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Abstract. “Team Sweden” is a multi-university team competing in the
Sony legged robot league of RoboCup since 1999. This paper shortly
describes the preparation of the Team Sweden entry for RoboCup 2003.
The main innovations with respect to the previous year are: (i) higher-
stance walking style, (ii) cooperative ball perception, and (iii) dynamic
role assignment.

1 Introduction

“Team Sweden” is a cooperative effort which involves universities in Sweden and
abroad. In 2003, the sites of activities are: Orebro University (coordinator), Lund
University, the Blekinge Institute of Technology, and the University of Murcia
in Spain. Since the birdth of Team Sweden in 1999, this distributed nature
has made the project organization demanding but has resulted in a rewarding
scientific and human cooperation experience. The Team identity this year is as
follows:

Team Leader: Kevin LeBlanc (kevin.leblanc@aass.oru.se)

Team Members: From Orebro: J.P. Cénovas, A. Dahlléf, and A. Saffiotti;
From Lund: M. Green, P. Mérck, J. Malec, and S. Nowaczyk; From Blekinge:
N. Forsman, S. Johansson, and T. Samuelsson; From Murcia: F. Bas, D. Her-
rero, and H. Martinez.

Team home page: (includes on-line publications)
http://www.aass.oru.se/Agora/RoboCup/.

We had two main requirements in mind when we started to work on RoboCup:

1. Our entry should effectively address the challenges of uncertainty in this do-
main, where perception and execution are affected by errors and imprecision;
2. it should illustrate our research in autonomous robotics, by incorporating
general techniques that can be reused in different robots and environments.
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Fig. 1. The variant of the Thinking Cap architecture used by Team Sweden.

While the first requirement, could have been met by writing some ad hoc compe-
tition software, the second one led us to develop principled solutions that drew
upon our current research in robotics, and that pushed it further ahead.

2 Architecture

Each robot uses the layered architecture sketched in Fig. 1. This is a variant of
the Thinking Cap.! The lower layer provides an abstract interface to the sensori-
motoric functionalities of the robot. The middle layer maintains a consistent rep-
resentation of the space around the robot (PAM, Perceptual Anchoring Module),
and implements a set of robust tactical behaviors (HBM, Hybrid Behavior Mod-
ule). The higher layer maintains a global map of the field (GM, Global Map)
and makes real-time strategic decisions (RP, Reactive Planner). Radio commu-
nication is used to exchange position and coordination information with other
robots.

! The Thinking Cap is an framework for building autonomous robots
jointly developed by Orebro University and the University of Murcia. See
http://www.aass.oru.se/"asaffio/Software/TC/.



3 Motion control

The Commander module accepts locomotion commands from the HBM in terms
of linear and rotational velocities, and translates them to an appropriate walking
style. This simplifies the writing of motion behaviors, that are easily portable
between different (legged and/or wheeled) platforms. The Commander module
also controls the head motion, and implements several types of kicks.

Our walking styles are based on the code for parametric walk created by the
University of New South Wales (UNSW)[3]. We have modified the UNSW walk-
ing style in order to inprove speed and to maintain a higher posture. The higher
posture results in an improved estimate of the ball position since the camera
can still track the ball even when this is very near to the body of the robot.
Moreover, the front legs are less advanced with respect to the body, resulting
in less risk to hit the ball by mistake when approaching it. Finally, the more
stretched position of the legs reduce the risk of the legs of two robots getting
entangled when the robots are side by side.

4 Perception

The locus of perception is the PAM, which acts as a short term memory of the
location of the objects around the robot. At every moment, the PAM contains
the best available estimate of the position of these objects. Estimates are up-
dated by a combination of three mechanisms: by perceptual anchoring, whenever
the object is detected by vision; by odometry, whenever the robot moves; and
by global information, whenever the robot re-localizes. Global information can
incorporate information received from other robots, e.g., about the ball position.

Object recognition in the PAM relies on three techniques: color segmentation
based on a new fast region-growing algorithm that takes as seeds the output from
hadware color detection [8]; model-based region fusion to combine color blobs into
features; and knowledge-based filters to eliminate false positives. For instance,
a green blob over a pink one are fused into a landmark; this may rejected,
however, if it is too low over the field. Special-purpose vision algorithms have
been implemented to solve the technical challenges.

The PAM also takes care of selective gaze control, by moving the camera
according to the current perceptual needs, communicated by the HBM [6].

