
A hierarchical model for decentralized fighting of large
scale urban fires

Frans Oliehoek
Informatics Institute, University of Amsterdam

Kruislaan 403, 1098 SJ
Amsterdam, The Netherlands

faolieho@science.uva.nl

Arnoud Visser
Informatics Institute, University of Amsterdam

Kruislaan 403, 1098 SJ
Amsterdam, The Netherlands

arnoud@science.uva.nl

ABSTRACT
In this article we present a hierarchical model for planning
and coordinating firefighting in situations such as RoboCup
Rescue, where an urban earthquake is simulated. We show
that a hierarchical approach brings leverage to the planning
process. By using formal decision theoretic models, we also
present a more formal analysis of the RoboCup Rescue do-
main. Finally we discuss how our model could be applied
and treat further abstractions that may be necessary.

1. INTRODUCTION
Coordination of emergency services during disasters is a

topic receiving a lot of attention lately: even specialized
workshops and conferences are being organized. During an
emergency different civil services have multiple teams pa-
trolling the site, each with some degree of autonomy. The
different emergency services may also have different informa-
tion about different locations within the disaster site. How-
ever, communicating all potential information is typically
not possible. As a consequence, coordination might fail.
In the RoboCup Rescue [7, 13] a prototype of a large

scale disaster — an earthquake in an urban environment —
is simulated. Because of the disaster, communication infras-
tructure is failing, buildings catch fire and collapse causing
roads to get blocked by and people to get trapped in the
debris. In this chaotic setting, teams of firefighters, police
officers and ambulances have to make decisions, with the
goal to gain control of the situation as quickly as possible
and with minimal casualties and damage.
When considered from the perspective of artificial intelli-

gence (AI), RoboCup Rescue is a cooperative multi-agent
system in a partially observable stochastic world. Recently
the Dec-POMDP [2] framework has gained in popularity for
modeling such systems. However, the complexity of opti-
mally solving these models (NEXP-complete [2]) has limited
the application to the smallest problems.
Hierarchical decomposition is one way of reducing the

complexity of problems [1]. In this paper we propose an hier-
archical framework for fire fighting based upon the RoboCup
Rescue simulation environment. We show how such an ap-
proach can bring a large reduction in complexity, especially
when combined with state aggregation and abstraction. At
the same time we present the RoboCup Rescue world using
formal models (Dec-POMDPs, POMDPs). This provides
a potential starting point for a more formal approach to

RoboCup Rescue. Moreover, it sets a goal for approximat-
ing methods for Dec-POMDPs and POMDPs in order to be
applied in such a complex real-world problem.
In section 2 we will first introduce the Dec-POMDPmodel.

Next, in section 3, we will model RoboCup Rescue as a ‘flat’
Dec-POMDP. After that, we present our proposed hierarchi-
cal model in section 4. Section 5 threats how the parameters
for the hierarchical model should be estimated and section
6 concludes with a discussion.

2. DEC-POMDPS
TheDecentralized partially observable Markov decision pro-

cess (Dec-POMDP) [2] is a model for multi-agent planning
under uncertainty. Formally, a n-agent Dec-POMDP is de-
fined as a tuple 〈S,A, T, R,O, O, h〉 where:

• S is a finite set of states.

• The set A = ×iAi is the set of joint actions, whereAi

is the set of actions available to agent i. Every time-
step, one joint action a = 〈a1, ..., an〉 is taken. Agents
do not observe each other’s actions.

• T is the transition function, specifying P (s′|s, a).

• R is the reward function, R(s,a, s′) gives the reward
for a transition from s to s′ under a.

• Oi is a finite set of observations available to agent i.
A joint observation o = 〈o1, ..., on〉 is chosen from the
set of joint observations O = ×iOi.

• O is the observation function, specifying P (o|a, s′).

• h is the horizon of the problem.

The goal of the agents is to maximize the expected (dis-
counted) future reward.1 Therefore the planning problem
is to find a conditional plan or policy for each agent as to
maximize the expected (discounted) future reward.
When the Dec-POMDP consists of 1 agent, the model

reduces to a regular POMDP, for which many results are
known [6]. When such an agent can also deduce the state
from the observation it receives, the problem is fully observ-
able and the model reduces to a MDP, which has als been
studied extensively [15].

1
When the planning horizon is infinite, the expected future reward is

discounted by a factor γ to make this sum finite.

There are also extensions of the Dec-POMDP model to
include explicit communication [5, 16]. For now, we will
assume that communication is part of the regular actions
and observations. I.e., an individual action ai =

˙

ad

i , a
c

i

¸

consists of a domain level action ad

i and a communication
action ac

i . This communication action influences the obser-
vations received in the next time-step in a straightforward
manner through the transition model.

