
The Kyushu United Team 2003 in the Four Legged
Robot League

Yoshihiro Yasutake, Kentaro Oda, Toshiyuki Ishimura, Takeshi Ohashi

Dept. of Artificial Intelligence, Kyushu Institute of Technology
kato@mickey.ai.kyutech.ac.jp

Abstract. This paper presents our approach to the Sony Four Legged Robot
League of the RoboCup 2003. Our system consists of inter-robot communication,
meta planning, base-level planning, vision, localization, behavior and walking
modules. We introduce several techniques for these modules: the images based
cooperation, TSL color space for robust color classification, accurate localization
through observing the nearest maker and enhanced parameterized walk. We also
develop a set of powerful tools such as a Color Classification Tool, an Interactive
Robot Control Environment and a Simulator. The color classification tool allows
us to extract accurate thresholds fast. The interactive robot control environment
allows us to control robot’s behavior while it is running, and it also provides us
functionality to observe robot’s internal states. The simulator allows us to test a
robot’s program effectively in the ideal environment where specified conditions
can easily be reproduced.

1 Team Development

1.1 Team members

[Kyushu Institute of Technology (KIT)]
Professors

Dr. Takeshi Ohashi,Dr. Takaichi Yoshida
Graduate Students

Yoshihiro Yasutake, Kentaro Oda, Toshiyuki Ishimura, Takeshi Kato,
Kazuteru Matsumoto, Hiroki Najima, Keiichi Kii,
Hideo Tateiba, Atsushi Hashimoto, Takayuki Kadowaki,
Kana Imamura, Masayuki Nitta

[Fukuoka Institute of Technology (FIT)]
Professors

Dr. Takushi Tanaka, Dr. Masaru Ishii, Dr. Hiroaki Shirakawa
Undergraduate Students

Sho Kawakami, Takahiro Kudo, Yoshitake Furuie

1.2 Team introduction

We, the highly involved members of the united team, are from Kyushu Institute of
Technology (KIT) and Fukuoka Institute of Technology (FIT). KIT team is organized



2

into two groups. One is involved in reinforcement learning, image processing and has
participated in the middle league in 1999 and 2000. The other consists of experts in dis-
tributed systems and object-oriented databases who involve applying their techniques
for robotics field.

For more information, please visit our web page:
http://www.asura.ac/

The year 2001 four legged league of the RoboCup was our first participation, and
our aim was to reach the world competitive level. As the year 2000 winner, the UNSW
team had successful result due to their technical advances in locomotion, vision, local-
ization and repertoire of behavior [1], our basic system was based on their successful
sophisticated system. Since it was not sufficient, we introduced some techniques and
tools. This year 2003 in RoboCup Japan open held at Niigata, we successfully got the
first position.

The strategy of the year 2003 was to build collaboration among the robots, and
fast development and tune-ups of strategies and behavior. So we introduced some new
techniques and tools.

Fig. 1. Three-dimensional cumulative
histograms of the soccer field pictures

Fig. 2. The Color Classification Tool

2 Vision

The vision system must be robust and accurate since it is the main source of the en-
vironmental information. Its main task, the color classification is to classify each pixel
into the eight colors which appear in the field, for example, orange for the ball, blue,
pink and green for the markers, yellow and blue for the goals and dark blue and dark
red for the robots. As far as we know in the four legged league, the color classifica-
tion was achieved by the built-in hardware color lookup table or software approaches
like UNSW [1]. Both of them are based on YUV color space, U and V represent color
and Y is luminance, which is native color space in the NTSC standard (YIQ for exact).
Since historically reasons, YUV color space is not suitable for classify the colors; it



3

was designed for keeping compatibility with monochrome televisions. Consequently,
the luminance change seriously affects U and V components. To overcome this prob-
lem, we apply the TSL color space [2] for the color classification. T stands for tint,
S for saturation and L for luminance. HSV or HSI spaces can be called similar color
spaces in respect to T and H represent hue. TSL color space was originally designed
to extract skin color from complex backgrounds. The advantage of TSL color model
is that it can extract a given color robustly while minimizing luminance influence in
compare with YUV, HSV or HSI color spaces. We can classify a given color reasonably
accurate with only determining 6 parameters: minimum and maximum thresholds of
T, S and L components (linear separation), whereas the UNSW team uses polygons to
capture the colors on a given non-linear U-V plane (total up to 14 planes) with learn-
ing algorithm [1]. The dark blue color several teams reported difficult to separate, can
be separated reasonably. Through minimizing the number of parameters, we can adapt
the parameters easy and fast without complex tasks such as optimizing functions and
learning algorithms. This advantage gives us the faster adaptation and manually tune-
ups of the color table to a new lighting environment, for example, we will take about
15 minutes to whole setup including taking sample pictures. Figure 2 shows our color
classification tool built with Java. Figure 1 demonstrates three-dimensional cumulative
histograms of the soccer field pictures in RGB, YUV and TSL. In TSL color space, the
colors are well clustered in the space. This tool will be available public, please visit
http://www.asura.ac/.

