image is fed
into a Resnet18 backbone and its output at the 4th layer, just before the fully connected
layers, is retrieved. It is then concatenated with a repeated version of the forward speed
spd and fed to one of the specialized waypoint prediction head, according to the directional
command cmd.

These prediction heads perform deconvolution to predict heatmaps that are converted
into waypoints in the image frame using a spatial arg-softmax. The model is supervised
by the ground truth waypoints coming from the dataset. The loss function is the mean
squared error (MSE) between the network predictions and the ground truth waypoints,
measured in a rescaled image space of [-1,1] x [-1,1]. Using the MSE instead of the L1
distance used previously helped successfully stopping at traffic lights. In such a situation,
the ground truth waypoints are just at the bottom of the image frame (as explained in
Section 4.2.2). Therefore, wrongfully predicting to follow the route results in a very high
loss. This change from L1 distance to MSE is mainly for the student: when trained on
the dataset described previously, it used to barely recognize any red traffic light. If the
teacher already managed to predict to stop for traffic lights with the L1 distance, having
the same loss function is more convenient to evaluate the learning process.

4.3.2 Student

The student uses the same framework as the teacher, except that it takes an RGB image
as input and uses a ResNet34 backbone instead of a ResNet18. It is supervised by the
waypoints predictions of the teacher. As mentioned before, the MSE between the two sets
of waypoints is used for the loss function, instead of the L1 distance as in CBS.

The main objective of this thesis is to improve the traffic light perception in the net-
work, without handling them separately, to keep the method end-to-end. Therefore, two
different additional modules are tested and integrated between the existing backbone and
waypoint prediction heads of the network. These modules have their implementation de-
tailed hereafter.

Pyramid Pooling Module

The PPM is the heart of the PSPNet introduced in Section 2.3.4 and performs adaptive
average pooling of feature maps at different scales, before up-sampling them and adding
them to the existing ones.

This module is integrated into the architecture by placing it after the ResNet34 back-
bone but before the concatenation with the ego-vehicle speed. It thus takes as input the
feature maps of the last ResNet34 convolutional layer. Figure 4.6 details its implementa-
tion, which corresponds to the illustration shown in Section 2.3.4. The bins chosen for the
adaptive average pooling are the one proposed by the authors [3].

Using PPM should provide a more robust representation of the image by fusing together
features from different sub-regions. Its authors have established its effectiveness against
mismatched relationships. In our case, a potential mismatched relationship would be to
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confound a car rear light for a red traffic light. If they look quite alike, they are disposed
in a very different context. They also demonstrated its ability to distinguish superposed
objects that have the same color. This could help noticing earlier an obstacle that blends
into the backgrounnd.

PPM
In: Last convolutional layer feature maps (ResNet34, layer 4) [512, I· 1

32
, I· 1

32
]

——————————————————–
For each of the N bins:

AdaptiveAvgPool2d(bin): [512, I· 1
32

, I· 1
32

] → [512, bin, bin]
Conv2d: [512, bin, bin] → [512/N, bin, bin]
BatchNorm2d
ReLU
Interpolation: [512/N, bin, bin] → [512/N, I· 1

32
, I· 1

32
]

Concatenation
——————————————————–
Out: [1024, I· 1

32
, I· 1

32
]

Where I represents the image dimensions.

Parameters
Bins: [1x1, 2x2, 3x3, 6x6]

Figure 4.6: Pyramid Pooling Module implementation and parameters

Feature Pyramid Network

The FPN, introduced in Section 2.3.5, takes as input the feature maps of each layer of
the backbone, in our case ResNet34. Thus, it gets feature maps with different numbers
of channels and dimensions. The first step is to convolve each of these inputs with fea-
ture maps out = 256 kernels of size (feature maps in x 1 x 1) in order to get for each
backbone layer the same amount of channels, while keeping their original dimensions.

Then, a top-down pathway, starting from the last layer enables to merge these layer
outputs together, using lateral connections. The last layer feature maps are up-sampled by
a factor 2, making them the same size as the ones of the previous layer and allowing them
to be merged together by element-wise addition. The result of the addition is convoluted
with a kernel of size 256x3x3 (and padding of 1), to counter the aliasing effect caused
by the up-sampling [18]. The result is then up-sampled again and merged with the layer
before, and so on until the first layer is reached. It results in a set of feature maps of
the same dimensions as the backbone intermediate layers outputs, but with richer features
thanks to the multi-scale merging.

To be able to integrate it to the existing student network without needing to change
it, we propose to add a down-sampling step so that each set of feature maps has the same
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dimensions as the last backbone convolutional layer. Finally, we concatenate them to end
up with a unique output of the same dimensions as PPM. The resulting architecture is
described in Figure 4.7 and illustrated in Figure 4.8.

