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1 Introduction

We are interested in learning issues such as action selection, observation strategy
without 3D-reconstruction [1–3], emergence of walking, and cooperative behav-
iors. Basic implementations, such as vision, actions, and walking, are mostly
derived from our previous work [4] and the actions and walking of the United
Team of Kyushu (part of their work was based on the University of New South
Wales one). Then we briefly describe our current work in cooperative behaviors
in this paper.

In a multi robot system, it is expected that communications or information
sharing between robots help acquiring the knowledge about their environment.
When multi robots communicate with each other, they seem to need a reference
coordinate system to exchange their information about the environment. In case
of mobile robots, the world coordinate or the coordinate fixed to the environ-
ment are often used. To convert the observation to the world coordinate, each
robot localizes itself. Assuming that localization errors are small or neglectable,
information exchange between robots have no problem. However, localization
errors often become too large to ignore.

Methods to localize itself and to acquire knowledge about environment by
shared information from other robots are proposed [5, 6]. They use geometric
constraints between several robots which are commonly observed from each
other, calculates their positions, and share the environment map. The errors
of self-locations are minimized so that shared observations conform to geometric
constraints. To observe several robots at one time, they used omni-directional
cameras rather than normal cameras with limited view angles. However, in case
of robots with the latter cameras, there will be many situations that they will
not be able to observe others. Then it becomes difficult to use such methods.

Although the representation of self-location by probabilistic form and use of
beliefs are proposed and commonly used in order to handle the error of self-
localization, it is difficult to obtain the accurate model to merge the maps by
two or more robots and to maintain the shared map. Simple weighted average
of information by robots may work when the errors are small. However when
one of the robots has a large error on its self-localization it will affect the shared
map used by all other robots. Designing weights or accuracy measurements to
prevent such a case is difficult because there are always errors that is unknown
to the designer and in many situations errors are not detectable by the robot



itself. Then, we propose a subjective map based approach rather than shared
map based one. A subjective map is for a multi-agent system to make decisions
in a dynamic, hostile environment. It is maintained by each robot regardless
of the objective consistency of representations among other agents. Owing to
its subjectivity, the method is not affected by other agent’s information which
may include not negligible errors due to dynamic changes in the environment
caused by accidents. A potential field is defined on the subjective map in terms
of subtasks such as ball reaching and shooting, and is dynamically updated to
make a decision to act.

2 A subjective map generation

Let us assume that there are two robots (robot A and robot B) and one object
(a ball) in an environment. These robots have localized themselves and they are
watching at the ball but they cannot observe each other due to their limited
view angles (Fig.1). If we ignore the localization errors and put information on
a map, there will be contradiction about the ball position as shown in Fig.2(a).

If we use the weighted average of the ball location x̂,

x̂ =
BσAx + AσAx

Aσ + Bσ
, (1)

where Ax, Bx, Aσ, Bσ are the ball positions and their deviations estimated by
robots A and B, respectively, assuming Gaussian distributions. Then we have a
map shown in Fig.2(b). There is no contradiction in this map. However, this is
not the true ball position in the world coordinate system. When robot A has
correct estimation while robot B has incorrect one, robot A’s estimation become
worse because of the information sharing. Also there are cases the relative posi-
tion to the robot itself is more important than the absolute position in the world
coordinate system. Further, it becomes more complex when the robots can ob-
serve each other. If we can assume the simultaneous observations from several
robots are available then we could use geometrical constraints and reduce errors
[5, 6]. In case of robots with limited view angle cameras and they are moving,
we cannot assume it.

Here, we propose that each robot constructs its subjective map and deter-
mines its action based on it. For example, robot A believes its observation for
the ball and calculate position of robot B from the relative position between the
ball and robot B as,

ˆAxA = AxA, (2)
ˆAxQ = Axball, (3)
ˆAxB = BxB + (Axball −B xball). (4)

Fig.3 shows the subjective maps of robots A and B. With these subjective maps,
although reduction of localization error is not achieved, robot A is not affected
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Fig. 1. There are two robots watching at a ball.

by the localization error of robot B and can use the information from robot
B. The subjective map method is expected to work for such a task and the
environment that the relative positions is important rather than absolute ones,
localization errors sometimes become large, and geometrical constraints are hard
to use. In the following experiments, we compare the action decisions by shared
map with average position method and decisions by subjective maps in a robot
soccer environment with four legged robots. Robots determine their actions from
potential field calculated from a shared or its subjective map.

3 A potential field for making decisions

We define a potential field which depends on a subjective map of a robot. Each
robot calculates the field from the map and determine its action according to
the field. A robot has four actions, move forward, turn left, turn right and shoot
a ball. It takes such an action that climbs the potential field if the ball is far and
shoot it to the opponent goal as it approaches close.

The potential field V (x, y) of robot i consists of three potentials. One is VF

which is the function of the position of a teammate j, iP j = (ixRj ,
i yRj ). The

second is VO which is the function of the position of an opponent k, iRk =
(ixk,i yk). The last one is VB which is the function of the ball position iQ =
(ixQ,i yQ). All the positions are derived from its subjective map. In the following,
we give example potentials based on the setup shown in Fig.4.

Potentials by a teammate VF and opponent VO are calculated by,

VF (x, y) = −
∑

j(j 6=i)

f(iP j), (5)

VO(x, y) = −
∑

k

f(iRk), (6)
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Fig. 2. Constructed map with assumption of no localization error and with averaged
locations

x

y

data correction

data correction

(a) the subjective map of robot A

x

y

data correction
data correction
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Fig. 3. The subjective map of robot A and robot B.
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(a) VF of robot A (b) VO of robot A

Fig. 5. Potential diagram VF and VO of robot A.

where,

f(P (x̄, ȳ, σx, σy)) =
1

2πσxσy
e
− 1

2 ·
(
( x−x̄

σx
)2

+
(

y−ȳ
σy

)2
)
. (7)

These potentials are to avoid robots in the field. Fig.5 shows the VF and VO of
robot A in the example setup.

The potential from the ball is defined so that the robot closer to the ball will
reach ball, others will go to the position where it can back up the shoot. The
potential function of robot i is switched depending on if i is the closest to the
ball or not,

VB(x, y) =
{

f(iQ) (robot i is the closest to the ball),
f(iQ′) (otherwise), (8)
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Fig. 6. Potentials from the ball (VB)

where iQ is the position of the ball, and iQ
′

is the support position. iQ′ is
defined as,

iQ′ =
1
2

(
iQ + G

)
, (9)

where G is the position of target goal. The example potentials of robots A and
B are shown in Fig.6. Final potential fields are shown in Fig.7.

We have been experimenting this approach with the robots and the field
for RoboCup SONY Legged Robot League 2002. Our current self-localization
program for the experiments is based on Carnegie Melon University’s CM-
Pack’01 [7]. Its approach is a Kalman-filter based self location tracking with
multi hypothesis which start from different points in the field. Experimental
results will be presented in elsewhere.
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Fig. 7. Final potential fields of robots
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