3. ROBOCUP RESCUE AS A DEC-POMDP
Here we will give a description of how one can model fire

fighting based upon the RoboCup Rescue world as a regular
(‘flat’) Dec-POMDP, before we extend this description to
a hierarchical model. Although this is mainly a theoretical
exercise as this model is highly intractable, it is useful as
it reveals the complexity of the problem. At the same time
we also present a more elaborate description of RoboCup
Rescue.

3.1 State description
Here we will give a description of the proposed state space

by identifying all relevant state variables or factors. This
state space is based on the dynamic factors in the RoboCup
Rescue world, restricted to the factors relevant for firefight-
ing. Static factors, i.e. factors that do not change through-
out the simulation, will not have to be incorporated in the
state space. Their influence is incorporated through the
transition model. In RoboCup Rescue, the world is given
by a map, consisting of buildings, roads and nodes.2 A typ-
ical map consists of approximately 1000 buildings and the
same number of roads and nodes.
This world is populated by agents, broadly dividable in

three categories: the mobile civilians and rescue agents (pla-
toons) and the immobile rescue centers. The rescue agents
(both mobile and center agents) can in turn be divided in
the fire, police and ambulance agents. The center agents
function as communication centers. In a typical simulation
there are 70–90 civilians, 20–40 mobile rescue agents and 3
centers.
The mobile agents can be located on roads, nodes or in

buildings. So the number of valid positions on a map is the
sum of these elements (i.e., typically around 3000). Also
these mobile agents have a particular health, expressed in
health points (HPs). Fire-brigade agents have a particular
amount of water left. Ambulance agents can have a civilian
loaded or not.
Because of the earthquake that takes place at the begin-

ning of the simulation, buildings collapse and catch fire.
These collapses can cause roads to get blocked (in either
direction)3 and civilians to get trapped in debris. Although
there are ideas to incorporate the effects of aftershocks (caus-
ing new collapses and fires), this currently is not imple-
mented. Therefore we will not consider this.
The fire simulator is based on heat energy as primary con-

cept. Fire propagation’s main component is heat radiation,
but the latest fire simulator also incorporates the influence
of the wind [9] by dividing the open (non-building) area of

2
Nodes act as the glue between roads/roads and roads/buildings.

3
In RoboCup Rescue the blockage of roads is simulated with more

detail (e.g. the measure of block and the cost to clear the blockage

are incorporated). For the fire-fighting task, knowing whether a road

is blocked or not (in both ways), is sufficient.

factor values

for all fire agents in the world (±15)
current position valid positions
health 0–9999HPs
amount of water 0–15000l

for all roads (±1000)
blocked? (2 directions) blocked/free

for all buildings (±1000)
heat energy 0–106 GJ
state (not) burning
fuel left percent(%)
amount of water 0–150000l

for all air cells (±20000)
temperature 20-10000◦C

wind speed and direction n/a

Table 1: State variables or factors for a particular
RoboCup Rescue world (map). The dark entries are
ignored, as we focus on fire-fighting.

the map in (approx. 20000) cells for which the air temper-
ature is simulated. Other factors that determine the spread
of fire are properties of buildings. The dynamic factors are
the heat of a building, whether it is burning, how much fuel
is left and how much water is left in the building (and thus
how damaged it is). Static properties like the size and com-
position of a particular building (wood, steel or reinforced
concrete) and how close it is to surrounding buildings also
influence the spreading of fire. However, because these prop-
erties are static, they do not need to be incorporated in the
state description. Instead the probability of a particular
building i catching fire given that a neighboring building j
is on fire is modeled through the transition model.
Table 1 summarizes the state factors. From the available

descriptions is is not always entirely clear in how factors are
represented (especially regarding the wind details are lack-
ing), therefore these ‘value’ entries are based on judgement
of the authors. Also note that, as this paper focuses on the
firefighting aspect, certain factors (e.g. the position, health
and other properties of other agents) are ignored.

3.2 Actions
The actions for an agent i in RoboCup Rescue can be di-

vided in domain level actions Ad

i and communication actions
Ac

i . A mobile agent can perform both a domain level action
as communication within one time-step (e.g. a fire-brigade
agent can move/extinguish and communicate). This means
that the set of actions Ai for a mobile agent i is the Carte-
sian product of all domain level and communication actions
Ai = Ad

i × Ac

i . In this section we will discuss the domain
level actions. Section 3.4 will deal with communication ac-
tions.
All mobile agents can perform the move action. The ar-

gument of this move action is a path along which the agent
should move. Clearly the move actions are dependent on
the current position of the agent. Also, there is a maximum
distance that an agent can travel in one time-step (333m).
This means that two paths that deviate only after this point
lead to the same action.
Fire-brigades have 2 specialized actions: extinguish and

refill. The extinguish action takes is a compound action
consisting of multiple ‘nozzle’ actions. Each nozzle action
specifies a building and the amount of water (in liters) to
direct to that building.4 The total amount of water can’t
exceed the maximum amount of water emitted per time-step
(1000l), also a fire-brigade cannot use more water than it has
left. Until 2005 there has been no use for the possibility to
divide the amount of water over different buildings, but this
has changed with the new fire-simulator that allows for pre-
emptive extinguishing of buildings. The refill action restores
the water supply of the brigade and can only be performed
at ‘refuges’, these are special buildings were agents can find
shelter. Refilling occurs at the same rate as extinguishing
(1000l per time-step). The other agents also have special-
ized actions: police-brigades can clear the road current road
and ambulances can rescue civilians and load and unload
them into the vehicle. As we focus on fire-brigades we will
not treat these in further detail.