FPN
In: Feature map from all ResNet34 backbone layers:

Ci: [ci, dimi, dimi]
C1: [64, I·1

4
, I·1

4
]

C2: [128, I·1
8
, I·1

8
]

C3: [256, I· 1
16

, I· 1
16

]
C4: [512, I· 1

32
, I· 1

32
]

——————————————————–

P4 = Conv2d(C4): [c4, dim4, dim4] → [256, dim4, dim4], k=(1, 1), s=(1, 1)

For i ∈ {3, 2, 1}:
A = Interpolation(Pi+1): [256, dimi, dimi] → [256, 2·dimi, 2·dimi]
B = Conv2d(Ci): [ci, dimi, dimi] → [256, dimi, dimi], k=(1, 1), s=(1, 1)
Pi = Conv2d(A

⊕
B): [256, dimi, dimi] → [256, dimi, dimi], k=(3, 3), s=(1, 1),

p=(1,1)

For each of the merged feature maps Pi:

Down-sampling: [256, dimi, dimi] → [256, dimi=4, dimi=4]

Concatenation
——————————————————–
Out: [1024, I· 1

32
, I· 1

32
]

Where I represents the image dimensions, k the kernel size, s the stride, p the
padding and

⊕
the element-wise addition.

Figure 4.7: Feature Pyramid Network implementation
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Figure 4.8: Illustration of the proposed Feature Pyramid Network architecture. An RGB image
is fed to the ResNet34 backbone. Feature maps are extracted at every layer. They go through a
1x1 convolution to have all the same number of channels. They are iteratively merged together
by an element-wise addition with the upsampled merged feature map of the next layer. Obtained
merged feature maps are then downsampled to match the dimension of the ResNet34 last layer.
This enables to keep the same architecture for the student afterwards.

By fusing together high semantic - low resolution features of the latest layers with low
semantic - high resolution of the earliest layers, a more accurate representation of the image
is constructed, which should help the waypoint prediction heads in their task.

4.4 Controller

The controller responsible for transforming waypoints to vehicle commands is the same
as the one used for LBC and CBS. The target velocity is the average speed needed to go
from one waypoint to the next one. Given the current speed of the vehicle, a longitudinal
PID controller must then compute the throttle and brake commands that shall make it
reach its target speed. The steer command is computed by fitting an arc through the
predicted waypoints. The angle formed by the current position and the projection of one
of the waypoints on the arc is fed to a lateral PID controller. The index of the chosen
waypoint for the projection depends on the directional command: the closer the waypoint,
the smaller the turning radius will be.
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Chapter 5

Experimental setup

The approach having been described, we present now the setup and dataset used to train
our networks, as well as the evaluation process used to measure the performances of the
different models. We compare two different modules that can be added to the existing
student network architecture, in order to favour a better recognition of traffic lights. The
process remains end-to-end and no classification is made. Both modules can be introduced
between the backbone and the waypoint prediction heads. The code used for the project
is briefly presented in Appendix B.

5.1 Setup

We first used the version 0.9.6 of CARLA which is employed in LBC and CBS. However,
in order to have reproducible runs, we switched in the middle of the project to 0.9.10.1.
Indeed, this version enables to fix the random seed responsible for traffic generation (other
cars and traffic light state), which is helpful for analysing the results. It also introduces
an evaluator that is now used by the latest state-of-the-art implementations, allowing us
to compare performances with them on common metrics.

We decided to still include some interesting results obtained with CARLA 0.9.6. The
approach is the same, except that the models are trained on a different dataset and with
the L1 distance instead of the MSE for the loss function. Besides, the controller responsible
for converting waypoints into vehicle commands has slightly different parameters. Only
PPM is evaluated as FPN required a newer version of torch to extract the feature maps at
intermediate levels of the backbone, incompatible with CARLA 0.9.6. Finally, it performs
data aggregation, as in LBC. As the ablation study made in CBS did not measure an
improvement in the generalization capabilities, we decided not to port this feature to our
CARLA 0.9.10.1 implementation. The results for CARLA 0.9.6 are available in Appendix
A.1. The following of this thesis is dedicated only to the CARLA 0.9.10.1 implementation.

5.2 Dataset

The dataset is collected using the agent detailed in Section 4.2.1 and follows the approach
of WOR, but has been collected especially for this work. It is then split into two distinct
datasets used respectively for training and validation, with a 80%-20% ratio. Table 5.1
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summarizes its characteristics and Table shows 5.2 the values of the ground truth waypoints
parameters.

