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This report introduces the development and implementation of both
automatic and manual control systems, camera calibration, and the
deployment of state-of-the-art (SOTA) models on Frodobots vehicles
equipped with IMU, wheel odometry, cameras, and GPS sensors. We
analyze the fundamental parameters of the sensors and employ an Ex-
tended Kalman Filter (EKF) to fuse visual odometry (VO) with other
odometry data to achieve automated navigation to the greatest extent
possible. Additionally, the report discusses the calibration procedures
and considerations for actual deployment.
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1 Introduction

This report provides a detailed overview of the algorithms used to enhance EarthRover’s
autonomous control, perform precise camera calibration, and design data recording
methodologies. It also explores methods for applying advanced visual SLAM, object
detection, and depth estimation to the dataset. Our focus is on reducing GPS errors,
managing sensor noise, and improving localization accuracy by utilizing an Extended
Kalman Filter (EKF) for sensor fusion. The goal is to automate dataset recording as
much as possible and to demonstrate some challenges compared to existing methods [4].

2 System Overview

The Frodobot’s EarthRover Zero is a lightweight robotic platform designed for au-
tonomous navigation and perception tasks. This section provides an overview of the
hardware components, computational resources, and the software architecture utilized
in this project.

2.1 Hardware Components

• Frodobots EarthRover Zero: A compact robotic platform from Frodobots
(https://shop.frodobots.com/).

• Inertial Measurement Unit (IMU): Provides 9-degree-of-freedom (DOF) data,
including accelerometer, gyroscope, and magnetometer readings.

• Wheel Encoders: Measure the rotational speed (RPM) of each wheel, providing
wheel odometry data.

• Cameras:

– Front Camera: Captures video at 20 FPS with a resolution of 1024x576
pixels.

– Rear Camera: Captures video at 20 FPS with a resolution of 540x360 pixels.

• Global Positioning System (GPS): Provides latitude and longitude data at 1
Hz frequency.

• Microphone and Speaker: Used for audio input and output at a sampling rate
of 16000 Hz.

2.2 Computational Resources

The algorithms were tested on a single Frodobots car using a laptop with the following
specifications:

• Processor: AMD Ryzen 9 7945HX

https://shop.frodobots.com/
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• Graphics Card: NVIDIA GeForce RTX 3070

• Memory: [Specify the amount of RAM, e.g., 32 GB DDR4]

Due to the limited computational resources of the laptop, real-time processing was
challenging. We also considered using more powerful GPUs like the NVIDIA RTX 4090
or H100 available on our cluster computers. However, the communication time between
the robot and the cluster posed a significant constraint, potentially introducing delays
that are detrimental to real-time control.

2.2.1 Limitations and Considerations

• Processing Power: The RTX 3070 provides limited computational capabilities
compared to higher-end GPUs, affecting the performance of computationally in-
tensive tasks like visual odometry.

• Communication Latency: Offloading computations to a remote cluster intro-
duces latency due to network communication times, which can negatively impact
the responsiveness of the control system.

• Real-Time Requirements: Autonomous navigation requires timely processing
of sensor data and execution of control commands. Balancing computational de-
mands with hardware limitations is essential.

2.3 Vehicle Specifications

• Weight: Less than 5 kg (11 lbs).

• Maximum Speed: The robot reaches its maximum speed of approximately 3 m/s
within the first second when the linear velocity command is set to 1. Afterwards,
it maintains a steady speed of 3 m/s (or 2.7 m/s in outdoor conditions) from the
second onward. During turns, when the linear and angular velocities are set to 1,
the linear speed decreases to 2 m/s.

• Mobility: Capable of moving forward/backward and turning in place.

• Connectivity: Equipped with 4G connection for consistent data transmission
across different environments.

• Stability: The camera’s stability is somewhat poor, likely due to the high position
of the camera and the soft material of the connecting bridge. A metal support was
added to the soft bridge of the original design, but some camera shake persists,
undetected by the IMU. This issue can be mitigated with improved estimation
through visual odometry.