3.3 Observations
Now we turn our discussion to observations. Similar as to

actions we specify the set of observations for agent i as the
Cartesian product of domain and communication observa-
tions Oi = Od

i ×Oc

i . Here we treat the domain observations,
communication observations are treated in section 3.4.
At the beginning of the simulation all agents receive the

full state of the world before the earthquake. This models
the fact that rescue agents know their city. After this initial
observing of the city only regular observations are received:
at each time-step, only objects within a range of 10m are
seen, except for fiercely burning buildings, which can be ob-
served from a larger distance. When an agent executed a
move action, only observations of the new position are re-
ceived (i.e, no observations are made ‘en route’). On average
4-6 static objects (building and roads) can be visually ob-
served during a time-step.[13]
Observing an object means that the agent receives the

object ID, its type and properties. For a road this property
is whether or not it is blocked (in both ways), for a building,
the so-called ‘fieriness’, listed in table 2, is observed. This
fieriness factor is a direct function of the amount of fuel and
water left in the building and determines the part of the
area counted as damaged. As far as we were able to tell, the
properties of the wind are not observed at all.

3.4 Communication
Communication consists of both an action (by the sender)

as an observation (for the receiver). In RoboCup Rescue there
are two forms of communication actions: say and tell. The
say messages are directly transferred (i.e., shouted), the lat-
ter transmitted by radio. Both types of communication are
broad-casted: say messages can be picked up by agents of
all types within 30m, tell messages can be received by all
agents of the same type regardless of the distance.5 The
restrictions that are posed on communication vary per com-
petition. In 2005, platoon agents could send and receive 4
tell messages. For center agents this was 2n tell messages.
Platoons additionally can also send and receive one say mes-

4
In fact a ‘nozzle’ action also requires (x,y) coordinates and a di-

rection. We will assume that these can be simply derived from the

building to be extinguished.
5
An exception here is that center agents, can receive tell messages

from other types of centers.

F. description ign. ext. dmg.

0 not burnt, no water damage
√ √

0
1 burning, slightly damaged × √

1/3
2 burning, more damaged × √

2/3
3 burning, severely damaged × √

1
4 not burnt, watered-damaged

√ √
1/3

5 extinguished, slightly dam.
√ √

1/3
6 extinguished, more damaged

√ √
2/3

7 extinguished, severely dam.
√ √

1
8 completely burnt down × × 1

Table 2: Fieriness (F.) values for buildings on fire.
Also shown is whether the building is ignitable, ex-
tinguishable and how much of the area is counted as
damaged.

sage.
The above is difficult to model as a Dec-POMDP, because

of the restrictions on the incoming messages: in RoboCup
Rescue the agents are assumed to select the messages they
want to hear, by selecting 4 messages based on only the
sender’s ID. This effectively introduces a sub-stage where
an action has to be selected before the observation is re-
ceived. To model this we introduce an additional state vari-
able, phase, that alternatingly takes on the value act and
rc (receive communication). Also, we introduce a variable
action that will ‘remember’ the joint action taken.
When the phase is act, agents take an domain level and

communication action as normal, the state than changes in
the following way: phase is set to rc and action is set to
the taken joint action, a =

˙`

ad

1, a
c

1

´

, ...,
`

ad

n, a
c

n

´¸

. Next,
the agents receive a special ‘receive communication’ obser-
vation. For agent i we will denote this observation by orc

i .
This observation consists of all the message IDs and the cor-
responding sender IDs for all messages agent i is able to re-
ceive (all tell messages and the say messages of agents within
30m). Next, the agents have to select a ‘receive communica-
tion’ action, arc

i . This action corresponds to the 4 messages
the agent wants to receive. Next the state changes again:
the state stochastically changes, however, now the transi-
tion is dependent on the action variable, instead of the joint
‘receive communication’ action arc. I.e., let a state in this
new representation be denoted s̄ = 〈s,a, rc〉, we than have
P (s′|a, s) = P (〈s′,a∅, act〉 | 〈s,a, rc〉) = P (s̄′|s̄), where a∅ is
an empty joint action (in the act phase no remembered ac-
tions are needed). As is implied during this transition phase
is set to act and action is set to a∅. Finally, the communica-
tion observations are received at the beginning of the new act
phase. Here the ‘receive communication’ action arc is rele-
vant (as it determines what messages are received by what
agent). We assume that the selected messages are received
without noise, i.e., we have P (oc| 〈s,a, rc〉 ,arc) = 1 for ex-
actly one oc. Note that this observation is dependent on the
previous rc state. In contrast, the domain observation od de-
pends on the new state: P (od|a, s′) = P (od|a, 〈s′,a∅, act〉).
Therefore, for a combined joint observation o =