Dataset 0.9.10.1

Collector strategy WOR (Q-Value)
Location Town01
Weather #1, #3, #6, #8
Vehicles 120
Pedestrians 150
Number of frames 70k train, 15k val
Steering noise O.-U. {µ = 0, σ = 0.015, θ = 0.015}
Steering noise probability 100% of frames
Target speed (straight) 6.5m/s
Target speed (curves) 6m/s
Traffic light detection from 3m

Table 5.1: Summary of the dataset characteristics and parameters

Ground truth waypoints parameters

NSTEPS 5
GAP 5

Table 5.2: Parameters used to generate ground truth waypoints

In addition, Figure 5.1 presents some additional insights about the dataset’s contents.
As we can see, frames representing different situations are quite equally distributed between
training and validation set.

Figure 5.1: Analysis of the frames in the training (blue) and validation (orange) datasets. Left:
percentage of frames showing intersections and red traffic lights. Right: distribution of the frames
within the 3 possible directional commands at intersections.

5.3 Training

The teacher is trained on the dataset described previously and supervises three different
students:
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• Original : without additional module

• PPM : with the Pyramid Pooling Module proposed in 4.6

• FPN : with the Feature Pyramid Network proposed in 4.7

The parameters used to train the teacher and students are described in Table 5.3.

Teacher

Backbone ResNet18 (random init.)
Batch size 64
Optimizer Adam
Learning rate 1e-3
Weight decay 0

Students

Backbone ResNet34 (ImageNet init.)
Batch size 96
Optimizer Adam
Learning rate 1e-4
Weight decay 0

Table 5.3: Network parameters used to train the teacher and the student

5.4 Controller

Compared to LBC and CBS, the braking threshold is incremented from 2.0m/s to 3.8m/s
in order to adapt the controller to the sensitivity our model has to obstacles. Its value is
tuned in the train town with train weather conditions, using the student without additional
module. It is a trade-off between stopping for more obstacles and risking to block the
agent for a false obstacle such as a puddle of water on the road and get stuck as it will not
eventually move like a car would. Chapter 7 further develops the subject. Moreover, the
target speed is clipped to be in a range from 0m/s to 5m/s as in CBS.

5.5 Evaluation

Our models are evaluated on the NoCrash benchmark. As suggested by its name, a run
is stopped as soon as the agent collides. It is also the case if it deviates by more than 30
meters from the route or if it does not move for 180 seconds (timeout). NoCrash assesses
the performances of the agent in train (Town01 ) and test (Town02 ) environments, as
well as train (#1, #3, #6, #8) and test (#10, #14) weather conditions. For all of these
combinations, the agent is always evaluated in three different traffic conditions: Empty,
Regular and Dense, detailed in Table 5.4

Configuration Vehicles Pedestrians

Town01-Empty 0 0

Town01-Regular 20 50

Town01-Dense 100 250

Town02-Empty 0 0

Town02-Regular 15 50

Town02-Dense 70 150

Table 5.4: Number of vehicles and pedestrians under the three traffic conditions, Empty,
Regular and Dense, depending on the town.
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There are 25 predefined routes in each town that are evaluated in every traffic and
weather conditions. Each of these runs is called an episode. For instance, in the test town
with test weather conditions, there are 25 routes x 4 weathers x 3 traffics resulting in 300
episodes. Therefore, a complete benchmark consists in total in 900 episodes. Figure 5.2
illustrates an example of route from both towns.

Figure 5.2: Example of route from Town01 (left) and Town02 (right) [6]

We compare the performances under the following metrics with WOR, the leading
implementation on NoCrash and the former state-of-the-art, LBC.

• Route completion: % of the itinerary accomplished, averaged over all episodes

• Success Rate: % of episodes where the goal is reached before the time limit, which
is defined as the time required to attain the destination at a speed of 5km/h

• Number of traffic lights infractions per hour

Moreover, we provide these additional metrics:

• No Collision Rate: % of episodes ended without collision

• No Block Rate: % of episodes ended without the vehicle being stuck (timeout of
180s)

• In Lane Rate: % of the itinerary where the vehicle stayed in its lane, averaged over
all episodes

For all the metrics, the higher is the better, except for the number of traffic lights ran
per hour.
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Chapter 6

Results

The results of the experiments previously introduced are presented hereafter. The learning
process is first described and followed by the evaluation of the selected models on the
NoCrash benchmark.

6.1 Learning curves

6.1.1 Teacher

Figure 6.1 shows the training and validation curves of the teacher. The 50th epoch check-
point (loss of respectively 0.0028 and 0.015) is chosen to supervise the student network.
Training it for longer lead to an increased validation loss that signify an overfit of the
training dataset.

Figure 6.1: Training (orange) and validation (blue) curves of the teacher

Figure 6.2 presents examples of predicted waypoints at the latest log before the epoch
chosen as final model. They are overprinted on the semantically segmented image that
is fed to the network as input. The two other inputs, which are the current speed of the
ego-vehicle and the directional command are also displayed.
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Figure 6.2: Semantically segmented image with ground truth (green) and predicted (orange)
waypoints. Here, they are superposed because the teacher correctly predicted to stop for the red
traffic light (in red).