Section 3 Sensors and Data Analysis 3

2.4 Software Architecture

The software system is built upon the official SDK provided for remote access and control
of the robot. The architecture includes:

• Control Interface: Receives control commands and sends them to the robot.

• Sensor Data Acquisition: Collects data from the GPS, IMU, wheel encoders,
and cameras.

• State Estimation Module: Implements the EKF for sensor fusion.

• Visual Odometry Module: Processes camera images to estimate motion.

• Navigation and Control Module: Determines control actions based on the
estimated state and target positions.

A block diagram of the system architecture is shown in Figure 1.

GPS

Gyro

Camera

Data
Fetch

EKF
State

Estimation

Control
Module

Target
Position

Vehicle Vehicle
Motion

Vehicle
State

Figure 1: System Summary

3 Sensors and Data Analysis

Understanding the characteristics and limitations of the sensors is crucial for accurate
state estimation and control. This section analyzes the data from each sensor and
discusses their noise characteristics.

3.1 GPS Sensor

The GPS provides latitude and longitude readings at a frequency of 1 Hz. However,
GPS data is susceptible to various errors and noise [1], which can significantly impact
localization accuracy.
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3.1.1 GPS Errors and Noise Analysis

GPS errors arise from factors such as:

• Satellite Geometry: Poor satellite positioning can degrade accuracy.

• Atmospheric Effects: Ionospheric and tropospheric delays affect signal propa-
gation.

• Multipath Effects: Signals reflecting off surfaces cause inaccuracies.

The public website shows the GPS ”The robot is deemed to have successfully reached
the next checkpoint if it comes within 15 meters of that point, allowing for the tolerance
of noisy GPS data.”.

3.2 IMU Data

The IMU provides accelerometer data at 100 Hz, gyroscope data at 1 Hz, and magne-
tometer data at 1 Hz. The accelerometer and gyroscope data are used for estimating
linear and angular velocities.

3.2.1 Noise Characteristics

The IMU data contains high-frequency noise, particularly in the accelerometer readings.
A noise model is developed based on the sensor specifications and observed data.

3.3 Wheel Odometry

Wheel encoders measure the RPM of each wheel at an ideal frequency of 10 Hz. Wheel
slip and uneven terrain can introduce errors in odometry calculations.
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3.4 Camera System

The front and rear cameras capture images used for visual odometry and obstacle de-
tection.

3.4.1 Camera Calibration

Camera calibration is performed with OpenCV, based on Zhang’s method [5]. This
provides the intrinsic parameters of the camera model, which are essential for accurate
visual odometry and depth estimation.

Calibration Procedure:

1. Prepare a checkerboard grid and fix it in front of the robot.

2. Use the robot’s camera to capture images of the checkerboard from different angles
and positions.

3. Apply calibration algorithms to compute the camera’s intrinsic and extrinsic pa-
rameters.

3.5 Calibration Algorithm

Algorithm 1 Camera Calibration Procedure

Require: Checkerboard pattern fixed in front of the robot
Ensure: Calibrated camera parameters
1: Initialize calibration process
2: while Calibration not complete do
3: Capture image from the camera
4: Detect checkerboard corners
5: if Corners detected then
6: Add image points and object points for calibration
7: end if
8: Move robot to a new position
9: end while

10: Compute camera matrix K and distortion coefficients D using collected data
11: return K, D

Calibration Results:

The calibrated parameters include the camera matrix K and distortion coefficients
D:

K =

fx 0 cx
0 fy cy
0 0 1

 , D = [k1, k2, p1, p2, k3]
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These parameters are crucial for undistorting images and ensuring accurate measure-
ments in visual odometry and depth estimation.

4 Automatic Control System

The control system is responsible for navigating the vehicle towards predefined check-
points while avoiding obstacles and compensating for sensor inaccuracies.

4.1 Control Algorithm Design

The control algorithm employs a combination of proportional controllers for linear and
angular velocities.

