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Abstract

This paper focuses on the development of a novel approach for modeling the behavior of agents in
the RoboCup Rescue Agent Simulation Competition. A two layered approach is developed, with a
macro-level behavior responsible for the strategic, high level decisions and a micro-level behavior
dealing with the local particularities of the competition.

The micro-level behavior was implemented using a simple Markov Decision Process. For the
macro-level behavior a Bayesian Game Approximation was compared against a Distributed Con-
straint Optimization problem formulation. Experimental results show a good overall performance
of the methods considered, with their differences being better highlighted on harder, custom made
configurations of the official contest maps.

1 Introduction
Stringent temporal constraints and limited situational awareness in disasters require efficient multi-agent
task allocation methods and the ability to plan under uncertainty. In these types of environments, there
is uncertainty on several aspects, such as the location, type and size of tasks, and agents must travel
through possibly unsafe areas to reach the tasks. The environment is dynamic, fires will spread, build-
ings collapse, and civilians die if they are not rescued promptly. All these elements make urban search
and rescue a very demanding testbed and, at the same time, a realistic and important application of
artificial intelligence techniques.

The ultimate goal in urban search and rescue is to contain the damage, namely, to maximize the
number of lives saved while minimizing their injuries, and maximize the amount of infrastructure pre-
served while minimizing the damage to these infrastructures. The proposed method has these goals as
their optimization objectives, and the performance is measured with respect to those objectives.

The RoboCup Rescue Simulation League is introduced to foster research on this field. This com-
petition is introduced in 2001 [5] and attracted many participants in the following years [1]. The com-
petition makes it possible to benchmark different multi-agent coordination algorithms,such as the novel
approach presented here.

1.1 Environment
The environment in which the agents take actions consists of (parts of) different cities, either real or
computer generated. These cities contain a number of buildings and connecting roads, up to 10000 each.
Apart from regular buildings, which make up for the majority of the buildings in the city, two types of
buildings have special functions, namely the refuges and the gas stations. The former represents a safe
zone where victims can be dropped and where fire brigades can refill their water tanks, while the latter
are potentially dangerous entities, with increased negative effects on their surroundings, should they
catch fire.

The spreading of fires is controlled by the fire simulator and is governed by the topology of the
map (the adjacency of the buildings), the size of the buildings (both ground area and height) and the



construction materials of each building (e.g. wooden buildings catch fire more rapidly than concrete
buildings). As such, a measure of the fire level and fire related damage, called fieriness, is defined for
each building and can take several levels: unburnt, heating, burning, inferno.

The road blockades are controlled by the collapse simulator and are influenced by the initial intensity
of the earthquake, the height and fire state of the buildings, as well as the possible aftershocks which
occur during the simulation.

Civilians are entities controlled by the environment and represent the general population of the city.
Their behavior is fixed and depends on their status. A unburied, uninjured civilian will move towards
the nearest refuge, although with a lower speed than the autonomous agents. Buried civilians need to be
rescued from the rubble first by the ambulances and then transported to the refuge. Injured civilians are
also unable to move by themselves and their condition worsens (represented by a gradually decreasing
hitpoint measure) until they are safely returned to a refuge. Should their hitpoint measure drop to 0, they
are considered to be dead.

Agents can communicate directly through voice messages up to a certain range, as well as through
radio messages. Radio channels are limited in their number and bandwidth, i.e. the maximum amount
of information that can be transmitted through the channel in a single time step.

The performance of the agents with respect to their tasks is estimated using a score measure com-
puted for each time step of the simulation. This measure is influenced by the total number of civilians
alive and their cumulative health, the speed of their discovery, the total building damage across the city,
the speed and efficiency of fire extinguishing and the efficiency of road clearing. Additional details
regarding the parameters and behaviors of the aforementioned simulators and the competition can be
found in an overview article [11].

1.2 Agents
There are three categories of agents acting within this environment, ambulance agents, fire agents and
police agents. Ambulance teams are responsible for rescuing civilians or other mobile agents trapped
in collapsed buildings and transporting them to refuges. Multiple ambulance teams can work together
for rescuing victims from collapsed buildings, resulting in a faster completion of the task, but only one
agent can carry a single victim at a time.