3 Localization

Localization is the task to locate a robot itself in the field through observing 6 mark-
ers and goals. We employ stochastic gradient descent localization [1], which is able
to locate the robot with one marker observation. However, we experienced significant
amount of the error occurred when the robot could not see near markers. Because a far
marker occupies tiny area in the image, the estimated distance of the robot to the far
marker is unreliable. For example, 1 pixel height error in the pixel area of the furthest
marker could lead about 20 cm errors in the estimated distance. Therefore, we intro-
duced an observation strategy such that the robot try to see the nearest marker if higher
accuracy is needed.

To achieve collaboration among the robots, the sharing information about posi-
tions of the ball and the teammates are important. For the collaboration, we introduce
communication among the robots via the TCPGateway. Using this communication, our
robots can share information about the ball, and the other robots in the field. Each of
robot is keeping relative positions of any other robots and objects in the field, and each
of which possesses relative position error. This position error will occur with the poti-
sion error of any objects possessed by another robot when sharing postision information
among robots. We have to reduce confidence of the shared information accordingly.
These confidences are calculated as follows:

cf =
ocf × rcf

1000
(1)



4

Robot A
Robot B

Estimate direction
of the enemy that
is found by RobotB

Estimate direction
of the enemy that
is found by RobotA

This ellipse shows the area
that the enemy probably exists.This intersecting point

is the estimated 
position of the
enemy.

Fig. 3. Estimation about enemy’s position

where cf is confidence of the shared information, ocf is confidence of the object’s
information when it was found, and rcf is the confidence of information about the
robot that found the object.

When some robots can see the ball simultaneously, we can reduce position errors of
the ball using weighted average method as follows:

bx =
∑

(bcfi × rcfi × bxi)∑
(bcfi × rcfi)

(2)

by =
∑

(bcfi × rcfi × byi)∑
(bcfi × rcfi)

(3)

bcf =
∑

(bcfi × rcfi)
1000 × num

(4)

where bx, by and bcf are x/y-positions and confidence of the ball estimated by above
mentioned method respectively, rcfi is confidence of i-th robot that found the ball,
bxi, byi and bcfi are x/y-positions and confidence of the ball estimated by i-th robot
respectively. The num is the number of robots that found the ball.

The position of an enemy are also important for strategies. However the position
of the enemy cannot estimate by a single image, because distance information of the
enemy is not reliable. If another robot can see the same enemy, the enemy’s position
can be estimated by combining the information of the other robot. Figure 3 shows how
to estimate the enemy’s position in that case. In this figure, RobotA and RobotB found
the same enemy. Two ellipses show the area where the enemy is in, and two arrows
show the estimated enemy’s direction. The enemy’s position can be estimated using the
intersecting point of the lines that are drawn from the detector’s position to the enemy’s
direction.

4 Locomotion

Highly sophisticated locomotion module parameterized walk[1] invented by UNSW
allows us to control the robot with three degree of freedom; forward, left and rotation
parameters. Despite of its power, we have to find out a set of offset parameters which



5

Fig. 4. The Monitoring Tool

defines the posture during a walk. Since posture seriously affects stability and speed, it
has to be determined carefully. UNSW chooses a set of offsets according to the context
of game; aggressive mode takes faster but unstable offsets for approaching the ball
around where seems to be no enemy. Our approach is that according to a given three
control parameters (forward, left and rotation), enhanced parameterized walk module
chooses the most suited a set of offset parameters automatically so as to gain speed
and stability. This approach guarantees the offsets to be used as optimal. This enhanced
parameterized walk was used for goalie but not for attacker because the offset transition
sometimes causes the robot unstable. As a future work, a smooth transition of the offsets
and automatic offset extraction (through like learning algorithms) are necessary.

5 Interactive Robot Control Environment

In our observation, the most time-consuming tasks of the robots’ programming in the
four-legged league are the strategy programming, the calibration of the walk, the vision
and the localization, and exploration of new behavior, gaits and postures. The strategy
programming is very complex, and it includes the behavior tuning. These tasks tend to
apply trial-and-error iteration intensively. By minimizing the iteration time, we can be
able to find a better strategy, a better calibration and new behavior.



