End-to-end Imitation Learning for Autonomous
Vehicle Steering on a Single Camera Stream

Thomas van Orden!”! and Arnoud Visserl”

Intelligent Robotics Lab, University of Amsterdam, The Netherlands*

Abstract. Vehicles can follow roads based on a forward looking cam-
era, but this has to be done reliably in all circumstances. In daily traffic
they can encounter many unforeseen situations. Training for those situ-
ations in simulations should prepare them for such encounters, but this
requires simulated worlds with enough complexity. In this paper we have
trained a vehicle to follow the roads in one of the most complex envi-
ronments available in the simulation environment Carla: the map Town
3. Still, during training the vehicle encounters a disproportionate num-
ber of simple straight roads, so care has to be taken on the balance in
the training set. End-to-end learning for autonomous vehicles have been
shown before, but not for the complex worlds used in this paper. After
the training the vehicle can follow the road reliably on the training map,
a behavior which can be transferred to another map with circumstances
it has not seen before. The learned behavior has been validated on a
map which is just released with the latest version of the Carla simulator,
Townl0HD, with a success-rate of 77%.

Keywords: Imitation Learning - Autonomous Vehicles - CARLA sim-
ulator.

1 Introduction

The role of machine learning and in particular deep learning in the car industry
is greater than ever before [2]. Well known car companies introduce more and
more smart assistants and some companies like Tesla even construct cars capable
of level 3 autonomous driving [I1]. Those innovative products may provide many
benefits, but the main objection for wide adoption is safety. Last year the Dutch
Onderzoeksraad voor Veiligheid investigated and reported an accident where
Tesla’s AutoPilot system did not sufficiently recognize a truck changing lane [9].
This caused the Tesla to be caught between the crash barrier and the truck.
The report concluded that driving assistant systems may take unexpected
actions which may confuse the driver. In addition, the system’s choices are dif-
ficult to explain and even more difficult to compare with other systems. A lack
of insight in a model’s decisions is also known as the black box problem. With

* Supported by the Meaningful Control of Autonomous Systems initiative from TNO,
CWTI and UvA.

https://orcid.org/0000-0001-5651-6231
https://orcid.org/0000-0002-7525-7017

2 T. van Orden, et al.

Meaningful Control for Autonomous Systems (MCAS) we aim to provide bet-
ter insight in the black box of a smart system. To better understand and im-
prove upon driving assistants a repeatable experiment is key. Therefore, we use
a photo-realistic simulator as testing environment.

CARLA is a state-of-the art simulator which includes many complex aspects
of the real world such as pedestrians, different junction types, multiple-lane
roads, fifteen different weather conditions [5] and traffic simulation. In addition,
the quality of the representation of the real world is outstanding, including a
variety of assets such as houses, street lights, trees and other vehicles. The current
10 maps range from rural driving areas to highways. Figure [I| shows the layout
of Town 3 which we use for training (lal) and the layout of CARLA’s newest
Town 10HD which we use for testing ([Lb)) in this research.

Convolutional neural networks (CNN) have proven to be very accurate at
learning features from two-dimensional images [8]. End-to-end imitation learning
takes advantage of these features and tries to solve mapping from raw sensory
input to an action output [6]. Therefore, the network simultaneously learns to
extract features as well as a decision policy based on those features. We use a
CNN network inspired by NVIDIA’s approach to learn a discrete steering angle
from a single raw input image [3].

(a) Town 3 for training. (b) Town 10HD for validation.

Fig. 1: Top-down layout view of used CARLA maps.

2 Related work

A lot of research has been done in the past few years on the topic of autonomous
driving with end-to-end imitation learning. Bojarski et al. from NVIDIA have
shown that an end-to-end approach is able to learn to follow the road and stay in

End-to-end Imitation Learning for Autonomous Vehicle Steering 3

one lane [3]. They used a triple-cam setup in which three cameras were mounted
behind the car’s windshield. Figure [2] shows such an triple-cam setup, as in
the recently announced Autopilot 2.0/Tesla Vision hardware suite. The two off-
center cameras provided the model multiple viewpoints with according steering
angles. A relatively small CNN with 250 thousand parameters was fed an input
image from one of the three cameras and the current steering angle. In addition,
a random shift and rotation were applied on the input. After training, the model
could accurately predict the steering angle from only an input image from the
center camera. Even when transferred to the real world the model obtained high
autonomy scores of 98%. However, those real world tests excluded lane changes
and road-crossing turns.