˙

od,oc
¸

,
this can be written as:

P (
D

od,oc

E

|s̄,arc, s̄′) = P (oc|s̄,arc) · P (od|a, s̄′)

In a pure planning framework, messages have no a pri-
ori semantics. Instead the planning process should embed

the ‘optimal meaning’ in each communication action [5].
In RoboCup Rescue all messages are 256 bytes. When an
agent can send 4 tell and 1 say message, this means has
8 · 256 · 5 = 10240 bits to encode its communication action
and thus that |Ac

i | = 210240. This means that the number
of joint communication actions |Ac| = 210240n. Clearly this
way of treating communication is an intractable factor.

3.5 Transition, observation and reward model
The transition model of the flat MDP as described so far,

would describe the probabilities of all next states given the
previous states and actions. Because the state description is
the same as used by the simulator components, these prob-
abilities could theoretically be found by analyzing the code
of the simulation system.
The (domain) observation model is even simpler, given a

successor state, the observations an agent receives are deter-
ministic, i.e., given s′ there is no uncertainty regarding od.
Also od is independent of the actions taken: P (od|a, s′) =
P (od|s′), because agents receive no observations ‘en route’
as discussed.
The reward function is easily derived from the scoring

function. The scoring function used for the 2005 competition
was:

Score(s) = (P + S/S0) ·
p

B/B0, (1)

where P is the number of living agents, S0 is the total sum
of health points (HPs) at start of the simulation, S is the
remaining sum of HPs, B0 is the total area of houses, B is
the area of houses that remained undamaged.
This gives us the reward function of the Dec-POMDP in

the following way:

R(s,a, s′) = R(s, s′) = Score(s′)− Score(s).

Note that the initial score Score(s0) is the highest score
possible and that 0 is the lowest score possible. This means
that cumulative reward is bounded by [−Score(s0), 0]. As
the focus is on firefighting, only the second term of eq. 1
will be used.
Although the horizon is finite in the RoboCup Rescue

competition (300 time-steps) we typically want to plan for a
varying horizon (until all fire is extinguished and all trapped
people are either rescued or dead). We allow this by treating
the problem as infinite horizon. Because we know that the
reward is a finite, we don’t need to introduce a discount
factor.

3.6 Complexity
Here we will give a brief argument of the complexity of a

flat Dec-POMDP representation. By ignoring some factors
of the state-space, we effectively performed a first abstrac-
tion to reduce the state space. However, the state space as
presented in table 1 is still huge. When there are n = 15 fire-
brigade agents and 3000 valid positions this already leads to
300015 different configurations. When considering only the
first 4 factors, we already get a state space of

|nr pos|15 · |HPs|15 · |water|15 · 2|2·nr roads| =

300015 · 1000015 · 1500015 · 22000 ≈
1052 · 1060 · 1062 · 10602 = 10776

and this is not even including the state of each of the 1000
buildings. With the number of atoms in the universe being

estimated around 1085, clearly it is not possible to represent
the full state space. We already saw that the number of
joint communication actions is prohibitively large and the
same holds for domain actions and observations. Therefore
this is clearly an intractable problem.
However, in the actual world a fireman who’s extinguish-

ing some building, typically won’t care about properties of
a building beyond the zone of potential fire spreading. Nor
will he consider what the exact position of a colleague at the
other side of town is. Effectively, in order for a firefighter
to perform his job he needs focus on those state variables
that are relevant for his current task. States that do not
differ on relevant variables can be grouped or aggregated.
We use these insights to provide a hierarchical decomposi-
tion of tasks, bringing leverage to the decision process, by
constraining the number of possible policies.

4. A HIERARCHICAL FRAMEWORK
In RoboCup Rescue hierarchical techniques have implic-

itly been applied. Especially the division of the map in re-
gions or sectors and the use of roles have been frequently em-
ployed by teams in the competition [13, 10]. The inclusion
of roles within a model similar to the Dec-POMDP and its
potential application to domains RoboCup Rescue like has
also been considered [8]. We will first discuss some theory of
hierarchical approaches. The appliance in our proposed hi-
erarchical framework for RoboCup Rescue is discussed after
that.

