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Abstract

Currently, much production time is lost in teaching and re-teaching robot programs. New techniques
that avoid this, such as off-line programming, require an accurate kinematic model of the robot. To
construct this model, measurements of the robot are required.

At the University of Amsterdam a self-calibrating measuring system has been developed, using a
camera mounted in the robot hand and a reference object. Analysis of a single image of the reference
object allows us to obtain an estimate of the position and orientation of the viewing point. A much
better estimate is obtained by analysing a series of images, as the essential geometrical and optical
camera parameters can be derived from the redundancy in the measurements.

Our experimental results show that we can compute the pose of the camera for the different
images with an accuracy in the order of 0.15 mm and 1.5 arc minute. This is usually adequate for
robot calibration.

Introduction

The positioning accuracy of robot systems can be characterised in a number of different ways. The
repeatability defines the accuracy to which the end-effector re-attains the same position (and orienta-
tion) in its working volume, when the robot joint values are repeated. The repeatability tends to be in
the order of a few tenths of a millimetre and a few minutes of arc. It defines the limit to the accuracy
attainable with a particular robot using only its internal position sensors. The kinematic positioning
accuracy is the accuracy to which the robot attains a given position in its working volume when the
robot controller is commanded to go to that position. The robot controller requires an inverse kine-
matic model of the robot to compute the corresponding joint values. It is found in practice that these
models often lack in accuracy, the more so as the actual parameters of the robot may change due to
wear, minor accidents and repairs. The kinematic positioning accuracy often is not much better than
several millimetres and can be as bad as a few cm. A third accuracy measure is the dynamic posi-
tioning accuracy, which defines the accuracy at which the robot end-effector can be made to follow a
specified path (at a given speed). The dynamic positioning accuracy depends on a large number of
system properties and will not be considered further in this paper.

Currently, most robots are programmed through teaching, i.e. the robot end-effector is moved to
the required positions for the programme, and the joint-encoder values are recorded. In this way the
programmed points will be reached with only the repeatability error, and no (inverse) kinematic
model is needed. Teaching is, however, a time-consuming procedure that needs to be executed with
the robot removed from the production-line. Every robot in the production-line will be slightly differ-
ent, and therefore will have to be taught its programme separately. After repair or minor accidents, the
robots properties will be somewhat changed, necessitating re-teaching.

When sufficiently accurate kinematic models are available, robot programmes can be created off-
line, and taught programmes can be adapted to execute correctly on another robot.



The CAR project (ESPRIT 5220)1 was concerned with all aspects of the generation and mainte-
nance of such kinematic models. Constructing a kinematic model is a multi-step process. First, a
model describing all the links, actuators and their parameters must be constructed. Next, those
parameters that need to be identified must be specified, and a measuring programme that allows
identification of these parameters must be constructed. In this programme, the robot will be moved
through a sequence of poses where the position (and sometimes the orientation) of the end-effector
will be measured with high accuracy. Finally, the measurements will be used in a parameter-identifi-
cation procedure. In this paper, we will only be concerned with the measuring procedure itself.
Procedures for the construction of the kinematic model and the parameter identification can be found
in papers by Albright[3] and Schröer[4].

Depending on the purpose for which the robot is being measured – a full identification of all robot
parameters, or a partial identification of only some parameters – the range of robot poses that needs to
be measured may vary. For a partial identification measurements obtained in only a part of the robot
operating volume will generally suffice, especially if those poses can be attained with different robot
configurations. Currently, the most commonly used measuring system for robot calibration consists
of two or more theodolites, with which end-effector positions can be measured in most of the robot
operating volume. These systems are quite accurate and are suitable for full system identification, but
they are expensive and require significant expertise of the operator. Within the CAR project a need for
a low-cost, portable and easy to use measuring system suitable for partial identifications was felt. In
close collaboration with the other project partners, we have developed a prototype for such a system
at the University of Amsterdam. In this paper we will first give a short resume of the requirements on
the system and their implications for the design. Papers describing various aspects of this system can
be found in Van Albada et al. [1, 2].