6

In order to minimize the iteration time, we introduce an Interactive Robot Control
Environment. This environment consists of two tools: one is the interpreting language
to control robot’s behavior dynamically, and the other is a monitoring tool.

We introduce the scheme interpreting language, a small and clean lisp dialect, in or-
der to control robot’s behavior dynamically. According to the four-legged league rule in
year 2002, wireless communication has been introduced. Then the collaboration among
the robots become more important, and caused to become the strategy programming
more difficult. In order to develop the strategy programs in an easy way, we choose the
scheme interpreting language, as it possesses high abstraction power. The scheme inter-
preting language can be used for parameter calibration of walking and tuning behaviors,
and postures. And also it can be used to write the strategies in a highly abstracted form.
Despite of its abstraction power, we have to pay the penalty of GC (garbage collection)
which gives interruption while computing the strategy. To overcome this problem, the
strategy is partially written from the scheme language and the other part is written from
the C++ language in order to gain appropriate power and efficiency of the computation.
Using the scheme interpreting language, we can send a new program via wireless com-
munication while a target robot is running. Then the robot changes its behavior on the
fly. This is done by invoking a single keyboard short-cut on emacs editor. This greatly
improves the efficiency of the development.

It is also important to observe robot’s internal states such as the results of the color
classification module, the results of the localization module and parameters that decide
robot’s behavior. In order to observe the robot’s internal states, we develop a monitoring
tool. Our monitoring tool observes the states as follows:

– The color-segmented image that the robot is seeing now.
– The localization results such as the estimated position of the robot, and the positions

of the other objects in the field.
– Labels and values of the parameters that decide the next behavior. For example, the

monitoring tool displays the current role of the strategy and current behavior.

The observation of the robot’s internal status allows us to find the reason of the robots
if they execute in an undesired behavior. The visualization of the color-classification re-
sults allows us to check thresholds easily. The robot sends these states to the monitoring
tool via wireless communication. Figure 4 shows our monitoring tool build with Java.

6 Simulator

Robots’ programming are difficult because of their complexity, continual changes of
environments, limitation of resources and so on. Considering environment changes, for
example, the changes of the lighting condition affect robot’s behavior seriously. It is
difficult to clear problems of the robot’s strategies in the real environment because in
each testing time sensory values such as camera images and the effectors will change. In
order to clear the problem, it is needed to check strategies in exactly same environment.
There are lack of resources such as robots and fields, so many developers have to share
them. To maximize the efficiency of the development, it is needed to provide enough re-
sources. Within the development cycle of the soccer robots, there are some overheads:



7

Fig. 5. The Simulator Server

copying programs into a memory-stick, and the start-up time of a robot. These over-
heads cause many difficulties for developing the robots’ strategies. Then it is needed to
minimize these overheads in order to maximize the efficiency of the development.

To provide the ideal environment that can be reproduced, to get rid of any limita-
tions of resources, and to minimize the overheads, we develop a Simulator. The purpose
of our simulator is to improve the efficiency of the development of vision-based robots’
strategies. Therefore the simulator synthesizes virtual camera images and it simulates
the robot’s motion in three degree of freedom such as Forward, Left (cm/cycle) and
Rotation (degree/cycle). The simulator provides 3D virtual soccer field environment,
which accommodates multiple robot agents (virtual AIBOs) connected via TCP/IP. Fig-
ure 5 shows our simulator build with Java and Java3D.

The simulator consists of a simulation server and clients (the virtual robot). Figure
6 shows the simulator architecture. The simulator works as follows:

1. The server synthesizes agent’s camera images of the virtual environment and sen-
sory values such as tilt and pan.

2. Then the server sends the images and the sensory values to simulator clients.
3. The stub of each client receives them and passes to client’s strategy program.
4. Then the strategy program decides next behavior, and sends back to the stub as a

command of the Parameterized Walk.
5. The stub sends it to the server.
6. Then the server updates the position of the robot agent in the virtual environment.



8

Simulation
Server

virtual
robot RealRobot

PWalk
OPEN-RStub

The Same
Strategy Program

synthesized
camera image

PWalk
commands

Real Robot

Fig. 6. Simulator Architecture

Using the stub, the same robot agent’s strategy program is run in both the simulator
environment and the real robot environment. The simulator allows us to develop the
strategy programs without using the real robots. Then it allows us to reduce the over-
heads mentioned above. The server and the robot agents communicate via LISP-like
strings. For example, a command of the Parameterized Walk is sent to the server as
follows:

(P 3.0 0.0 0.0 40 0.0 0.0 0.0 8 0)

where p means a command of the Parameterized Walk, and rest of the parameters mean
forward, left, rotation, number of cycle , head’s tilt, head’s pan,
types of walking style, and types of head motion. Using LISP-like
string, it is easy to extend the protocol between the server and the agents.