6.1.2 Student

Three different student models are trained with the supervision of the teacher obtained in
the previous section. One without additional module, one with a PPM, and one relying
on a FPN.

The learning curves are presented in Figure 6.3. The chosen model is the one with the
lowest validation loss after maximum 100 epochs. They are presented in Table 6.1.

All models have a similar validation loss, which, although it is not increasing, stays
quite constant and maintain a non-negligeable gap with the training curve. This could
indicate a small overfit of the dataset. To overcome this in the future, the regularization
could be strengthen for instance by performing more data augmentation or by introducing
a weight decay in the optimizer.
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(a) Original

(b) PPM

(c) FPN

Figure 6.3: Training (orange) and validation (blue) curves of the three students

Model Epoch Train Val

CBS2 86 0.0007 0.0106

CBS2PPM 90 0.0006 0.0108

CBS2FPN 100 0.0009 0.0090

Table 6.1: Loss of the chosen student models. It is computed as the MSE between the teacher
and student predicted waypoints measured in a rescaled image space of size [-1, 1] x [-1, 1].

Figure 6.4 presents examples of predictions for the three different student models. They
are compared to the predictions of the teacher used to supervise them. We can also observe
the results of the data augmentation performed on the RGB image fed to the student.
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(a) Original

(b) PPM

(c) FPN

Figure 6.4: Semantically segmented and RGB image given as input to respectively the teacher
and the student during validation. Predicted waypoints are overprinted on the RGB image (green:
teacher, orange: student).

6.2 NoCrash results

We evaluate the three student models selected in the previous section on the NoCrash
benchmark and compare them with the results of WOR and LBC as published in [6]. The
Route Completion, which measures the percentage of the itinerary completed is presented
in Table 6.2. The Success Rate, which counts the percentage of episodes with a Route
Completion of 100% and finished before the time limit, is presented in Appendix A.2 for
reference.

Train town Test town

Train weather Test weather Train weather Test weather

Empty Reg Dense Empty Reg Dense Empty Reg Dense Empty Reg Dense

LBC 97 96 91 79 79 76 92 88 75 62 64 45

WoR 99 100 98 95 93 96 99 95 89 85 89 81

CBS2 46 47 31 34 39 28 32 39 30 28 31 32

CBS2PPM 24 24 20 21 23 20 16 20 19 14 1 17

CBS2FPN 45 53 43 40 45 35 42 50 38 37 48 39

Table 6.2: Mean route completion on NoCrash [%]

The Route Completion results are well below the state-of-the-art. This is not due to
the vehicle leaving the road or even its lane. Indeed, the performances on lane keeping are
excellent in every configuration, as shown in Figure 6.5.
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Figure 6.5: Percentage of the route driven within the lane, according to the town-weather
configuration (1:train, 2:test). All agents are very reliable and stay on track in every environment.

The main reason for this quite low route completion is that the sensitivity to other
vehicles is moderate. This means that the network reduces its target speed but often not
sufficiently to avoid a collision. That is why the braking threshold had to be increased
as mentioned in Section 5.4. Therefore, we choose to collide less, but at the same time
risk getting stuck due to a ”false obstacle” such as a puddle of water. This trade-off is
discussed further in Chapter 7. Besides, Figure 6.6 presents the percentage of episodes
ended without being blocked.

Figure 6.6: Percentage of episodes ended without being blocked. This is defined to be the case
when the vehicle does not move for 180 seconds. Left: The vehicle is less stuck in heavy traffic as
it generates a change in the environment seen by the agent, creating a chance to make it move.
Right: If we consider only the Dense traffic, we notice that it is less likely to be blocked in the
test town.

We can observe that the agent is less likely to be blocked in heavy traffic, as the resulting
change in the visible environment is the only reason for it to make a change in its waypoint
predictions, thereby giving it a chance to move. Moreover, it is clear that the PPM model
is more often stuck. This could be explained by the fact that it is more capable than the
others to differentiate objects from the road even if they have a similar texture. These
are referred to as inconspicuous objects in [3]. This results in the vehicle getting stuck
more often for irregularities on the road (such as crevices or water). Nonetheless, PPM is
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better at perceiving cars. This is illustrated in Figure 6.7, where the percentage of episodes
ended without collision is depicted. We have to focus on the Dense scenario to observe
differences in the three models performances, as they equally hardly ever leave the road
and thus rarely collide with non-traffic obstacles.

Figure 6.7: Left: Percentage of episodes ended without collision according to the traffic condi-
tion. Right: Same but only in Dense traffic, according to the town-weather configuration. PPM
performs better than the two other models. It risks of course less collisions than the others since
it is more often stuck, as seen in Figure 6.6. But this difference is not big enough to explain alone
the better results of PPM at avoiding collisions, which are also due to its better perception of
obstacles.