Requirements and design

As explained in the introduction, we strove to develop a portable, inexpensive and easy-to-use
measurement system for partial recalibration of robots. Some of the more specific requirements for
this system were:

• An operating volume of at least (0.5 m)3.

• A measuring accuracy of about 0.1 mm and 1 minute of arc

• Insensitivity to initial positioning errors of at least a few cm.

• Non-contact

• Minimal interaction with robot control program (e.g. no sensor-based position adjustment)

• Robustness and low maintenance.

The low maintenance requirement almost automatically implies that the system should contain no
(high precision) mechanical components and that it must be self-calibrating. The other requirements
can best be met by using an optical system, preferably based on the use of a camera and a reference
object. For a camera-based system, there is still a choice between a monocular, or a multi-camera
system, and a choice between placing the camera on the robot, or the reference object. Each option
has its specific advantages and draw-backs. Placing the camera on the robot has the disadvantage that
the power and the signal cables must somehow be led from the robot-hand to the recording device
(frame-grabber). As the robot has to go through a large range of movements, this is a problem of
significant complexity.

1 In CAR the following companies and institutes co-operated: Fraunhofer-Institut für Produktionsanlagen und
Konstruktionstechnik (IPK Berlin, prime contractor), Leica (UK) Ltd., University of Amsterdam, Dept. of Computer
Systems, TGT (Ireland), KUKA Schweißanlagen und Roboter GmbH, Volkswagen AG. ESPRIT projects are 50%
funded by the EEC.



On the other hand, placing the camera at a fixed position, and the reference object in the robot
hand, creates problems in the measurement of the orientation of the robot hand. Orientation meas-
urements are essentially measurements of the difference in position between two ends of the reference
object. Given a position measuring accuracy of 0.1 mm, a reference object of about 50 cm by 50 cm
is required to attain an orientation accuracy of 1 minute of arc. Attaching such a large object to the
robot hand can be a problem and it can limit the range of attainable poses of the robot. Deformation of
the reference object during motion of the robot is a significant risk that is difficult to evaluate or
prevent.

Obtaining accurate measurements with a monocular system requires a wide angle camera working
at close range. The attainable accuracy with a multi-camera system should be significantly better than
with a monocular system, but a multi-camera system is inherently more complicated and requires a
more complex set-up and self-calibration procedure than a monocular system. Also, placing two or
more sufficiently separated cameras on the robot can lead to a variety of problems.

For the reasons stated above we have opted for a single wide angle camera on the robot and a
reference object fixed in the workspace.

Principle of operation

The image of a known object, obtained with a camera with known properties, can contain enough
information to compute the position of the camera relative to the object. When a sufficiently varied set
of images is obtained, most of the properties of the camera and the reference object can also be
determined. This technique of measuring spatial relationships using images is known as photo-
grammetry.

The following paragraphs show what information is involved and are intended to make plausible
that such a procedure is indeed possible. Let’s assume that we have a left-handed, orthonormal co-
ordinate system2 (X, Y, Z) tied to the reference object and a 2-dimensional orthonormal co-ordinate
system (U, V) tied to the image. We can then describe the imaging process by a pair of non-linear

functions u and v, so that a point at x→o  = (xo  , yo  , zo) will be imaged at (uo, vo)  , with:

uo = u (x→o , P, M), (1a)

vo = v (x→o , P, M), (1b)

where P = (xc , yc , zc , αc , βc , γc ) , is the six-tuple giving the position and orientation of the

camera (the precise definition of the angle parameters α, β, and γ will not concern us here), and M is
a tuple of all Ncam parameters in the model used for the camera. M is assumed to be the same for all
images. When we obtain Npos images with camera poses Pj (j = 1, .. Npos), using a reference

object with Nmark measurable markers at positions x→o,i (i = 1, .. Nmark), we have a total of N total
unknown quantities:

Ntotal = 6 Npos + 3 Nmark + Ncam

Of these Ntotal values, seven cannot be determined in principle, but must be defined by additional
equations. These quantities relate to the absolute position and orientation of the reference object,
which cannot be measured by any known device and to its scale, which can only be measured by
comparison to some other standard.