4.1 Hierarchical approaches to planning
The goal of hierarchical approaches is to reduce the com-

plexity of a problem, eloquently put by Barto and Mahade-
van [1] as:

“Recent attempts to combat the curse of di-
mensionality have turned to principled ways of
exploiting temporal abstraction, where decisions
are not required at each step, but rather invoke
the execution of temporally-extended activities
[...] this leads naturally to hierarchical control
architectures...”

The mentioned temporally-extended activities are at the
heart of hierarchical approaches and are also referred to as
partial policies, options, skills, behaviors, modes or activ-
ities. The last of these is suggested for use in more gen-
eral context, while the preceding terms are used for specific
formalisms. Activities or behaviors [3], the term we will
adopt for reasons that will become apparent, typically are
employed to accomplish some task or sub-goal. In this pa-
per we present a framework of behaviors that can be used
for the RoboCup Rescue world.
Most current work on hierarchical decision making is based

on the framework of semi-Markov decision processes (SMDPs).
These are like regular MDPs, but the state transitions take
a variable amount of time. As a consequence the probability
of a transition is now written as:

P (s′,∆t | s, a).

In particular, most approaches are based upon discrete-time
SMDPs, where the delay ∆t is restricted to be an integer
multiple of underlying time-steps t.

In hierarchical approaches, this generally is applied in the
following way. A behavior, denoted β, can either be a prim-
itive action a or a partial policy: A partial policy is defined
over a subset of states S and finishes (possibly stochasti-
cally) upon reaching a state in a set of sub-goal states. The
transition function P (s′,∆t|s, β) gives the probability that
behavior β started from state s finishes after ∆t time-steps
and that the resulting state is s′. Here s′ is a state in which
the sub-goal of behavior β is accomplished.
We propose a different way to model the uncertainty re-

garding the completion of a sub-task that remains closer to
way that regular MDPs specify the transition probabilities.
Instead of considering how long a particular behavior will
take to terminate, we consider how far the task has pro-
gressed after a fixed number of time-steps. I.e. we fix ∆t
to some integer T and consider how the state has changed
after these T time-steps:

PT (s′ | s, β),

where s′ is not necessarily a state where the sub-goal of β
is accomplished, but can be any (‘intermediate’) state. We
refer to such a model as an T -MDP. This also motivates
our choice for the term ‘behavior’: the agent will behave in
a certain way for a fixed number of time-steps.
Clearly, it is not possible to consider one-step actions in

the same T -MDP as the behaviors: an T -MDP with T > 1
is only meaningful when the behaviors β are actual policies
and not primitive actions. In fact, it is very likely that
different behaviors cannot be considered at the same time-
scale T either. Therefore we will make use of a hierarchy of
models for different time-scales, similar to how MAXQ [4]
uses a hierarchy of SMDPs.
An additional benefit of our approach is that it is possible

to switch from behavior before a sub-goal is completed with-
out having to resort to special techniques to guarantee that
sub-tasks are finished or behaviors aborted within a spe-
cific time. Especially within highly dynamic and partially
observable environments this is an important asset.
Of course there is also a catch: it might be possible that

an agent finishes the task for which the behavior is designed
within T time-steps. There are two ways to reduce the ef-
fects of this threat. The first is to select T (which is ex-
perimentally determined) as a small number, such that a
sub-task typically needs several T periods to finish. This
will reduce the relative delay. A second option is to define
the behaviors in such a way that, when the primary task
of a behavior is fulfilled, it specifies other actions that are
beneficial to perform. E.g., when a fire is extinguished, it
can’t hurt to sweep the neighborhood for trapped civilians.

4.2 An hierarchy of (Dec-)POMDPs
Here we will describe a possible hierarchy of tasks and be-

haviors and discuss how this reduces the complexity of the
overall problem by distributing the reasoning over different
hierarchical levels. Also, to overcome to inherent complex-
ity of planning over communication (as to embed to optimal
meaning of messages as described in section 3.4) we will as-
sume a fixed communication policy. This also eliminates the
need to introduce a separate sub-stage for making decisions
about communication.
First we give description of the hierarchy as a whole. The

highest level considers the city as a whole. This city consists
of districts which form the intermediate level. The lowest

level behaviors T

city perform duty in district 1,2,... 20
district fight fire zone 1,2,..., refill, patrol 5
fire zone move, extinguish 1

Table 3: Levels of hierarchy and the behaviors and
suggested T at those levels.

level we consider is the ‘fire zone’ level which corresponds to
a block of buildings on fire. At each of these levels, the fire-
agents can select different behaviors, these are summarized
in table 3. As planning at the highest level is performed
the least frequent (the suggested T is the highest) we as-
sume that information reaches all agents and planning is
performed using a centralized model. At lower levels, plan-
ning has to be performed more often and is assumed to be
decentralized.
Because we want to avoid the complexity of planning over

communication, we assume that there is a fixed communi-
cation policy. It is intuitively clear that the agents will be
able to make better decisions if they have better informa-
tion regarding the world. Therefore we assume that this
fixed policy is tailored to communicating the observations
agents receive. Of course it is possible also to allow other
types of communications (i.e. requests, orders, intentions
etc.). However in a Dec-POMDP it is optimal to communi-
cate all observations if communication if free [16]. Of course
it is most likely not possible to send and receive all observa-
tions, but we assume the fixed communication policy tries
to share the most relevant observations.