Fig.2: Example of triple-cam setup behind car’s windshield, with below this
example the view of the triple camera’s from left, middle to right camera.

Codevilla et al. from Intel Labs have combined high level human commands
and CNNs [4]. In contrast to other approaches, the human interaction acts as a
decision module for the network. A high level sub-module is activated upon the
human’s command. Besides the output of the sub-module an acceleration value is
predicted. The dataset is generated in CARLA Town 1 using a triple-cam setup
with human expert annotations. Crucial to the success of the model is data
augmentation. By injecting noise to the steering commands of the teacher while
driving, the dataset covers recovery situations. These might prevent overfitting
to a perfect driver. Evaluation in Town 2 is done in a similar fashion as Bojarski
et al. Results in simulation as well as in the real world, using a scale model radio
controlled car, show that the proposed architecture is capable of reaching the
goal without many failures.

Abdou et al. propose a network which combines Intel’s and NVIDIA’s ap-
proaches [I]. The CARLA Autopilot system is used to generate a large dataset of

4 T. van Orden, et al.

images. The used model consists of a feature extraction part based on NVIDIA’s
model and is then conditioned on a CARLA command signal. This command
signal determines which branch of the Intel inspired decision part is then used to
predict the steering angle. Every branch corresponds to a possible task such as
take a left turn, go straight. Besides, a speed branch is attached which predicts
a throttle value. Evaluating is done in Town 1 and 2 of CARLA under different
weather conditions. It outperforms Intel’s architecture in almost all tasks, but
this measurement is only based on the success rate where the model reached the
destination in time. Factors such as collisions with other cars or traffic rules do
not directly affect this rate.

Haavaldsen et al. were also inspired by NVIDIA’s approach and used CARLA’s
Town 1 and 2 for training [6]. They augmented the CNN with a long-term
short-term (LSTM) layer which is used as a feature extractor. The LSTM layer
improved the robustness of the controller, with a superior reaction on sudden
changes in the scenery caused by other traffic. In this study we concentrate

on robust driving on the trajectory first, for the more challenging scenario of
CARLA’s Town 3.

3 Experiment

For this experiment we use CARLA simulator version 0.9.8 and Town 3 map for
training and testing. Town 3 includes different complex situations such as 5-lane
junctions, a roundabout and a tunnel. According to CARLA’s documentation
Town 3 is the most complex town. The recently released Townl0HD was used
for validation.

First of all, we generated a dataset by using the CARLA waypoint function.
The selected ego-vehicle, a Toyota Prius, has a RGB camera mounted on its roof.
The camera has a standard 105 degrees field of view (FOV) capturing an image
at every simulator time step. A fixed velocity vector of [0.0001 0.0001 0.0001] is
applied to the ego-vehicle which corresponds to approximately 0.1 km /h.

To prevent overfitting the weather conditions are cycled throughout the sim-
ulation to ensure an uniform distributed dataset per weather condition. The
weather conditions change the lightning of the environment as well and can thus
be seen as a form of data augmentation. To ensure a realistic path for the ego-
vehicle we use the waypoints included in Town 3. Those waypoints are calculated
by CARLA. At every time step we choose a random waypoint out of the set of
valid next waypoints. Valid waypoints are defined by CARLA and are dynami-
cally changing based on the ego-vehicles’ position. For example, an intersection
provides multiple valid waypoints for every possible turn. In addition, to prevent
overfitting to a perfect path, we add noise to the location of the waypoint .

2] [N(0,0.8)
waypoint = |y| + [N(0,0.8) (1)
z 0

End-to-end Imitation Learning for Autonomous Vehicle Steering 5

Fig. 3: CARLA simulator with model inference vector (green) and vehicle forward
vector (red).