4.1.1 Control Algorithm

Algorithm 2 Vehicle Control Algorithm

Require: Current state x, Target position (ϕtarget, λtarget)
Ensure: Control commands v, ω
1: Compute distance error d between current position and target
2: Compute desired bearing θdesired using:

θdesired = arctan 2 (sin(∆λ) cos(ϕtarget), cos(ϕ) sin(ϕtarget)− sin(ϕ) cos(ϕtarget) cos(∆λ))

3: Compute heading error ∆θ = θdesired − θ
4: Normalize ∆θ to [−π, π]
5: if |∆θ| > θthreshold then
6: v ← 0
7: ω ← Kθ ·∆θ
8: else
9: v ← Kp · d

10: ω ← 0
11: end if
12: Limit v and ω to maximum allowed values
13: return v, ω
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4.2 Extended Kalman Filter (EKF) for Sensor Fusion

The EKF is utilized to fuse data from the GPS, IMU, wheel odometry, and visual
odometry to provide an accurate estimate of the vehicle’s state [2].

4.2.1 EKF Algorithm

Algorithm 3 Extended Kalman Filter (EKF)

Require: ∆t, Initial state x0, Initial covariance P0

1: Initialize process noise covariance Q
2: Initialize measurement noise covariance R
3: for each time step k do
4: Prediction Step:

• Receive control input uk−1 = [vk−1, ωk−1]
⊤

• Predict state xk|k−1 using motion model

• Compute Jacobian Fk−1

• Predict covariance Pk|k−1 = Fk−1Pk−1F
⊤
k−1 +Q

5: Update Step:

• Receive measurement zk

• Compute innovation yk = zk −Hkxk|k−1

• Compute innovation covariance Sk = HkPk|k−1H
⊤
k +R

• Compute Kalman gain Kk = Pk|k−1H
⊤
k S

−1
k

• Update state estimate xk = xk|k−1 +Kkyk

• Update covariance estimate Pk = (I−KkHk)Pk|k−1

6: end for
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4.3 Visual Odometry (VO)

Visual Odometry estimates the vehicle’s motion by analyzing consecutive camera frames
[3].

4.3.1 Visual Odometry Algorithm

Algorithm 4 Visual Odometry

Require: Previous image Ik−1, Current image Ik, Camera matrix K, Distortion coeffi-
cients D

Ensure: Rotation R, Translation t
1: Undistort Ik−1 and Ik using K and D
2: Detect ORB features in Ik−1 and Ik
3: Compute descriptors for detected features
4: Match features between Ik−1 and Ik using brute-force matcher
5: Apply ratio test to select good matches
6: Extract matched keypoints
7: Compute Essential matrix E using RANSAC
8: if E is valid then
9: Recover pose (R, t) from E

10: return R, t
11: else
12: return Failure
13: end if
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5 Application of SOTA Models on FrodoBots-2K Dataset

We utilized the FrodoBots-2K dataset to test and evaluate state-of-the-art models for
visual SLAM, object detection, and depth estimation. The dataset provides discrete
video frames, sensor data, and calibration files.

5.1 Visual SLAM with ORB-SLAM3

5.1.1 ORB-SLAM3 Algorithm

ORB-SLAM3 is a feature-based SLAM system that uses ORB features for tracking and
mapping.

Figure 2: ORBSLAM3 applied in the Frodo Bot

Algorithm 5 ORB-SLAM3 Workflow

Require: Video frames, Camera calibration parameters
Ensure: Estimated camera trajectory and map
1: Initialize ORB-SLAM3 system
2: for each frame Ik do
3: Extract ORB features
4: Match features with previous frame
5: Estimate camera pose
6: Update map with new observations
7: Perform local mapping and loop closure detection
8: end for
9: return Camera trajectory and 3D map
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5.2 Object Detection with YOLOX

5.2.1 YOLOX Algorithm

YOLOX is a real-time object detection model based on the YOLO (You Only Look
Once) family.