4.2.1 City level
The highest level we consider covers the entire city in

which the disaster is assumed to take place. The state rep-
resentation for this level is given by table 4 and illustrated
in figure 1. Although this state space is still large, it is much
smaller than the state space of the flat Dec-POMDP.

for all fire-agents:

current position district
for all districts:

total heat energy 0-108GJ
damage destroyed area

Table 4: State representation at city level.

Basically, the decision process that is performed at this
level is that of how to distribute the fire agents over dis-
tricts. Clearly fire agents should be assigned to districts
where large and dangerous fires are burning. However, it
is also important to assign brigades to districts from which
there is no information, as there might be fires there that
are still to small to observe.
As we assumed that the fixed communication policy com-

municates observations, we will treat observations received
directly the same at those received through communication.
That is, at this level we ignore the delay in observations
received through communication. The actual observations
considered at this level are all fieriness observations and the
positions of each agent accumulated over the last 20 time-
steps.

4

8

2

1
0

0
0

0

Figure 1: Left: city-level assignment of fire agents.
The numbers show the number of fire agents in each
district. Right: illustration of assignment to fires
within a district. See text for description.

At this level there is only one type of behavior defined:
selecting each district is a behavior: district(i). After this
selection reasoning is resumed at district level for the se-
lected district.
We assume that at the highest level, control is ‘central-

ized’. Because of the larger T (a suggested value of 20),
we assume that total heat information (observations) of all
districts has reached all agents and that therefore all these
agents can solve the centralized POMDP and execute their
component of the joint behavior.

4.2.2 District-level
The district level is the intermediate level in our proposed

hierarchy. It is modeled as a Dec-POMDP with the be-
haviors extinguish fz, patrol and refill. The agents partic-
ipating in the Dec-POMDP for district i are those agents
that selected behavior district(i) at the city level. However,
as each agent individually calculates the policy for the city
level, there might be discrepancies: i.e., agent i might se-
lect a policy based on the assumption that agent j is also
assigned to this district, but agent j might have selected a
different district. To counter this problem, the agents send
their computed behaviors to the center, which distributes
them to all agents as described, as part of the fixed commu-
nication policy. If necessary, agents can re-plan using the
correct district(i) behaviors.

for all fire agents in district:

position pos. in district
amount of water 0–15000l

for fire-zone 1...#FZ:

position ‘neighborhood’
total heat energy 0-107GJ

damage destroyed area

Table 5: State representation at district level.

The state space of the Dec-POMDP at this level is given
in table 5. The position of the fire agents in the district are
restricted to actual positions in the district and a special
outside district value. Because fire zones can have varying
sizes, we need a more ‘fuzzy’ way to encode their location.
We do this be dividing the district in ‘neighborhoods’. We

Figure 2: Planning at the fire zone level. The num-
ber of agents and buildings to be considered is much
lower.

than define the position of a fire zone to be the neighborhood
in which the most of its burning houses are located. The
state representation of the district level is also illustrated in
figure 1.
Similar to the city level, the observations considered at

the district level are the fieriness properties of buildings,
but now restricted the buildings within the district, and the
position of agents, but restricted to agents assigned to this
district.
At this level there are multiple types of behaviors. The

fz extinguish(fz) is similar to the district(i) behavior and se-
lects a fire zone to extinguish. When the agent is inside the
selected fire zone, reasoning is resumed at fire zone level,
otherwise he navigates to the fire zone and start reasoning
at fire zone level after arrival. The refill behavior specifies to
navigate to a refuge (if necessary) and than to refill. The be-
havior patrol makes the agent patrol the district, searching
for fires.
In the above behaviors, we assume that there is a pro-

cedure for navigating to a particular goal and that there is
a policy for the behavior patrol. This could also be mod-
eled as a (Dec-)POMDP, but we restrict our hierarchy to
firefighting tasks.