The resulting dataset consists of 131 thousand 720 x 1280 RGB images in-
cluding the corresponding steering angles. A sample with corresponding steering
angle is shown in ﬁgure Note that the steering angle is in the interval [—1,1].

Fig.4: Samples from encountered situation in Town 3 (left) and Town 10HD
(right). Steering angles: 0.439225 (green vector) and 0.385478 (blue vector).

The CNN network (see Figure [5)) consists of an input layer with shape
[72(), 1280,3] followed by a cropping and resizing layer which transforms the
images to [104, 256, 3] . The transformation is done to reduce memory usage and
to ensure the image only captures the road under the horizon. In addition the
color space is transformed from RGB to YUV. The feature extraction part of
the model is based on NVIDIA’s architecture consisting of 5 convolution layers.
The first 3 layers use a 3 x 3 convolution kernel and the last two use a 2 x 2
kernel. All convolution layers have Exponential Linear Unit (ELU) activation
functions. The feature extraction part is followed by an decision module which

6 T. van Orden, et al.

starts of with an 0.3 dropout layer. Followed by a flatten layer and two dense
layers. The final output layer consists of 5 nodes with a softmax activation func-
tion. Categorical cross-entropy is used as loss function in combination with an
Adam optimizer (learning rate = le — 4) [7].

input_1: InputLayer conv2d: Conv2D conv2d_I: Conv2D conv2d_2; Conv2D conv2d_3; Conv2D
o | owpr s e | owpw | [owpr s mpw | owpw s | oupm
[(7, 104,256, 3)]] [(2, 104, 256, 3)] (2, 104,256, 3) \ (2,52, 128, 24) (7,52,128,24) \ (2,26, 64, 36) (2,26, 64, 36) | (7,13, 32, 48) (2,13, 32, 48) |('. 13,32, 64) —‘
conv2d_4: Conv2D dropout: Dropout flatten: Flatten dense: Dense dense_l: Dense dense_2: Dense
» ipw | owpw s wpur | oupw: | npuc | owpu: | mpur | owput [—f input: | ouput: |— input: | oupus
(213,32, 64) [. 13.32,64) 2.13,32,64) [(213,32, 64) (2,13, 32, 64) | (2. 26624) (2,26624) | (2, 100) 2,100 [2, 50) .50 [.5

Fig. 5: Tllustration of the model architecture. All question marks represent the
non-fixed batch size.

To enhance insight in the model’s decisions the direction vectors of the ego-
vehicle and the model’s prediction are plotted as overlay in the simulation. Figure
shows an example simulation snapshot with vector overlay. In addition, the
continuous regression problem of predicting a steering angle is converted to a
discrete classification problem. The model’s five output nodes correspond to the
action space of five possible steering angles: [—20, —10,0, 10, 20] . Class balancing
is done to create an equally distributed dataset along all classes.

Evaluating the model is done in two ways. First, the F1 scores are calculated
for the validation set of the dataset. Second, the model is tested in the CARLA
simulator itself combined with a custom benchmark. The benchmark consists
of multiple episodes in which all steering is done by model inference. We use a
random start position for the ego-vehicle at each episode which is a sample from
the provided set of possible spawn positions by CARLA. During the benchmark
a number of statistics are captured such as lane invasions and collisions. Those
statistics are provided by the CARLA simulator.

4 Result

The model has trained on a GeForce RTX 2080 Ti graphics card and converged
after 3 epochs in less than 3 hours (see Figure E[) Table (1] shows the model’s
detailed epoch F1 score and epoch loss across the training and validation set.

Table 1: Training and validation scores of model for the final epoch. Concerning
precision, recall and F1 score higher is better. Only lower is better for the loss.
Dataset |Precision|Recall |F1 score|Loss

Training [0.9286 |0.9078 [0.9179]0.198
Validation|0.9392 [0.9182|0.9284 |0.2143

End-to-end Imitation Learning for Autonomous Vehicle Steering 7

\

Fig. 6: Epoch loss of trained model over 3 epochs for training (blue) and test set
(pink).