The main role of the fire brigades is extinguishing fires. They carry a limited amount of water
which is depleted gradually while extinguishing buildings and which can be replenished at refuges
(where multiple fire brigades can refill simultaneously and at a high rate) or hydrants (where a single
fire brigade can refill at a time and at a limited rate). Naturally, multiple fire brigades extinguishing the
same burning building will be able to complete the task more rapidly.

Finally, police forces are responsible for clearing out roads so that the other platoon agents and
victims can move freely. They can clear only a limited area at a time and multiple police forces clearing
the same area does not result in increased effectiveness in completing the task.

For the fire brigades coordination inside a team is crucial to contain larger clusters of burning build-
ings and limiting the expansion of fires. Compared to the fire brigades, the cooperation aspect of the
ambulance teams and police forces is somewhat less important and their behavior is in this paper ig-
nored. For more details on the influence of ambulance teams and police forces see the thesis [12].

2 Related work
As mentioned by Ramchurn et al. [10]; unfortunately most of the approaches employed by the teams
in the Rescue Agent Simulation Competition do not follow a single, consistent formally defined frame-
work, but rather aim at optimizing various isolated aspects of the agents’ behavior, which, in turn, lead
to measurable increases in the competition score. An exception is the work of Parker et al. [9], which
actually also assesses the impact of forming heterogeneous teams of agents, either assigned statically, at
the beginning of the simulation, or dynamically, as need arises.



3 Theory
In this section we assume that general concepts as Markov Decision Process (MDP) and a Partially
Observable Markov Decision Process (POMDP) are well known [4]. Instead, the Bayesian Game Ap-
proximation and Distributed Constraint Optimization Problem (DCOP) are introduced.

3.1 Bayesian Game Approximation
As mentioned by Emery-Montemerlo et al. [3], while approximate solution algorithms for POMDPs can
provide good results with reasonable computational costs, they generalize poorly to decentralized multi-
agent settings. This is mainly due to the fact that agents need to maintain parallel POMDPs for tracking
their peers’ joint belief states, taking all other agents’ observations as input. This requires computation
costs exponential in number of agents and observations, as well as very demanding communication
costs. In a search and rescue scenario communication channels are limited. The method proposed in [3]
aims at mitigating these constraints and provides a solution applicable in wider domains.

The problem is formulated as a Partially Observable Stochastic Game (POSG), an extension han-
dling uncertainty in world states to stochastic games, themselves a generalization for MDPs in multi-
agent scenarios. Following the conventions laid by Emery-Montemerlo et al. [3], a POSG is defined as
a tuple < I, S,A,Z, T,R,O >, each of the elements having similar meanings as their corresponding
POMDP counterparts. Thus,

• I = {1, ..., n} represents the set of agents;

• S represents the set of world states;

• A = A1× ...×An represents the joint action set (cross product of individual agents’ action sets);

• Z = Z1 × ... × Zn represents the joint observation set (cross product of individual agents’
observation sets);

• T : S ×A→ S represents the transition function;

• R : S ×A→ R is the reward function;

• O : S ×A× Z → R represents the observation emission probability.

Furthermore, the algorithm is restricted only to POSGs with common payoffs (fully cooperative
setting) and, as such, the solution concept considered is the Pareto-optimal Nash equilibrium. As it
stands, this formulation of the problem is still intractable for reasonably sized problems, as the action
and observation spaces are exponential in number of agents.

The solution suggested in [3] involves approximating the POSG as a series of single-step Bayesian
games. Under the Bayesian game model, each agent has some kind of private information related to the
decision making process. This information is called the type and generally can be related to uncertainty
regarding the utility of the game. Formally, a Bayesian game is defined as a tuple < I,Θ, A, p, u >
where I and A are defined the same as for POSG, Θ denotes the type profile space, i.e. Θ = Θ1 × ...×
Θn, where Θi represents the type space of agent i, p is a probability distribution over the type profile
space p ∈ ∆(Θ), assumed to be commonly known, and finally u = {u1, u2, ..un} is the utility with ui
being dependent on the action chosen by agent i, ai and its type θi, as well as the actions selected by the
other agents and their type profile. Thus this measure is defined as a function ui(ai, a−i, (θi, θ−i)).