To conclude the results presentation, we take a look at the traffic light infractions which
are detailed in Table 6.3 and summarized in Figure 6.8.

Train town Test town

Train weather Test weather Train weather Test weather

Empty Reg Dense Empty Reg Dense Empty Reg Dense Empty Reg Dense

LBC 1.35 1.89 3.27 0.36 0.81 0.52 8.45 8.22 7.26 8.17 8.61 4.87

WOR 0.00 0.43 2.61 0.00 0.00 4.29 10.68 6.95 12.90 14.46 11.30 13.28

CBS2 15.07 18.45 20.7 16.74 18.06 16.1 19.27 20.1 24.34 25.23 24.94 16.28

CBS2PPM 3.37 5.71 4.37 14.9 16.66 20.9 17.84 13.87 10.12 2.53∗ 24.62 18.05

CBS2FPN 1.15 2.12 2.51 0.49 1.65 1.57 6.70 9.13 8.69 7.74 10.70 13.27

Table 6.3: Number of traffic lights infractions per hour

* Note: the infraction score of the PPM agent in the Empty scenario of the test town and
weather is underestimated due to it being significantly more stuck (72% of the episodes)
compared to the other traffic scenarios.
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Figure 6.8: Number of traffic light infractions per hour of driving according to the town and
weather configuration. PPM brings improvement to the original CBS implementation and FPN
enables to have an infraction rate comparable to WOR and LBC.

FPN provides a robust traffic light handling, competitive to WOR and close to LBC.
Fusing feature maps from different layers of the backbone enables it to recognize more
precisely where and which features in the image are responsible for stopping or restarting.
Also, it generalizes well to unseen environments, with a number of infractions per hour of
only 10.57 in the test town - test weather configuration. Besides, it seems that the weather
conditions have a very limited impact on its performances.

Note that the dataset and loss function used to train the network play an important
role too. In this case, changing the loss function from L1 distance to MSE had a very
positive impact on the traffic light handling for the three agents.

To sum up, the collected dataset and the training method leads to models that all
demonstrates a very good lane keeping. Using PPM and especially FPN allows to signifi-
cantly reduces the number of traffic light infractions. However, if all models see their target
speed decrease when approaching another vehicle, it is not sensitive enough yet. The next
chapter presents observations on the behaviour of the different agents and proposes ideas
for improvement.
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Chapter 7

Discussion

Presented hereafter are observations on the behaviour of the vehicle regarding obstacle
detection and traffic light handling as well as possible solutions to issues often encounterd.

7.1 Sensitivity

As our approach is end-to-end, the reactions to different kind of obstacles or even different
instances of it are not binary. In a modular fashion, if we simplify a little bit, there are
only two possible outcomes. Either a car is detected at a certain position and the agent
stops at a fixed distance to it, or it is missed and the agent crashes into it.

However, our only outputs are waypoints that defines the target speed. When the
target speed is reduced, the kind of obstacle responsible for this is unknown. Therefore, it
is not straightforward to define a unique speed threshold under which the vehicle should
stop.

In our case, the agent responds more strongly to cars than pedestrians, therefore a
trade-off has to be found. Of course, the braking threshold can be heighten so that even
slightly detected obstacles are stopped for. But it should not be too high, otherwise the
vehicle will not be able to restart once the obstacle gone. Figure 7.1 shows the FPN agent
braking for pedestrians.

36



(a) Target speed starts decreasing as pedestrian
detected

(b) Stop completed

(c) Restarts but quite early, a lower braking thresh-
old could have been dangerous

Figure 7.1: FPN agent stopping for pedestrians

A possibility to increase the sensitivity to both vehicles and pedestrians would be
to pursue the approach that CBS has with the traffic lights: imposing the ground truth
waypoints to lead to a stop when a car or pedestrian is within a distance below a threshold,
to emphasize the need for braking.

7.2 False obstacles

One of the main remaining issue is due to the agent braking for non dangerous obstacles.
For instance, in some weather conditions, when water accumulates to form puddles, as
illustrated in Figure 7.2.
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Figure 7.2: A puddle is formed on the ground in one of the test weather condition. Due to the
change of appearance on the road, our model interprets it as an obstacle and reduces its target
speed.

We notice that all models suffer from this. Therefore, further developing the RGB
image data augmentation, by adding spots of more considerable size to simulate these
kind of irregularities, could be beneficial.