5 Self-Localization

Self-localization in the Sony legged robot league is a challenging task: odometric
information is extremely inaccurate; landmarks can only be observed sporadi-
cally since a single camera is needed for many tasks; and visual recognition is
subject to unpredictable errors (e.g., mislabeling). To meet these challenges, we
have developed a new self-localization technique based on fuzzy logic, reported in
[1]. This technique only needs qualitative motion and sensor models, can accom-
modate sporadic observations during normal motion, can recover from arbitrarily



Fig. 2. The fuzzy self-localization grid.

large errors, and has a low computational cost. The result of self-localization is
used to make strategic decisions inside the RP, and to exchange information
between robots in field coordinates.

This technique, implemented in the GM module, relies on the integration of
approximate position information, derived from observations of landmarks and
nets, into a fuzzy position grid — see Fig. 2. To include egomotion information,
we dilate the grid by a fuzzy mathematical morphology operator. Using this
technique, our robots could maintain a position estimate within £20c¢m and
+10° from the true position in average game situations. Localization was done
continuously during normal action. stopping the robot to re-localize was only
needed occasionally, e.g., in case of major errors due to an undetected collision.

6 Behaviors and behavior selection

The HBM implements a set of navigation and ball control behaviors realized us-
ing fuzzy logic techniques and organized in a hierarchical way [5, 7]. For instance,
the following set of fuzzy rules implement the “GoToPosition” behavior.

IF (AND(NOT(PositionHere), PositionLeft)) TURN (LEFT);
IF (AND(NOT(PositionHere), PositionRight)) TURN (RIGHT);
IF (OR(PositionHere, PositionAhead)) TURN (AHEAD);
IF (AND(NOT (PositionHere), PositionAhead)) GO (FAST);

IF (OR(PositionHere, NOT(PositionAhead))) GO (STAY);

More complex behaviors are obtain by composing simpler ones using fuzzy
meta-rules that activate concurrent sub-behaviors. Behaviors also incorporates
perceptual rules used to comunicate the current perceptual needs to the PAM.
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Fig. 3. Sharing of information. Combining two imprecise estimates into an accurate
one.

Game strategies for the players are dynamically generated by the RP. This
implements a behavior selection scheme based on the artificial electric field ap-
proach (EFA) [4]. We attach sets of positive and negative electric charges to the
nets and to each robot, and we estimate the heuristic value of a given field situ-
ation by measuring the electric potential at some probe position — for instance,
the position of the ball. This heuristic value is used to select the behavior that
would result in the best situation.

Each robot can assume one of three different roles: attacker, defender or
supporter (waiting for a pass). Roles are implemented in the RP by modifying
the charges, the probes and the set of applicable behaviors. Role selection is
based on the current field situation and is done independently by each robot.
Consistency of role selection is guaranteed by the fact that the robots share the
same information about the objects in the field, as explained below.

7 Information sharing

We use radio communication to exchange information among the robot about the
position of the objects in the field, especially the ball. Information from different
robots is fused into the GM using an original approach based on fuzzy logic,
reported in [2]. In our approach we see each robot as an expert which provides
unreliable information about the location of objects. The information provided
by different robots is combined using fuzzy logic techniques, in order to reach
agreement between the robots. This contrasts with current techniques, which
average the information provided by different robots, and can incur well-known
problems when information is unreliable.

Fig. 3 shows an example of cooperative ball localization. The left window
shows the ball grid resulting from the sharing of information. Darker cells have



higher degrees of possibility. The two triangles represent the robot’s estimates of
their own positions. The three small circles near the bottom represent the point
estimates of the ball position according to each robot (lighter circles) and as a
result of the fusion (darker circle). The middle and right windows show the self-
localization grids for robots 1 and 2, respectively. In this example, both robots
happen to have a rather poor self-localization, as can be seen from the blurring
of the two individual self-grids. Correspondingly, the individual estimates for the
ball positions are relatively inaccurate, and quite different from each other. When
intersecting the fuzzy sets, however, we obtain a fairly accurate fused estimate of
the ball position (left window). Note that just averaging the estimates of the ball
position produced by the two robots indipendently would result in an inaccurate
estimate of the ball position.

8 Conclusion

The general principles and techniques developed in our research could be success-
fully applied to the RoboCup domain. In particular, fuzzy logic was beneficial
in writing robust behaviors, providing reliable self-localization, and achieving
cooperative perception. The electric field approach proved to be a flexible way
to encode high level strategies for different player roles.
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