3.2 Distributed Constraint Optimisation and Max-Sum algorithm
Parting away from the decision-theoretic planning (DTP) methods, one of the other approaches con-
sidered concerns the formulation of the behavior as a Distributed Constraint Optimization Problem
(DCOP). An example for this is introduced in [10], where the authors use this formulation to solve
the issue of ”coalition formation with spatial and temporal constraints”. As such, the DCOP prob-
lem is defined as a tuple < A,X ,D,F > where A = {a1, a2, ..., ak} represents the set of agents,
X = {x1, x2, ..., xn} denotes the set of variables, each variable xi being assigned to exactly one agent
(but an agent potentially owning more variables), D = {D1, D2, ..., Dn} represents the set of domains



for each variable and F = {f1, f2, ..., fn} is the set of functions characterizing the constraints. Thus,
each function fi : Di1 × ...×Diri

→ R is defined on the cross product of the domains of the variable
set xi ⊆ X onto which depends, with ri = |xi|. In the context described in [10], the variable domains
consist of tasks which are reachable fast enough by the corresponding agent for it to make a meaningful
contribution. Furthermore, the constraint functions reflect the utility of each task, taking into account
all variables which can be assigned the given task.

One of the algorithms commonly used for solving such a problem is the Max-Sum algorithm [2]. In
order to employ this technique, the problem is formulated as a factor graph, a bipartite graph containing
two types of nodes, representing variables (from X ) and functions (from F). Following the conventions
laid out by Bishop [2], under the Max-Sum algorithm, messages are passed between adjacent nodes of
the factor graph. There are two distinct types of messages, from variable nodes to function nodes and
from function nodes to variable nodes. The first kind, from variable nodes to function nodes is defined
as

µx→f (x) =
∑

l∈ne(x)\f

µfl→f (x) (1)

where x1, ..., xM represent the argument variables of f , other than x and ne(f) represents the neigh-
bor nodes of f . As pointed out by Ramchurn et al. [10], the messages to and from variable nodes are
sets of values reflecting the total utility of the network for each possible assignment of the respective
variable. Once all messages have been passed, each agent can compute on their own the maximum
utility based on the received messages, and determine the optimal task it should attend (i.e. the value
assigned to its corresponding variable xi):

xi = arg max
x

[ ∑
s∈ne(x)

µfs→x(x)

]
(2)

The algorithm is guaranteed to converge to the global optimal solution for cycle-free factor graphs.
However in practice, as suggested by MacKay [7], the algorithm generates also good approximate solu-
tions for cyclic graphs.

4 Approach

4.1 Domain challenges
The considered problem involves a map with a large number of buildings and roads onto which multiple
agents with limited sensing capabilities act. A straight-forward model of the problem would involve at
the very least encoding in the state space the joint set of the fieriness of each building and the positions
of each agent. With this information alone, ignoring the partial observability character, the problem
becomes intractable even for the simplest of algorithms. A more detailed analysis of the complexity
involved is done by Oliehoek et al. [8].

Reducing the size of the problem, while still retaining sufficient information for efficient behavior
may prove too difficult, if not impossible, using a single model. As such, the solution described in this
paper involves using two separate approaches, organized hierarchically, for micro-level and macro-level
behavior, respectively. The details of the micro-level can be found in [12], here only the macro-level is
described.

4.2 Fire brigade behavior
The following behaviors share a common pattern, with a micro-level approach based on MDP model
and a macro-level responsible for suggesting the optimal fire to extinguish for each agent. With the
exception of the ”Support requests” and ”Sample agent” approaches, all macro-level behaviors involve
a central agent (either a fire station or a commonly agreed fire brigade leader) gathering fire reports and
creating clusters of burning buildings. For each of these clusters an auction is run for determining which
agents should be assigned to them. The fire brigades which are not currently engaged in extinguishing
fires bid to the requests with their distance to the center of the cluster. The number of ’winners’ for each



cluster auction is proportional to the total area of the burning buildings in the cluster, and also capped at
a maximum value, so as to avoid engaging too many agents in a large cluster and completely ignoring
smaller clusters. As the size of the clusters evolves over time, either by new buildings catching fire or by
buildings being extinguished, the number of required agents is adjusted accordingly. Thus, subsequent
auctions may be run for assigning new agents, or agents can be released. In order for the macro-level
decisions to be relevant, platoon agents continuously send updates regarding relevant buildings and
positions.

Once agents are assigned to clusters, each of them receives an assigned building from within the
cluster. The method for determining these assignments varies with each approach.