Besides, it should be easier for the vehicle to restart when it is stuck for a non-traffic
related reason. Currently, the expert rarely shows how to restart from a random spot in
the street, but just how to do it if there is an actual reason for stopping, like a car or a
traffic light. Therefore, the model suffers from an issue: if given an image of an empty road
with a high current speed it will predict waypoints leading to a high target speed as well.
But if the current speed is zero, the target speed is often below the braking threshold, thus
the vehicle is blocked. Adding sequences with the expert going from zero to full speed in
random places should help solving the issue.

Nonetheless, solving the issue of sensitivity to vehicles and pedestrians will consequently
solve this as well, as it will be possible to place a low enough braking threshold that would
not make the vehicle stop for these false obstacles anymore.

7.3 Influence of other vehicles

This paragraph presents some observations related to the impact other vehicles have on the
predicted waypoints. Two specific situations make our agent plan a higher target speed.
These phenomenons are observed when the agent is stopped.

Firstly, having the vehicle in front at a safe distance (but still visible in the image)
make our agent predict a higher target speed than if there were no vehicle at all. For
instance, if it is waiting in a queue, the vehicle in front restarting will make it increases
its target speed. This phenomenon is desired and can be explained by the fact that the
expert used for the data collection keeps a fixed minimal distance with the vehicle in front
and accelerates towards its cruise speed otherwise.

A similar phenomenon happens when our vehicle is stopped outside an intersection
and a vehicle drives past on the opposite lane. During its passage, the target speed of our
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vehicle temporarily increases, as shown in Figure 7.3.

(a) Agent stuck on the road as the target speed is
below the braking threshold

(b) Vehicle in the opposite lane makes the target
speed increase

(c) Agent starts moving

Figure 7.3: Vehicle in the opposite lane results in higher target speed

These situations have no known undesired effects, it can even help restart a stuck
vehicle. However, it is important to know that these phenomenons exist to understand the
behaviour of the agent.

7.4 Traffic lights

The traffic lights are now well recognized, especially in PPM and FPN. But even in the
best of the three, FPN, there remains a handful of occurrences where it is missed. Figure
7.4 and 7.5 respectively illustrates a successful traffic light handling and an infraction.
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(a) Target speed starts decreasing as TL detected

(b) Stop completed

(c) Restarts in the first frame where the traffic
light is green

Figure 7.4: Successful stop

(a) Traffic light detected but later

(b) Low speed, but not completely stopped

(c) Traffic light now too close to be noticed as
expert always stops before that

Figure 7.5: Infraction

The main lesson learned from this example of infraction is that, despite the model
starts detecting the traffic light late in (a), it would have been able to stop in time, had it
not ceased perceiving the traffic light in (c). To solve this issue, we could imagine having
an expert that stops at different distances from a red traffic light, going from the current
threshold to just below the pole. This would allow to learn a more robust policy as it
gives a longer range of distance where braking is the expected behaviour. This would be
useful in case the model does not perceive the traffic light directly, for instance due to an
unknown weather condition. Besides, relying on a method such as VisualBackProp [19]
to visualize which input pixels had the most impact on the predicted output could give
additional insight on how to improve the agent.

40



Chapter 8

Conclusion

In this thesis, we trained an agent end-to-end to imitate an expert using only images
taken from a driver perspective. Two different student network architectures were tested.
Both the Pyramid Pooling Module and the Feature Pyramid Network resulted in an agent
presenting a very good lane keeping. PPM enabled to react more strongly to cars but also
to inoffensive obstacles. Making the ground truth waypoints lead to a stop in the vicinity
of cars and pedestrians would enable the teacher to provide a more robust supervision
which would benefit to all of the student architectures tested. This could also allow to
decrease the braking threshold and lead to a more fluid agent.

FPN enabled to significantly reduce the number of traffic lights ran, reaching a number
of infractions per hour of 10.6% in test conditions on NoCrash. This brings it close to
the state-of-the-art implementations Learning to drive from a world on rails and Learning
by Cheating. Diversifying the distance at which the expert stops for a traffic light could
further improve the model.

This thesis has shown insights on the potential of pyramid perception modules for
conditional imitation learning and hopefully their perception abilities will contribute to
the improvement of autonomous driving.

Maël Wildi

41



Bibliography

[1] T. van Orden, “Cheating by segmentation.” Bachelor thesis, Universiteit van Amster-
dam, June 2021.

[2] D. Chen, B. Zhou, V. Koltun, and P. Krähenbühl, “Learning by cheating,” Conference
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Appendix

A Additional results

A.1 CARLA 0.9.6

This section presents the experiment carried out in CARLA 0.9.6 where a PPM is added
to the student network architecture, just after the feature extractor, as was later done
in CARLA 0.9.10.1. The aim is to add context to these extracted features, in order to
improve the perception of traffic lights. Its performances on the NoCrash benchmark are
compared to those of the original model, which does not use any additional module.

Dataset

The dataset used in 0.9.6 is the exact same as CBS and follows the approach of LBC,
where the collector agent is based on CARLA’s autopilot.