2 This is the usual everyday type of co-ordinate system.



Every measured marker position in an image provides two equations. If we assume the M and all

the x→o,i are known, measuring three markers per image would appear to suffice to derive the position
the camera. However, due to the non-linearity of the system of equations, at least four measured
markers per image are needed to remove ambiguities in the solution. Each image yields two equations
for each marker in the image; each marker should, therefore, appear in at least two images taken from

two sufficiently different directions to compute its position vector x→o,i. In practice the above
constraints on the number of images and the numbers of marker per image can easily be met.
Therefore, all Ntotal - 7 unknowns can be solved, and the system becomes essentially self-calibrating.

Fig. 1. An example of a reference plate design

In our measuring procedure, we use a
reference plate on which we have printed
504 circular markers (Figure 1). Images
taken from very close to the reference
plate will sometimes show as few as 20
marker images; images taken from a larger
distance will show nearly all. The plate
has been designed so that even small
groups of markers can nearly always be
recognised from their appearance. As the
calibration of a robot requires a large
number of positions to be measured,
obtaining a sufficiently large set of images
to allow self-calibration of the system is
not a problem. Our measurement series
generally contain between 40 and 100
images, with an average of some 200
markers measured per image.

We solve the non-linear system of
equations by taking initial estimates of the

x→ o,i and the M . Using these and the
positions of the markers identified in the
image, an initial estimate of the Pj can be obtained by correcting the measured positions for the

distortions of the camera and computing the homogeneous transformation from the x→ o,i to the
corrected image positions. In this way an initial solution sufficiently close to the final solution is
obtained that we can iterate to the final solution in a limited number of steps, using the linearised
equations. The large number of markers per image improve the attainable accuracy, allow us to judge
the quality of the model fit, and leave room to reject outliers.

The camera model

The choice of an appropriate camera model is essential for the measuring procedure to produce accu-
rate and reliable results. Apparently small, but systematic discrepancies between the model and the
real camera can lead to unacceptable errors in the measured position.

In first approximation, almost any camera can be described by a pin-hole, or camera-obscura
model. This model describes in a straightforward, geometric manner where a point on the object will
be projected in the image plane. Homogeneous transformations provide a popular way to describe
this projection. In most cases, the actual image formation process can be described as a series of
perturbations of this idealised process. These perturbations describe the purely geometric differences
with the ideal camera, differences affecting the brightness of the image, and an effect influencing both
brightness and geometry. The camera model is used in different ways in various stages of our data
reduction procedure.



1. Geometric distortion. This describes where the actual image point lies relative to its idealised
position. For wide-angle lenses this is quite a large effect near the edges of the image. Geometric
distortion depends primarily on the location of the image point in the image. There is also a small
effect depending on the parallax (the inverse of the distance) of the object. The geometric distor-
tion effect is taken into account in the image recognition and the model fitting phases of the
reduction process. For one of our lenses, we found that the distortion can be described quite well
as a radial displacement relative to a point near the centre of the image. The magnitude of the
displacement depends on the third and fifth order of the radial distance to that point. The propor-
tionality constants depend slightly on the parallax of the object. For another lens this description
did not suffice. The remaining distortion was modelled as a “displacement field,” with additional
small displacements depending on the position in the image only.

2. Vignetting and non-uniform illumination. These effects influence the brightness of the image. In
combination with an extended PSF (see 3, below) they can lead to an apparent shift in the
position of an object in the image. In our procedure, where we measure the position of the
markers by tracing the edges, vignetting and illumination effects must be measured and corrected
for. This is accomplished using standard image-processing techniques in the first steps of the
image processing procedure.