The benchmark introduced in section [3] has multiple configuration options.
The velocity v of the ego-vehicle is fixed at 0.69 m/s. An episode is considered
done when the ego-vehicle has covered a maximum distance d of 100 meters or
caused a collision of any sort. In addition, to prevent endless episodes a time
constraint, ¢, of 144 seconds is dynamically calculated (see Eq. . The CARLA
simulation ran with the -benchmark -fps 10 settings to ensure a constant frame
rate and repeatable experiment. In addition, all other traffic was turned off.

d
=1 &)
Figure [7] shows the training map results from 56 episodes covering a total
of 4530 meters and a run-time of 101 minutes. The high variance in duration
and distance are due to the fact that a collision immediately ends the episode
which causes lower distance and duration. In addition, the simulator lacks a true
constant frame-rate hence the total number of frames simulated might differ per
episode. However, this variance in frame-rate can also be seen as a domain ran-
domisation. All possible lane types are shown on the z axis of Figure[7] Besides,
to provide more relative perspective, the total number of episodes and the num-
ber of collisions are added at the end. Table [2] gives more details concerning
collisions. The exact definition per lane type is defined by the OpenDRIVE 1.4
standard [I0]. Broken, NONE and Other lane types may be crossed in real life
circumstances. During the crossing of a junction the vehicle will always cross
some of those lane marking types, since junctions contain lane markings too.
To evaluate the generalization performance of the model we used the bench-
mark in Town 10HD. This town is more realistic than Town 3 concerning tex-
tures, although the layout is slightly simpler. The possible traffic situations dif-
fer enough from Town 3 to make this a good validation map. This town has no
roundabouts, but includes a larger junction which the model has never faced
before (see Figure |4l As shown in figure |8| the number of lane invasions is al-
most equal to Town 3. However, the mean and variance concerning collisions is
lower in comparison to Town 3. The benchmark has run for an equal number of
episodes, covering 4072 meters and spanning a run-time of 114 minutes.

T. van Orden, et al.

Town03 Benchmark results

140

120

108.7

100

56.0

40

D‘”a:fa,, 1
Sroke,, |
Sorig
SO/fasc g
Sof;
1ot 1

Fig. 7: Results benchmark training Town 3 over 56 episodes (4530 meters). The
means are shown as blue labels and the error bars represent the variance.

To provide a more relative metric, we calculated the success-rate and sum-
marized the lane invasions and collisions per meter. The success-rate is defined
as the percentage of episodes in which the vehicle reached the end of the episode,
in relation to the total number of episodes. In other words, the percentage of
non-collisions episode in relation to the total number of episodes. Table [2| shows
the success-rate specified for the training and validation map. In addition, the
collisions and lane invasions per meter are calculated as the sum of collisions and
invasions respectively divided by the total distance covered during the bench-
mark. Note that in the calculation of the lane invasions per meter, only the
non-collision episodes are considered. It is assumed that a collision will most of
the time cause more lane invasions, leading to an extremely unbalanced number
of lane invasions per meter.

Table 2: Objective generalization results. Concerning success-rate higher is bet-
ter. Both for collisions and lane invasions per meter lower is better.

Town Success-rate|Collisions per meter|Lane invasions per meter
Town 3 67.86% 0.0040 0.0510
Town 10HD|76.79% 0.0032 0.0626

End-to-end Imitation Learning for Autonomous Vehicle Steering 9

Town10HD Benchmark results

150

125 122.0

100

56.0

= 15 2
0 0.0 0.0 :I:D 0.0 0.0 0.0 0.0 0.0 0.0 0.2
5 @ @ & s k) kS 5 > s 9 9 e @ o
S § 5 5 £ & s & 5 & F £ 5§ 5§ 5
g 5 £ & 8 g) < g § ¢ C g N
5 5 L S g & @ P s)
5 g 5 x & 5 & 5 s
Lg *50 *w]
§ §
=

Fig. 8: Results benchmark testing Town 10 over 56 episodes (4072 meters). The
means are shown as blue labels and the error bars represent the variance.