Dataset 0.9.6

Collector strategy LBC (based on CARLA)
Location Town01
Weather #1, #3, #6, #8
Vehicles 100
Pedestrians 250
Number of frames 167k train, 39k val
Steering noise U∼ (−0.2, 0.2)
Steering noise probability 10% of frames
Target speed (straight) 6m/s
Target speed (curves) 4.5m/s
Traffic light detection from 5.5m

Table 1: Summary of the dataset characteristics and parameters

Evaluation

• % of episodes ended without collision

• Traffic light success rate: % of traffic lights correctly handled by the vehicle (green
lights included)
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• Red traffic light success rate: % of red traffic lights correctly handled by the vehicle
(green lights excluded)

NoCrash Results

As shown in Figure 1 (left), the percentage of traffic lights correctly handled in the NoCrash
benchmark increases when using PPM, especially in the test town. This phenomenon is
even clearer if we exclude the green traffic lights and focus only on the percentage of red
traffic lights successfully handled, as shown in Figure 1 (right). In that case, PPM enables
to double the amount of correctly handled lights. This shows that using multi-scale fea-
tures allows to create a model able to better generalize to a new environment.

Figure 1: Percentage of traffic lights handled without infraction (left: including green lights,
right: excluding green lights) in the train and test town of the NoCrash benchmark. For each
town, 3 different weathers and 2 different random seeds are used.

Note that there is a counter-intuitive small gap (PPM: from 78.5 to 75.6) or even im-
provement (Original: from 68.5 to 70.3) of the traffic light success rate in the train town
when excluding the green traffic lights (which should obviously never yield to an infrac-
tion). This is because for a few traffic light locations in the train town (Town01 ), the
ground truth fails to tell when the relevant traffic light is red, and they are therefore con-
sidered as green but still counted as infraction if violated. In this experiment, it concerns
between 5-10% of the cases (depending on the configuration, as the traffic light state is
not reproducible between different runs in CARLA 0.9.6).

Figure 2 presents an example where PPM managed to stop in contrast to the original
architecture that missed the traffic light.
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Figure 2: NoCrash benchmark, Town01, Regular traffic, weather #14, seed 0. Left: PPM.
Right: no PPM. Top: frame when relevant traffic light is red according to RTLS. Bottom: 15
frames after. In this situation, PPM enabled to stop for the traffic light.

Figure 3 shows the number of timesteps elapsed between the ground truth detection of
a red traffic light and the agent’s reaction to it (when there is one). Intuitively, this de-
pends mostly on the waypoints used to supervise the model. Indeed, they set a higher and
lower bound for the distance from a red traffic light at which to stop. Hence, the network
has to learn a model able to associate these waypoints leading to a stop to features from
an RGB image captured at a certain range from the corresponding red traffic light.

We can see that the results are quite similar for the two approaches, although PPM
enables to react on average one timestep earlier. One of the main change is the variance
in the number of timesteps needed to react in the train town: it is done with PPM in 50%
of the cases within a range of 3 timesteps against 6 in the original implementation. This
might confirm that using multi-scale feature maps enables to add context and thus provides
more general features. This has the advantage of making the agent more predictable.

Note that we cannot say much about the variance of timesteps needed in the train town
as, after more than 8 timesteps, there is no successful handling of the traffic lights since
the model is not taught to stop this close from a traffic light.
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Figure 3: Timesteps elapsed between the appearance of a red traffic light (according to ground
truth) and the vehicle’s reaction to it. We consider this to be when the vehicle has cut its default
target speed by a factor 2, which results in a speed of 2.5 m/s.

If the goal of this experiment is to improve the detection of small objects that are traffic
lights, it is also critical to assure that it is not in the detriment of bigger objects such as
other cars and that the model is indeed able to perceive objects of different scales.

Therefore, Figure 4 presents the number of episodes ended without any collision with
obstacles such as cars or pedestrians under multiple traffic conditions. The drop in per-
formances from train to test town is very narrow for PPM, meaning it favours a better
generalization of obstacles under all traffic conditions. In addition, the good result in the
test town with Empty traffic (52% with PPM, 27% without) testifies that PPM permits a
reduction of collisions with non-cars obstacles, that is collisions due to the vehicle leaving
the road.

Figure 4: Percentage of episodes ended without any collision under different traffic conditions

To summarize, PPM mainly helps perceiving traffic lights that would otherwise not be
detected at all (Figure 1, right) but decreases only very slightly the amount of timestep
needed to react to it (Figure 3). Furthermore, this improvement in the perception of small
objects like traffic lights is done without diminishing the perception of bigger elements
such as cars, pedestrians or sidewalks. In fact, it even permits to improve the amount of
episodes ended without collisions in unseen environments (Figure 4).
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A.2 CARLA 0.9.10.1

Table 2 presents the Success Rate on NoCrash measured in the evaluation made in Chapter
6.