The simulator provides us some powerful functionalities. They are as follows:

– Initialization script language
– Communication among the agents
– Visualization of view frustum
– Message Filtering
– Sending pre-acquired images

These functionalities improve the efficiency of the development of the strategies greatly.

Initialization script language: The software robot agents can anytime join into the vir-
tual environment provided by the simulation server. It is also possible to add balls into
the environment anytime. The simulator provides a simple script language to specify
initial positions of the objects such as the ball and the robots. This allows us to test the
agent’s strategy in the exactly same environment because the simulator can reproduce
it repeatedly.

Communication among the agents: The simulator provides communication among the
agents instead of the TCPGateway. With this communication functionality, it is possible
to develop a strategy to collaborate the agents without using the real robots.



9

Visualization of view frustum: In the development of the soccer robots, enhancement
of head’s motions is important to find the ball efficiently and to accomplish accurate
localization. The simulator provides functionality to visualize the view frustum that
each of the agents is now seeing. This visualization is useful in order to tune-up head’s
motion.

Message Filtering: The simulator clients send commands of the Parameterized Walk
to the server as messages. The Message Filtering functionality means that the server
filters out undesired messages. For example, when we want to tune-up the robot’s head
motions, the server filters out all the messages received from the agent except the head
motions. When we also want to examine an only one robot agent in the environment
among the multiple robot agents, the server filters out all the messages except ones
received from the target agent. The Message Filtering functionality allows us to choose
the desired ones to be examined in the virtual environment.

Sending pre-acquired images: The simulator supports to send pre-acquired images of
a real environment as camera images to a robot agent. These images are acquired from
the monitoring tool might contain some noises. Using this functionality, we can eval-
uate the Noise-Elimination Functionality of the Vision Module without using the real
robots. In fact, we enhance the noise elimination module to avoid blue/yellow goal
noises appeared on the edges between the white lines and a green field.

7 Conclusion

With these techniques, we could get successful results, and became the best 8 position
in the RoboCup 2002 competition game. These techniques improve the development
efficiency and provide an infrastructure for collaboration among the robots. However,
there’re some problems left.

The first one relates finding thresholds of the color classification. We apply TSL
color space for the color classification to minimize parameters. In fact, in a fluorescent-
lighted environment, we can classify colors using only 6 parameters: minimum and
maximum thresholds of T, S and L component. However, when a color temperature of
the environment is low, we cannot adjust white-balance correctly. Hence it makes the
color classification more difficult with only 6 parameters. We extended color classifi-
cation module to accept a few set of thresholds as a single color. This means that the
extraction of thresholds become more difficult. We are considering to apply learning
algorithms to the color classification, or finding better color space that make extracting
thresholds more easily.

The second one relates collaboration among the robots. To accomplish collabora-
tion, we have to find more efficient behavior such as collision avoidance with other
robots and passing the ball. The behavior for collaboration requires more accurate lo-
calization and information sharing. With wireless communication, our robots can share
information such as the position of the ball. Position information of the objects such as
the ball and the other robots, is based on the detector’s position and it might contain
position errors. As a result of sharing this information, the resultant information may



10

contain more errors. We apply weighted-average method to reduce these errors, and also
apply estimation method of an enemy’s position. However, we have to find methods to
share strategic information such as role and intention.

We enhanced several modules originally developed by the UNSW team, and we
would like to express our sincere thanks to the UNSW team efforts.

References

1. Bernhard Hengst, Darren Ibbotson, Son Bao Pham, John Dalgliesh, Mike Lawther, Phil
Preston and Claude Sammut, The UNSW RoboCup 2000 Sony Legged League Team, in
RoboCup 2000: Robot Soccer World Cup IV, Springer-Verlag, pp.64-75, 2000

2. Jean-Christophe Terrillon and Shigeru Akamatsu, Comparative Performance of Different
Chrominance Spaces for Color Segmentation Detection of Human Faces in Complex Scene
Images, in Proc. of Vision Interface’99, Canada, pp.180-187, 1999


	The Kyushu United Team 2003 in the Four Legged Robot League
	1 Team Development
	1.1 Team members
	1.2 Team introduction

	2 Vision
	3 Localization
	4 Locomotion
	5 Interactive Robot Control Environment
	6 Simulator
	7 Conclusion