4.2.1 Macro-level behavior: Heuristic pairing

The heuristic pairing method takes into account the order in which the buildings have been reported
within each cluster. Empirically, one can observe that the most recently reported buildings usually cor-
respond to the edge of the fire front of the cluster. Thus, assigning the most recent buildings first favors
extinguishing the outer buildings and containing the fire to a manageable size, ultimately extinguishing
it completely.

4.2.2 Macro level behavior: BaGA pairing

The BaGA algorithm involves solving a series of Bayesian games, thus determining at each time step a
best response strategy for each agent. These Bayesian games reflect the problems faced at each time step
by the agents in their partial observable context. Under the BaGA approach, the types, encoding specific
information which distinguishes each of the agents, are restricted to contain the individual histories of
observations and actions of the agents.

Since the goal of the macro level is to efficiently allocate agents to fires, a reasonable definition of
the state space would encode the joint fieriness of all the buildings in the cluster. Because of the limited
sensing capabilities of each agent, the observations will reflect the fieriness of the observed buildings
from within the cluster. Each building from the cluster has an action associated with it, thus actions
representing final assignments.

4.2.3 Macro level behavior: DCOP pairing

Following the general description of [10] and [6], the final method considered for pairing is based on the
task allocation formulation. As such, each agent has a variable associated with it, whose value domain
reflects the buildings in the cluster. The problem of the macro-level behavior then translates into finding
the optimal-value assignment for these variables, with respect to an utility function. In particular for
the studied approach, the utility function used is part of the benchmark software [6] and depends on the
fieriness of the building and distance between the building and the agent. The optimal assignment is
computed through message passing between the agents (hence the ”distributed” nature of the approach),
as described in Section 3.2.

4.2.4 Support requests

This approach assumes a very simple macro level behavior, where the nearest fire brigade is called to a
previously unreported fire. Because under this model there is no coordination with respect to building
allocation, a more complex micro-level behavior is needed, particularly to take into account the fieriness
of the buildings in the immediate vicinity of the agent.

4.2.5 Sample agents

This is the example code given with simulation environment. It is purely reactive; there is no coordina-
tion nor communication. With this behavior the fire brigade moves randomly until a fire is observed. It
plans a path to this fire and starts to extinguish. A simple, but sometimes surprisely effective approach.



5 Results

5.1 Experimental setup
The maps used in this study based on the official maps of the 2013 RoboCup Competition1. To be able
to see difference in the performance of the proposed approaches, more difficult versions of the Kobe and
Paris map are created. The Kobe-hard2 and Paris-hard2 maps are versions in which the likelihood of
additional ignitions throughout the simulation is greatly increased. Additionally, we have also created
a reduced version of the Paris-hard2, called Paris-mini-hard2, as the original one proved to be too
computationally expensive for one of the tested methods.

An example of such initial configuration of such map, showing the topology, initial fires and agent
positions are shown in Figure 1, where one can recognize the Île de la Cité with the Notre Dame de
Paris in the lower middle.

Figure 1: Initial configuration for the Paris-mini-hard map.

In order to optimally assess the performance of the proposed approaches, there are two important
changes from the official competition simulations configuration. The first concerns road blockages. Un-
der normal competition circumstances, road blocks impede the free movement of the agents throughout
the city and it is the duty of the police agents to clear and maintain proper navigable roads. Since the
behavior of the police agents was not the object of this study the road blockages have been disabled.
Another particularity of the competition simulations regards the communication model. The maps have
a wide range of communication restrictions, with varying numbers of channels, varying bandwidth and
reliability. Again, since the topic of this study was agent behavior all the simulations have been run
using a single high bandwidth (400Kb) reliable (no dropped messages or noise) radio channel.

In order to ensure consistency, for all experiments related to the macro-level behavior, the micro-
level behavior used a fixed deterministic policy.

5.2 Fire brigade macro level behavior
The results obtained for the macro level approaches of the fire brigades are shown in Figures 2 - 3 for
two maps. Experiments have been performed [12] on more maps, but those two maps were selected
because their results gave the most insight. Designing the right difficulty of a map can only be done
emperically; when the map is too easy no difference can be seen between smart and simple algorithms,
because every algorithm can solve the puzzle. When the map is too hard, everybody algorithm fails,
the difference is that the smart algorithms can cope with the challenge a bit longer. The solution of
the RoboCup Rescue is to give more weight the maps where the performance of the teams shows the
largest spread, which are maps with appropriate level of difficulty. The Kobe-hard and Paris-hard maps
were selected because they showed the largest spread between the algorithm with the best and worst
performance.