3. The point-spread function (PSF). Light from a single point on the object will be distributed over
an area in the image. The PSF depends on the position in the image, on the lens-aperture (which
should be kept fixed), on the parallax of the object, and on the colour of the light. For a CCD
camera there are a number of additional contributions due to the sampling of the image, the shift-
out procedure and the transmission to the frame-grabber/digitiser. Modelling and fitting the PSF
is a complex and expensive procedure. It can be avoided as long as the PSF is sufficiently small
and symmetric. In our set-up, reducing the effect of the PSF is accomplished by using a small
aperture (f/11) and a careful design of the measuring procedure.
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Fig. 2 - The centre of the marker image is not
the image of the marker centre

Using images to measure the position of objects
implies deriving a model that fits the images as
accurately as possible. The most comprehensive
way of doing this, is to make a model reproducing
the observed intensities in the image. This requires
modelling of the illumination, the vignetting, the
PSF and the camera distortion.

For reasons of simplicity and efficiency, we
have opted for an approach in which we measure the
contours of the markers in the image, and derive the
marker positions from these contours. This requires
an initial model of the perspective and camera
distortion, as projection effects will significantly
displace the centre of the marker image relative to the marker (Fig. 2). Care must be exercised to
obtain a symmetric and reasonably small PSF, i.e. to obtain sharp images.

In modelling the image formation process, we thus consider only the vignetting and illumination
effects (in the image processing phase) and the perspective and geometric distortion effects (in the
model fitting phase). It is assumed that the effects of the PSF on the measured positions will mostly
cancel out for the circular markers that we use. By using mostly open circles (annuli), we add an
extra symmetry: the outer edge appears as a black circle on a bright background, the inner edge as a
white circle on a dark background. If the PSF is strongly asymmetric, the two circles would be
shifted in opposite directions and appear to lie at a different position. We can verify that this effect is
small (when the difference is large, both measurements are rejected) and average out any small
residual difference.
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Fig. 3 - The photogrammetric procedure - from
image to camera positions and system

parameters.

Obtaining camera positions and orientations from a
set of images involves a number of processing
steps, some of which are schematically shown in
Fig. 3.

Before any image can be obtained, suitable
robot poses must be computed for the eventual
calibration procedure. These poses must be
constrained so that workable images of the refer-
ence plate can be obtained. A procedure to generate
such poses was created by Schröer et al. at IPK
Berlin [2, 13].

After setting up the robot, the image acquisition
system and the reference plate, the robot can be
sent through the required sequence of poses. As
thermal expansion of the various components can
have an effect that is easily as large as the desired
tolerances, the system must be allowed to attain a
stable operating temperature before the measure-
ments are taken. In order to correct for gain and
dark-current effects in the CCD, it is desirable to
obtain some dark images (lens cap on) and white
images (uniform white surface at sufficiently close
range to be quite unsharp) at the beginning and end
of the measuring sequence. It is important to
ensure that sufficiently different poses are obtained
that the camera can also be calibrated. Both the
orientation of the camera and it position relative to
the reference plate should be varied. If the robot
has too few degrees of freedom to accomplish this,
additional images obtained with the camera off the robot can be used for camera calibration.