Figure 3: YOLOX applied in the Frodo Bot

Algorithm 6 YOLOX Object Detection

Require: Input image I
Ensure: Detected objects with bounding boxes and class labels
1: Preprocess image I to the required input size
2: Feedforward through YOLOX network
3: Obtain feature maps from the network
4: Apply detection head to predict bounding boxes and class probabilities
5: Perform Non-Maximum Suppression (NMS) to eliminate redundant boxes
6: return Detected objects
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5.3 Depth Estimation with Lite-Mono

5.3.1 Lite-Mono Algorithm

Lite-Mono is a lightweight monocular depth estimation model designed for real-time
applications.

Figure 4: Lite-Mono applied in the Frodo Bot

Algorithm 7 Lite-Mono Depth Estimation

Require: Input image sequence {It}
Ensure: Estimated depth maps {Dt}
1: for each frame It do
2: Preprocess image It
3: Feedforward through Lite-Mono network
4: Obtain depth map Dt

5: end for
6: return Depth maps {Dt}
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6 Real FrodoBots Deployments

In addition to dataset testing, we deployed the algorithms on real Frodobots hardware.

6.1 Applying Visual SLAM in Real Deployment

Algorithm 8 Deploying ORB-SLAM3 on Frodobots

Require: Live camera feed from robot, Camera calibration parameters
Ensure: Real-time camera trajectory estimation
1: Initialize ORB-SLAM3 system with live camera feed
2: while Robot is operational do
3: Capture frame Ik from camera
4: Perform visual SLAM processing as per Algorithm 5
5: Use estimated pose for navigation and control
6: end while

6.2 Agile Control of Robots

We implemented an agile control mechanism to send commands to the robot at a higher
frequency.

Algorithm 9 Agile Robot Control

Require: Desired control inputs v, ω
Ensure: Smooth and responsive robot motion
1: while Robot is operational do
2: Send control commands v, ω to robot
3: Wait for control interval (e.g., 0.05s)
4: end while
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7 Experimental Results

Experiments were conducted to evaluate the performance of the control algorithms,
calibration procedures, and the application of SOTA models.

7.1 Calibration Accuracy

The calibration process resulted in accurate intrinsic parameters, significantly enhanc-
ing the performance of visual odometry (VO) and depth estimation. To achieve robust
calibration, we employed a systematic approach involving the generation of diverse cal-
ibration images and meticulous data refinement.

7.1.1 Calibration Evaluation

• Reprojection Error: The mean reprojection error achieved was less than one
pixel, indicating high calibration accuracy.(Error in pixels)

• Impact on VO: Improved calibration reduced drift in visual odometry.

7.1.2 Data Acquisition and Refinement

To ensure comprehensive coverage of various viewing angles during calibration, the vehi-
cle was subjected to random linear and angular velocities. This maneuvering facilitated
the capture of calibration images from multiple perspectives, enhancing the robustness
of the calibration process.

Post-capture, a manual filtering step was implemented to remove redundant images
(images with repeat patterns and texture) and those lacking a complete chessboard
pattern. This refinement significantly improved calibration accuracy by ensuring that
only high-quality, informative images contributed to the calibration parameters.

The parameters which are calibrated with Zhang’s method [5] are the camera intrin-
sic matrix and the distortion coefficients. The camera intrinsic matrix is assumes the
geometric transformation of a pinhole, and estimates 4 parameters (fx,fy ,cx,cy) , which
are respectively the camera’s focal length (fx,fy) and the camera’s optical center (cx,cy)

(both in defined in pixels):  fx 0.0 cx
0.0 fy cy
0.0 0.0 1.0


The images coming from the front fish-eye camera show a clear barrel distortion

(see Fig. 6. Zhang’s method [5] also estimates the the radial and tangential part of the
distortion (k1,k2,p1,p2,k3) . The radial distortion is estimated up to the 3th order coefficient,
with the distorted pixel point (x,y) is displaced as function of the distance r=

√
x2+y2 from

the camera’s optical center:

xdistorted = x(1 + k1r
2 + k2r

4 + k3r
6)
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ydistorted = y(1 + k1r
2 + k2r

4 + k3r
6)

When the image plane is not perfectly parallel to the plane of the lens, tangential
distortion occurs. We have found in the calibartion results that the coefficients (p1,p2)

are small, so minimal tangential correction has to take place.