4.2.3 Fire-zone level
The lowest level at which reasoning is performed is the ‘fire

zone’ level. A fire zone is a consecutive block of buildings
on fire together with the adjacent buildings and roads as
illustrated in figure 2.
Similar to the district level, the fire zone level is mod-

eled as a Dec-POMDP, where the participating agents are
those that selected the extinguish fz(i) behavior. The state
representation used at this level is shown in table 5.
Because the extent of the fire zone changes as the fire

spreads, it is necessary to let the state description follow
this change. This means that the state description has to
be adaptive. As soon as the fire spreads, the building(s) that
now become adjacent to the fire (and thus part of the fire-
zone) are included in the state description. This is also the
level of the hierarchy that would incorporate the influence
of the wind. However, as it appears that agents are not able
to observe the wind at all, it is not profitable to use this for
planning and the concerning factors have been omitted.
Clearly, this level is the most complex in the hierarchy;

although the number of considered agents is the smallest,
the number of factors considered for each building is larger
and the number of considered buildings and roads tends to
outweigh the former for all but the smallest, most isolated

for all fire-agents that extinguish this fire-zone:

position pos. in FZ
health 0–9999
water 0–15000l

for all buildings in fire-zone:

heat 0-106GJ
state (not) burning
amount of fuel left percent(%)
amount of water 0–150000l

for all roads in fire-zone:
blocked yes/no — 2 direct.

Table 6: State representation at fire zone level.

fires.
The observations considered at this level are the fieriness

properties of buildings within the fire zone, the exact posi-
tions of agents that extinguish this fire zone and the state
of roads within fire zone.
At this lowest level the agent plan regarding their primi-

tive actions move and extinguish. However, when an agent
runs out of water, this ends the current extinguish fire zone
behavior end immediately executes the refill behavior from
the district level.

4.3 State abstraction and aggregation
Above we presented a three level hierarchy to replace the

flat Dec-POMDP as presented in section 3. At each of these
levels the number of state factors is a lot less than in this flat
Dec-POMDP. As the size of the state space is exponential in
the number of factors it is described by, this means that we
have reduced to complexity a lot. However, the complexity
of the hierarchical model as described is still prohibitive.
We will discuss how state abstraction and aggregation can
be applied to further counter this without going into too
much detail.
The most straightforward measure is to make a coarser

discretization of all factors with many values. This is a
kind of state aggregation, as we are in fact grouping similar
states. In fact we already applied this kind of aggregation
at the city level, where we specified the agents’ positions
in districts instead of precision locations. This can also be
applied to other state factors, e.g. the amount of water could
be expressed in kilo-liters (kl), the health on a scale of 1-5
etc.
State abstraction (abstracting away certain factors) is also

possible. For instance, the amount of water an agent has
might be ignored at the fire zone level, as it is also considered
at the district level. The fact that we ignored factor for the
influence of the wind at the fire zone level is also a form of
abstraction.
Similar techniques could be applied to the observations,

especially at the higher levels: Instead of considering each
change in fieriness for each individual building, it may be
possible to merge these observations into a more coarse ob-
servation indicating the change in fieriness for each neigh-
borhood or district. I.e., to apply a filtering or aggregation
on the observations.
One can question the usefulness of the hierarchical model

as presented here, as apparently there is still a need to per-
form aggregation and abstraction. In the authors’ opinions
this is not the best perspective. A better perspective is to

recognize, that hierarchical decomposition in fact facilitates
making better abstractions. I.e, when considering the flat
Dec-POMDP model as presented in section 3 it is much
harder to perform aggregation and abstraction while pre-
serving most of the dynamics of the system.

5. PARAMETER ESTIMATION AND SOLU-
TION METHODS

In the previous section we presented a hierarchical model
for fire fighting and described the states, observations and
actions (behaviors) at the different levels. What we did
not discuss yet are the transition and observation function.
The estimation of transition probabilities has become less
straightforward, because the abstractions made make it more
difficult to relate these transitions to the algorithms imple-
mented by the simulator. Moreover, the transition model at
the higher levels is dependent on the quality of the policies
executed at the lower levels. E.g., the probability that the
total heat energy of a specific fire zone i becomes less when 3
agents select the behavior extinguish fz(i), depends on how
well these 3 agents perform.
This suggests that the transition model should be learned

in a bottom-up fashion. I.e., first the transition model for
the fire zone level should be estimated. Because this level is
still represented by the same entities as the simulator uses
(primitive actions, same factors and observations), it should
be possible to derive a fairly accurate transition model by
examining the code. Next, the transition model for the dis-
trict level can be estimated (learned) by repeated simula-
tions, given the policy used for the fire zone level. I.e., by
writing the district level (s,a, s′) tuples that are encountered
during the simulation runs to a log file (the true states are
accessible from within the simulator), P (s′|s,a) can be de-
termined by analysis. The city level transition model can
be determined with a similar procedure.
For the observation probabilities, similar approaches can

be taken. This is slightly simpler, however, as there is no
dependence on the quality of lower-level policies (observa-
tions probabilities are conditioned on the successor state).
For the fire zone level, the observation probabilities is de-
terministic in the sense that it is certain which observations
are received in which states. For the higher two levels, the
probability of (aggregated) observations can be determined
by simulation as described above.
Alternatively, it would be possible to not to try and es-

timate the models, but to use a reinforcement learning ap-
proach. However, hierarchical multi-agent reinforcement learn-
ing in partially observable worlds is an unexplored topic that
most likely will prove to be extremely hard.
Another aspect we did not cover in the preceding sec-

tion, is how, given we accurately learned or estimated the
transition and reward models, the resulting (Dec-)POMDPs
should be solved. Even though the size of the models in our
hierarchy is much smaller than a flat model, it will typically
remain to large to solve exactly. As a consequence approxi-
mating methods are needed.
For the top-level POMDP, approximate POMDP solution