5 Discussion

As shown by Haalvaldsen et al. [6] adding a specialized layer suchs as a Long
Short Term Memory (LSTM) to the model improves the general model’s per-
formance. Incorporating a segmentation layer in our proposed network might
improve the model’s performance as well. A segmentation layer should be able
to mask lane markings resulting in only a few classes per image instead of view-
ing every pixel independently. Therefore, a better intermediate representation
might be achieved which could result in further optimized policies.

To better facilitate goal-directed scenarios a high level conditional command
unit as proposed by Codevilla et al. [4] might be necessary. Although adding such
a module still relies on a robust feature extraction model. Thoroughly testing
and evaluating this model’s foundation should therefore always be done first.

Our proposed benchmark in combination with the simulation vector overlay
gives more insight in the model’s shortcomings. However, future research in
the model’s internal state representations could facilitate more insight in the
reasoning behind the model’s decisions. Regarding safety, explainable decisions
should be a huge step towards safer systems.

The rapid development of CARLA causes inconsistency between studies with
other training and testing environments. Other researches have used older, less
complex towns such as Town 1 and Town 2 [6][1]. In contrast, we use the most
complex and realistic towns CARLA currently offers. Comparing the conclu-

10 T. van Orden, et al.

sion and results between different papers should therefore be done with great
precision.

6 Conclusion

We have proposed a CNN network which is capable of controlling a vehicle’s
steering with 77% success-rate in unseen circumstances. The benchmark quan-
tifies a set of the model’s shortcomings. The potential of end-to-end imitation
learning on a single camera stream therefore can be exploit even further. In ad-
dition, testing in a highly realistic environment such as Town 10HD proves the
model to be robust to changes in lightning conditions and different road layouts.
We propose the use of realistic simulation environments in combination with ro-
bust networks and benchmarks to provide a starting point to improve the safety
of modern day driving assistants.

7 Acknowledgements

Special thanks go to Thomas Wiggers for noteworthy suggestions and helpful
discussions.

End-to-end Imitation Learning for Autonomous Vehicle Steering 11

References

10.
11.

. Abdou, M., Kamal, H., El-Tantawy, S., Abdelkhalek, A., Adel, O., Hamdy, K.,

Abaas, M.: End-to-end deep conditional imitation learning for autonomous driving.
In: 2019 31st International Conference on Microelectronics (ICM). pp. 346-350
(2019)

Badue, C., Guidolini, R., Carneiro, R.V., Azevedo, P., Cardoso, V.B., Forechi, A.,
Jesus, L., Berriel, R., Paixdo, T.M., Mutz, F., et al.: Self-driving cars: A survey.
Expert Systems with Applications p. 113816 (2020)

Bojarski, M., Testa, D.D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel,
L.D., Monfort, M., Muller, U., Zhang, J., Zhang, X., Zhao, J., Zieba, K.: End to
end learning for self-driving cars. CoRR abs/1604.07316 (2016)

Codevilla, F., Miiller, M., Lopez, A., Koltun, V., Dosovitskiy, A.: End-to-end driv-
ing via conditional imitation learning. In: 2018 IEEE International Conference on
Robotics and Automation (ICRA). pp. 1-9. IEEE (2018)

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: An open
urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot
Learning. pp. 1-16 (2017)

Haavaldsen, H., Aasboe, M., Lindseth, F.: Autonomous vehicle control: End-to-
end learning in simulated urban environments. In: Symposium of the Norwegian
AT Society. pp. 40-51. Springer (2019)

Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization (2014)
Krizhevsky, A., Sutskever, 1., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in neural information processing systems.
pp. 1097-1105 (2012)

Onderzoeksraad voor Veiligheid: Wie stuurt? Verkeersveiligheid en automatisering
in het wegverkeer. Published online (2019)

OpenDRIVEL.4: Format specification, rev. 1.4. Published online (2015)

SAE International: Automated driving — levels of driving automation are defined
in new sae international standard j3016. Published online (2014)

	End-to-end Imitation Learning for Autonomous Vehicle Steering on a Single Camera Stream