Calibration Metrics Before Data Refinement Prior to the removal of redundant
and incomplete chessboard images, the calibration yielded the following parameters:

• RMS Reprojection Error: 1.4140 pixels

• Camera Matrix: 205.846 0.000 241.400
0.000 206.022 155.694
0.000 0.000 1.000


• Distortion Coefficients:[

−0.2164 0.0571 −0.000755 −0.000892 −0.007217
]

Calibration Metrics After Data Refinement After the elimination of redundant
and incomplete images, the calibration accuracy improved markedly:

• Calibration Error: 0.0773 pixels

• Camera Matrix: 407.860 0.000 533.301
0.000 407.866 278.699
0.000 0.000 1.000


• Distortion Coefficients:[

−0.2172 0.0537 0.001853 −0.002105 −0.006000
]

These refined parameters demonstrate a significant reduction in calibration error, affirm-
ing that the manual filtering process effectively enhances calibration precision. Next to
the regular chessboard pattern, we also applied this method on ArUco Chessboards. Un-
fortunately, as can be seen in Appendix A.4, this method did not improve the calibration
accuracy.
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7.1.3 Image Undistortion Results

To visually assess the effectiveness of the calibration parameters, we processed images
both before and after undistortion using the obtained calibration data. Figures 5 and 6
illustrate the improvements in image quality post-undistortion, highlighting the reduc-
tion of lens-induced distortions.

Figure 5: Distorted image before calibration

Figure 6: Undistorted image after calibration

These visual results demonstrate the quantitative improvements in calibration ac-
curacy, demonstrating the practical benefits of precise calibration in reducing image
distortions.
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7.1.4 Ablation study

To see the effects of each of the five distortion coefficient (k1,k2,p1,p2,k3) , we only corrected
the lower order components, and left the higher order components zero.

(a) (k1,k2) (b) (k1,k2,p1) (c) (k1,k2,p1,p2)

Figure 7: The effect of tangential coefficients (p1,p2) after an 2nd order correction of the
radial distortion.

As can be seen in Fig. 8 the effect of tangential coefficients is minimal. The effect
of the three radial distortion coefficients is much more distinct effect, for instance when
one focuses on the robot at the right or the table at the left:

(a) (k1) (b) (k1,k2) (c) (k1,k2,p1,p2,k3)

Figure 8: The effect of radial coefficients (k1,k2,k3) on the distortion correction.

7.1.5 Resumé

Overall, the calibration process, enhanced by strategic data acquisition and refinement,
achieved the desired accuracy levels, thereby improving the performance of visual odome-
try and depth estimation systems. While advanced methods like ArUco-based calibration
show promise, further refinements are necessary to match the efficiency and accuracy of
traditional chessboard-based approaches.

7.2 Real World Control

In this subsection, we explore the deployment of our robot in real-world environments,
focusing on both automatic and manual control strategies. The challenges of navigating
using GPS-based targets, especially in varying environments such as indoor and outdoor
settings, are addressed. Additionally, we discuss the integration of multiple sensors to
enhance navigation accuracy and the practical considerations involved in implementing
control algorithms under resource constraints.
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7.2.1 Automatic Control

Deploying the robot in real-world scenarios necessitates robust navigation capabilities
based on GPS target points. However, indoor environments present significant challenges
due to weak GPS signals. To mitigate this, after the initial GPS signal acquisition,
we employ multi-sensor fusion techniques to simulate GPS variations. This approach
eliminates the need to position the vehicle outdoors solely for GPS initialization.

Given that the robot utilizes a monocular camera setup, scale estimation becomes
critical. To achieve accurate scale estimation, we integrate data from an Inertial Mea-
surement Unit (IMU) with the visual inputs. This fusion compensates for the limitations
of monocular vision and provides a more reliable estimation of the robot’s position and
orientation.