Once all the images have been obtained, the data processing can be performed away from the
robot. This data processing involves image processing, image recognition, and model fitting. In the
image processing step, transformations are applied to the measured intensities to reduce various
effects in the image that could hamper the image recognition procedure. The most important of these
is the non-uniform brightness of the image of the reference plate, due to vignetting and illumination
effects. This is done by computing an upper envelope to the measured intensities in the image (see
e.g. Verbeek et al. [5]), and dividing the image by this upper envelope. In the resulting image, the
body of the reference plate appears uniformly bright, and the black markers will be much darker,
though not quite uniformly black. By carefully choosing a number of contour levels and tracing these
contours in the grey-scale image, the positions of the markers can be determined with an accuracy of
0.03 to 0.1 pixels. In the image recognition step, various tests are applied to retain only good quality
marker contours. Information on the relative size of the markers and the pattern of open and filled
markers (see Fig. 1) is used to recognise and identify the markers. Using default values for the
camera distortion, the projection functions u() and v() (equations 1a,b) can be estimated and the
marker positions can be corrected for projection effects. These improved marker positions are used in
the final steps of the model fitting phase, where all images are processed together to solve the
complete set of unknowns and apply the self-calibrating capability of the system. In this step the
equations are linearised by computing the derivatives of u() and v() with respect to their parameters
for all measured markers. In this way a sparse Jacobian matrix of up to some 60 000 by 800 elements
is obtained used in a least-squares solution for the camera positions and -parameters. The corrections
to the marker positions on the reference plate are solved for simultaneously, but in a slightly different
way. This final model fitting step is executed iteratively until the system has converged. The residuals
in the fits to the observations are used to estimate the accuracy in the computed pose and parameter
values.



Performance and possible enhancements

More comprehensive error estimates for the measured poses than those using only the residuals in the
fits indicate that accuracies of about 0.15␣mm and 1.5 minute of arc rms. can routinely be obtained.
Ongoing research indicates that improvements in the image acquisition phase can significantly
improve these figures.

When the measurements are to be used for further processing, as is the case in the calibration of
robots, a shortcut appears promising in further improving the measurement results. Our analysis
shows that the errors in the positions and angles are very strongly correlated. This means that the
volume of the error ellipsoid is much smaller than the product of the errors in each of the compo-
nents, i.e. the measurements are in some sense better than the individual error estimates indicate.

The measured camera positions (and orientations) actually are only used as an intermediate result.
The end result that we try to obtain is a - much smaller - set of parameters for the robot model. By
concatenating the photogrammetric procedure to the robot calibration procedure and eliminating the
camera poses as explicit intermediate results, a better accuracy and an even more stable solution
should be obtainable. The disadvantage is that robot calibration program and measuring procedure
cannot be used independently anymore.

Conclusions

Robot calibration is rapidly becoming more and more necessary for the successful employment of
robots in an increasingly wide range of applications. The widespread use of robot calibrations
requires that affordable, easily used equipment becomes available. Equipment based on photogram-
metric techniques promises to be a strong contender in this area.

Our prototype measuring system shows that a suitable system, providing an acceptable measuring
accuracy, can be built even with very modest investments. It also demonstrates that the measuring
process can be highly automated, so that little expert knowledge is required by the user.

There is still room for further improvements in the equipment (cameras with more than twice the
resolution of our camera are now coming on the market) and data processing, promising quite good
results at a very reasonable cost.

Acknowledgements

The research described in this paper was partly funded by the EU through ESPRIT II project 5220
“CAR”. Stephen Kyle of Leica, Steve Albright, Klaus Schröer and Michael Grethlein of IPK, Rudolf
Le Poole of the Leiden Observatory and Arnold Smeulders of the University of Amsterdam have
contributed significantly to the development of the system through their expert advice and support.

References

[1] G.D. van Albada, J.M. Lagerberg and A. Visser, Eye in Hand Calibration, Industrial Robot,
Vol. 21, no 6 (MCB University Press, 1994) pp. 14-17

[2] G.D. van Albada, J.M. Lagerberg, A. Visser and L.O. Hertzberger, A low-cost pose-
measuring system for robot calibration, Robotics and Autonomous Systems (in press)

[3] S.L. Albright, Calibration system for robot production control and accuracy, in R. Bernhardt
and S. Albright, Robot Calibration, Eds. (Chapman & Hall, London, 1993), pp. 37-56.

[4] K. Schröer, Theory of kinematic modelling and numerical procedures for robot calibration, in
R. Bernhardt and S. Albright, Robot Calibration Eds. (Chapman & Hall, London, 1993),
p.157-193.



[5] P.W. Verbeek, H.A. Vrooman, L.J. van Vliet, Low-level Image Processing by Max-Min
Filters, Signal Processing 15 (1988) p. 249-258.