Train town Test town

Train weather Test weather Train weather Test weather

Empty Reg Dense Empty Reg Dense Empty Reg Dense Empty Reg Dense

LBC 89 87 75 60 60 54 86 79 53 36 36 12

WoR 98 100 96 90 90 84 94 89 74 78 82 66

CBS2 18 18 3 12 14 4 7 10 1 6 10 8

CBS2PPM 2 1 0 0 0 0 2 3 1 0 0 0

CBS2FPN 16 27 10 8 16 6 17 19 7 4 8 2

Table 2: Success Rate on NoCrash [%]

B Code

This section presents the code used for this project, available on GitHub 1. It is based on
Learning by Cheating (LBC) and Cheating by Segmentation (CBS). It follows the work of
CBS which replaced the bird’s-eye view semantically segmented image used to train the
teacher in LBC.

B.1 Code source

This repository contains code that has been adapted from other sources :

• Evaluation:

– CARLA Leaderboard

– CARLA Scenario Runner

(Instructions on how to setup CARLA and the leaderboard / scenario runner avail-
able below and at https://leaderboard.carla.org/get started)

• Data collection, training, visualisations:

– World on rails

– Cheating by Segmentation (branch: segmentation)

– Learning By Cheating

1https://github.com/mael25/CBS2/tree/cbs2
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B.2 Installing CARLA

Install CARLA in the desired location:

wget https://carla-releases.s3.eu-west-3.amazonaws.com/Linux/CARLA_0.9.10.1.tar.gz

tar -xvzf CARLA_0.9.10.1.tar.gz -C carla09101

Clone CBS2 repository (branch: cbs2) in desired location:

git clone git@github.com:mael25/CBS2.git

cd CBS2

git checkout cbs2

If not already done, install conda and then create and activate this new virtual envi-
ronment:

conda env create -f docs/cbs2.yml conda activate cbs2
To add more packages to the environment:

• conda: conda install <package>

• conda-forge: conda install -c conda-forge <package>

• pip: ~/anaconda3/envs/cbs2/bin/pip install <package>

Add the following environmnet variables to ~/.bashrc:
Verify the setup by launching CARLA (with cbs2 virtual environment activated):

source ~/.bashrc

$CBS2_ROOT/scripts/launch_carla.sh 1 2000

B.3 Launching CARLA

Make sure to start CARLA in another terminal before proceeding to data collection or
evaluation.

$CBS2_ROOT/scripts/launch_carla.sh <num_runners> <port>

Note: if there are multiple runners, <port> is also the increment between them.

B.4 Data collection

Data collection configuration (settable in autoagents/collector agents/config data collection.yml):
- num per flush: Amount of timestep data per save - noise collect: Add noise to the
steering command of the agent - main data dir: Location where the data should be saved
- . . .

To start the data collection:

python -m rails.data_phase1
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B.5 Training

Teacher

cd cbs0/training

python -m train_birdview --segmentation --dynamic

--batch_size=<batch_size> --dataset_dir=<path_to_data_dir>

--log_dir=<path_to_log_dir> --max_epoch=<max_epoch>

↪→

↪→

Student

Phase 0: warm-up stage

cd cbs0/training

python -m train_image_phase0 --log_dir=<path_to_log_dir>

--teacher_path=<path_to_teacher_dir/model-XX.th>

--dataset_dir=<path_to_data_dir>

↪→

↪→

Phase 1: actual training

cd cbs0/training

python -m train_image_phase1 --log_dir=<path_to_log_dir>

--teacher_path=<path_to_teacher_dir/model-XX.th>

--ckpt=<path_to_phase0_student_dir/model-XX.th>

--dataset_dir=<path_to_data_dir> --pretrained --max_epoch=<max_epoch>

↪→

↪→

↪→

To train a model with PPM add for example --ppm=1-2-3-6 (where [1,2,3,6] are the
desired bin sizes used for the adaptive pooling). For FPN, add --fpn. These arguments
must be added both for phase 0 and phase 1.

B.6 Evaluation

• To evaluate on CARLA Leaderboard:

python -m evaluate

To evaluate a model trained with PPM or FPN, add respectively --mod=ppm or --mod=fpn.
This will change the configuration file used. The default configuration file for each type
of model are located in the results lead folder. The results of the evaluation are saved
there as well.

• To evaluate on NoCrash:

python -m evaluate_nocrash --town=<TownXX> --weather <test/train> --resume
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B.7 Project file structure

The tree structure of the important folders and files as well as their usage is reproduced
in Figure 5.

Figure 5: Tree structure of important folders and files for this project, separated by usage
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