Outdoors, GPS signals are inherently subject to inaccuracies, which complicates the
tuning of noise parameters in the Kalman filter used for state estimation. Initially,
we attempted to set checkpoints based on the robot’s GPS-derived latitude and longi-
tude. However, this approach resulted in consistent misalignment of the robot’s heading
direction. To resolve this, we transitioned to manually selecting corresponding GPS
coordinates from Google Maps to define accurate checkpoints.

Furthermore, the robot’s orientation is calculated as a rotation angle relative to
the North Pole. This orientation estimation conflicts with the path planning framework,
which is based on azimuth angles. To ensure consistency, we transformed the orientation
data into a unified coordinate system compatible with our path planning algorithms.

Resource limitations posed additional challenges, particularly with the SDK’s browser
service consuming approximately 30% of the CPU resources. This constraint restricted
the implementation of advanced algorithms on a standard laptop, often leading to sub-
optimal estimation performance. For instance, attempts to publish images to a ROS
topic and process them with ORBSLAM3 resulted in the blocking of threads responsi-
ble for servicing the robot. While leveraging computational clusters could potentially
alleviate processing delays, the introduced latency hindered the robot’s ability to make
real-time decisions effectively. Given the time constraints before deployment, we opted
for a purely manual control approach for dataset recording.

7.2.2 Manual Control

Manual control was adopted primarily due to the aforementioned limitations in auto-
matic control implementations. One significant issue with manual control is the inherent
latency in command execution, which can lead to delayed responses and persistent move-
ment in the direction of previous commands. To address this, we implemented a strategy
to publish control commands at fixed intervals of every 0.5 seconds. In the absence of
new control commands, the system automatically sends stop commands with zero linear
and angular velocities. This mechanism ensures that the robot does not continue to
accelerate unintentionally and can maintain better control over its movements.

Despite the challenges, manual control provided a reliable method for recording
datasets under the given constraints. It allowed us to gather necessary data without
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the complexities introduced by real-time sensor fusion and advanced algorithmic pro-
cessing, facilitating a smoother deployment process within the limited timeframe.

Algorithm 10 Manual Car Control System

Require: Keyboard inputs, HTTP requests
1: Initialize control URL and log file
2: function get current data
3: Fetch current data via GET request
4: end function
5: function log command(linear, angular)
6: Log timestamp, linear, and angular values
7: end function
8: function send command(linear, angular)
9: Send control command via POST request

10: Log command if successful
11: end function
12: Initialize states: linear state, angular state, emergency stop

13: function command sender
14: while no emergency stop do
15: Continuously send commands
16: end while
17: end function
18: function on press(key)
19: if key is valid then
20: Adjust states and send command
21: end if
22: end function
23: function on release(key)
24: Reset states and send stop command
25: end function
26: Start keyboard listener for controls
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7.3 Recording

Effective dataset recording requires careful consideration of the varying requirements of
different sensors. Each sensor operates optimally at specific frequencies for capturing
timestamps and recording precise data. To achieve this, the following strategies are
employed:

• Sensor-Specific Frequencies: Different sensors necessitate distinct recording
frequencies to ensure accurate data capture. For instance, while some sensors
may require high-frequency data acquisition to capture rapid changes, others may
function adequately at lower frequencies.

• IMU Recording Strategy: To attain finer granularity in the dataset, the Inertial
Measurement Unit (IMU) data is recorded at a lower overall frequency. However,
acceleration data from the IMU is recorded at a higher frequency to capture more
detailed motion dynamics. This dual-frequency approach balances the need for
detailed acceleration information with the efficiency of lower-frequency recordings
for other IMU data.

• Dataset Format: Adopting a dataset format similar to the TUM (Technical Uni-
versity of Munich) dataset provides a more universal and widely accepted struc-
ture1. The TUM format is recognized for its flexibility and compatibility with
various data processing and analysis tools, making it a suitable choice for diverse
applications.