As expected, the weakest performance on all the maps is yielded by the ”Sample agents”. Only on
maps with low difficulty their reactive approach manage an acceptable result. In the presented maps,

1The official maps are available for download at http://roborescue.sourceforge.net/2013/results/ .
2The custom maps are available for download at http://goo.gl/gKLCHK
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Figure 2: Building score associated with
the performance of various macro level ap-
proaches on the Kobe-hard map.
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Figure 3: Building score associated with
the performance of various macro level ap-
proaches on the Paris-mini-hard map.

Kobe-hard and Paris-mini-hard, fires ignite randomly throughout the simulation, the agents are con-
stantly engaged in extinguishing them and the score does not settle to a fixed value, as is the case in
the other maps typically used during competition. For Kobe-hard, the steady controlled decrease of the
score reflects the agents’ ability to contain the fires. As soon as the fires go out of control the score
rapidly decreases. This happens more quickly for the ”Support requests” approach, starting at around
timestep 130. Apart from ”Sample agents”, all other three approaches yield better performance, being
able to contain the fires until roughly timestep 230, with close performance scores afterwards. The typ-
ical situation when the fires go out of control, for the ”Heuristic pairing”, ”BaGA pairing” and ”DCOP
pairing”, consists of a large number of agents refilling at refuges and not being able to contain rapidly
expanding clusters of burning buildings while they still are of manageable size.

An important note must be made regarding the ”DCOP pairing” method. Because of the very high
memory demands of the Max-Sum algorithm [6], when clusters grow too large and numerous agents
are involved, the thread responsible for computing the pairings runs out of memory (in the experiment
the agents are allocated a total of 4GB of memory). For the runs used for plotting the results in Figure
2, the average time of running out of memory is around timestep 232. Judging by the evolution of the
score prior to that point and following that point, it is likely that higher level pairing done would not
have impacted greatly outcome for the interval 232-300.

The Paris-hard-mini map was especially designed that the DCOP pairing method also ran out of
memory on average around time step 230 and, as such, the performance shown in Figure 3 also reflects
the macro-level behavior. With the exception of ”Sample agents”, all approaches manage to contain
the fires until around timestep 140. Following that point, ”DCOP pairing” yields the best performance,
while for the other approaches the performance drops to similar values towards the end. The rate of the
descend suggests that the fires are too large to be controlled between timesteps 160-250, and therefore
for this interval the differences between the approaches might not be relevant.

As a general conclusion regarding the performance of the various coordination methods for Fire
Brigades, all the studied approaches yield acceptable performance on most maps. ”Heuristic pairing”
yields its best results in the scenarios where its core assumption holds. ”BaGA pairing”, although not the
best method on all maps, has a good overall performance. Lastly, lacking more elaborate coordination,
”Support requests” usually has the lowest performance of the considered approaches, though still leading
to acceptable scores and considerably outperforming the ”Sample agents”.

6 Conclusion
In this paper a novel approach for modeling the behavior of agents in the RoboCup Rescue Simulation
competition is evaluated. The approach follows a hierarchical structure, with a macro-level behavior
focusing on the higher strategic decisions and agent collaboration and a micro-level behavior managing



the local, tactical behavior, and rapidly responding to changes in the environment.
While micro-level behavior was restricted to a simpler MDP-based approach, several methods have

been investigated and tested for developing the macro-level behavior of fire brigades. Following the
decision-theoretic planning paradigm, a method based on the BaGA algorithm allowed the mitigation
of the limitations usually associated with multi-agent partially observable domains and yielded consis-
tently good results on the maps tested. Another method, popular in the scholarly works studying the
RoboCup Rescue domain, involved formulating the macro-level behavior under the DCOP framework,
subsequently solved using the Max-Sum algorithm. This approach had a similar performance to the
BaGA based method, sometimes even outperforming it, but its use was limited in certain cases due to
the high memory demands. However, this limitation could be addressed by employing adaptations of
the original algorithm specifically designed for this problem, such as the Fast Max-Sum algorithm [10].

The described methods were evaluated at the 2014 RoboCup competition and resulted in a high score
in the multi-agent challenge of the Rescue Simulation league. Our team had the highest score on the map
where the performance of the teams shows the largest spread. These results are also socially relevant.
Inside the RoboCup Rescue community several researchers have used the developed algorithms to train
and support incident commanders [1].
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