• Asynchronous Design Implementation: Notably, SDK version 4.4 lacks sup-
port for multithreading operations, which are traditionally used to handle concur-
rent data recording tasks. To circumvent this limitation, an asynchronous corou-
tine design is implemented. This approach allows for non-blocking, concurrent
execution of recording tasks, effectively serving as the best alternative to multi-
threading in this context.

By tailoring the recording frequencies to the specific needs of each sensor and adopt-
ing a robust dataset format, the recording process ensures high-quality and versatile data
collection. The asynchronous coroutine design further enhances the system’s ability to
manage concurrent tasks efficiently, compensating for the limitations of the existing
SDK.

1Frodo Dataset Conversion Scripts. Available at https://github.com/catglossop/frodo_dataset

https://github.com/catglossop/frodo_dataset
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Algorithm 11 Asynchronous Data Collection System

1: Configuration:
2: BASE URL ← http://localhost:8000

3: DATA DIR ← TUM Dataset

4: INTERVALS ← { control: 0.1, gps: 1.0, imu accel: 0.01, imu gyro: 1.0,
imu mag: 1.0, camera rear: 0.05, camera front: 0.05, rpm: 0.1 }

5: Initialization:
6: Create directories under DATA DIR

7: Initialize CSV files with headers
8: Functions:
9: function SaveControl(session)

10: while True do
11: Fetch control data from BASE URL/data

12: if Valid then
13: Append to control.csv

14: Log success
15: end if
16: Sleep INTERVALS[’control’]

17: end while
18: end function
19: function SaveGPS(session)
20: while True do
21: Fetch GPS data from BASE URL/data

22: if Valid then
23: Append to gps.csv

24: Log success
25: end if
26: Sleep INTERVALS[’gps’]

27: end while
28: end function
29: function Main
30: Initialize environment
31: Start SaveControl(session)
32: Start SaveGPS(session)
33: . . .
34: Await tasks
35: end function
36: Execution:
37: if Main Program then
38: Main
39: end if
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8 Discussion

The next steps should involve using approximate visual observation as the ground truth
for the orientation of the vehicle at the destination, and then adjusting the noise pa-
rameters of the EKF to output rotation commands. This will allow us to evaluate the
accuracy of the decisions made by the EKF. Additionally, we can measure the azimuth
between the destination and the starting point calculated on the map, and compare it
with the azimuth based on decisions made using the vehicle’s GPS data, to assess the
GPS noise. Through these methods, reinforcement learning can be effectively used to
tune parameters and further analyze the vehicle’s noise. In this way, a more lightweight
and robust algorithm can be designed.”

9 Conclusion

This technical report has detailed the comprehensive development and implementation
of both automatic and manual control systems, camera calibration processes, and the
integration of state-of-the-art (SOTA) models on the Frodobots EarthRover Zero plat-
form. Through meticulous sensor analysis and the application of an Extended Kalman
Filter (EKF) for sensor fusion, we achieved significant improvements in the vehicle’s
localization accuracy and navigation capabilities.

Key accomplishments of this project include:

• Control Systems Development: The design and implementation of both auto-
matic and manual control algorithms enabled effective navigation towards prede-
fined checkpoints while mitigating the impact of sensor inaccuracies and environ-
mental challenges.

• Camera Calibration: A robust calibration procedure was established, utilizing
traditional chessboard patterns and exploring advanced ArUco-based methods.
The calibration refinements significantly reduced reprojection errors, enhancing
the performance of visual odometry and depth estimation.

• Sensor Fusion with EKF: By integrating data from GPS, IMU, wheel odometry,
and visual odometry, the EKF provided a reliable state estimation framework,
improving the vehicle’s ability to navigate accurately despite inherent sensor noise
and external disturbances.

• Application of SOTA Models: The deployment of ORB-SLAM3, YOLOX,
and Lite-Mono on the FrodoBots-2K dataset demonstrated the feasibility and ef-
fectiveness of leveraging advanced algorithms for real-time perception and decision-
making tasks.

• Real-World Deployments: Practical deployments highlighted the challenges of
operating under resource constraints and varying environmental conditions. The
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transition to manual control for dataset recording underscored the importance of
adaptable control strategies in real-world scenarios.

• Dataset Recording Strategies: Implementing sensor-specific recording frequen-
cies and an asynchronous coroutine design facilitated high-quality data collection,
essential for subsequent analysis and algorithmic improvements.

Despite these successes, the project encountered several challenges, particularly re-
lated to computational limitations and the complexity of advanced calibration tech-
niques. The latency introduced by offloading computations to remote clusters impeded
real-time control, necessitating a reliance on manual control methods for dataset record-
ing within the project timeline.

Future work will focus on refining the sensor fusion algorithms by incorporating visual
observations as ground truth for vehicle orientation and adjusting EKF noise parameters
to enhance decision-making accuracy. Additionally, leveraging reinforcement learning to
fine-tune these parameters holds promise for developing more lightweight and robust
control algorithms. Further exploration into optimizing ArUco-based calibration and
reducing computational overhead will also be pursued to fully realize the potential of
autonomous navigation on the FrodoBots platform.

In conclusion, this project successfully advanced the autonomous capabilities of the
Frodobots EarthRover Zero through integrated control systems, precise sensor calibra-
tion, and the application of cutting-edge perceptual models. The insights gained lay a
solid foundation for ongoing enhancements and the pursuit of more sophisticated au-
tonomous functionalities in future iterations.
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A Sample Scripts and Commands

This appendix provides sample scripts and commands used throughout the project.

A.1 Merge Video Frames Script (merge ts files.sh)

#!/bin/bash

# Merge .ts video files into a single video

cat recordings/*.ts > merged_video.ts

A.2 Calibration Script (auto calibration1.py)

Algorithm 12 Calibration Script Pseudocode

Require: Access to robot’s control and camera interfaces
Ensure: Collection of calibration images
1: Initialize robot control and camera modules
2: for each desired calibration position do
3: Move robot to a new random position
4: Capture image from camera
5: if Checkerboard detected in image then
6: Save image for calibration
7: end if
8: Wait for a short duration
9: end for

10: Perform camera calibration using collected images

A.3 Environment Setup for Trajectory Estimation

# Create and activate conda environment

conda env create --file traj_est_env.yaml

conda activate traj_est
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A.4 Advanced Calibration with ArUco Chessboards

In an effort to explore more sophisticated calibration techniques, we experimented with
ArUco-based chessboards. ArUco markers offer enhanced detection capabilities, poten-
tially improving calibration accuracy. However, this method presented challenges:

• Implementation Complexity: Given that comprehensive official documentation
is available only in C++, we implemented the ArUco calibration process using
C++.

• Execution Time: The ArUco-based method exhibited longer execution times
compared to traditional chessboard calibration.

• Influencing Factors: Various factors, such as marker detection reliability under
different lighting conditions and angles, affected the calibration outcomes.

Calibration Metrics with ArUco Chessboards Similar to the traditional method,
we performed calibration both before and after removing redundant and incomplete
images.

Before Data Refinement:

• Reprojection Error: 67.5747 pixels

• Camera Matrix: 327.803 0.000 511.500
0.000 129.521 287.500
0.000 0.000 1.000


• Distortion Coefficients:[

−0.02556 6.5663× 10−5 0.01103 −0.000469 −4.2383× 10−8
]

After Data Refinement:

• Reprojection Error: 34.0430 pixels

• Camera Matrix: 288.758 0.000 520.736
0.000 23.7255 370.020
0.000 0.000 1.000


• Distortion Coefficients:[

−0.003084 −5.8480× 10−5 0.020078 −0.000683 1.5305× 10−7
]

While the reprojection error decreased substantially after data refinement, it re-
mained relatively high compared to the traditional chessboard method. This suggests
that, although ArUco markers offer certain advantages, their current implementation
may require further optimization to achieve comparable calibration accuracy.
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