[17, 14, 12] methods could be used. These algorithms, com-
pute a joint policy for the entire belief space off-line. In the
on-line phase every agent simply executes his component of
the joint action specified by this joint policy π for the top
level of the hierarchy. I.e., every T (= 20) time-steps each

agent performs a belief update, based on the city-level obser-
vations which are assumed equal for all agents, giving a new
belief b′. Next, each agent i looks up a = π(b′) and executes
its own component ai. Another possibility would be using an
on-line algorithm such as presented in [11]. This particular
method starts a branch and bound n-step lookahead search
starting from the current belief state. The advantage is that
there is no planning over parts of the belief space that are
never reached and thus no expensive off-line computations.
The disadvantage is that special mechanisms are necessary
to guarantee that the branch and bound search is performed
in the same way, such that the agents will perform the same
calculations and remain coordinated.
For the Dec-POMDPS — the lower levels of the hierarchy

— similar satisfying approximating methods should be ex-
amined. Because of the higher complexity of Dec-POMDPs,
it is likely that on-line algorithms, performing a lookahead
search as described above, are the most viable option. How-
ever, it could be that good off-line methods will developed
that could also be used. In this way the lower levels of the
hierarchy set a benchmark for real-life application of approx-
imate Dec-POMDP methods.

6. DISCUSSION
We presented a hierarchical framework for fighting large

scale urban fires based on the RoboCup Rescue environ-
ment. We showed that such a hierarchical approach brings
significant leverage when compared to a non-hierarchical ap-
proach.
From a theoretic perspective, we proposed an application

of Dec-POMDPs for a complicated real-world scenario, thus
supporting the relevance of these models as a basis for multi-
agent planning under uncertainty. From a more practical
perspective, we formally model fire fighting in RoboCup
Rescue setting a starting point for a more formal treatment
of this problem. We also discussed some abstraction and
aggregation methods that may be applied to further reduce
the complexity.
In this paper we explicitly specified the behaviors and

thus sub-tasks Another, more interesting, approach would
be to automatically discover (hierarchies of) sub-tasks and
the corresponding behaviors. This might prove to be too
costly, however. Another interesting question is whether the
proposed method is actually useful for the current RoboCup
Rescue worlds. It might turn out that a three level hierar-
chy in fact is unnecessary currently and that the power of
such an approach becomes only clear for larger maps. These
questions however will have to be experimentally verified.

7. ACKNOWLEDGMENTS
The research reported here is part of the Interactive Col-

laborative Information Systems (ICIS) project, supported
by the Dutch Ministry of Economic Affairs, grant nr: BSIK03024.

8. REFERENCES
[1] A. G. Barto and S. Mahadevan. Recent advances in

hierarchical reinforcent learning. Discrete event
dynamic systems: Theory and applications,
13:343–379, 2003.

[2] D. S. Bernstein, R. Givan, N. Immerman, and
S. Zilberstein. The complexity of decentralized control

of Markov decision processes. Math. Oper. Res.,
27(4):819–840, 2002.

[3] R. A. Brooks. Achieving artificial intelligence through
building robots. Memo 899, MIT AI Lab, May 1986.

[4] T. G. Dietterich. Hierarchical reinforcement learning
with the MAXQ value function decomposition.
Journal of Artificial Intelligence Research, 13:227–303,
2000.

[5] C. V. Goldman and S. Zilberstein. Optimizing
information exchange in cooperative multi-agent
systems. In AAMAS ’03: Proceedings of the second
international joint conference on Autonomous agents
and multiagent systems, pages 137–144, New York,
NY, USA, 2003. ACM Press.

[6] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra.
Planning and acting in partially observable stochastic
domains. Artif. Intell., 101(1-2):99–134, 1998.

[7] H. Kitano, S. Tadokoro, I. Noda, H. Matsubara,
T. Takahashi, A. Shinjoh, and S. Shimada. Robocup
rescue: Searh and rescue in large-scale disasters as a
domain for autonomous agents research. In Proc. 1999
IEEE Intl. Conf. on Systems, Man and Cybernetics,
pages 739–743, October 1999.

[8] R. Nair, M. Tambe, and S. Marsella. Role allocation
and reallocation in multiagent teams: towards a
practical analysis. In Proceedings of the second
international joint conference on Autonomous agents
and multiagent systems, pages 552–559. ACM Press,
2003.

[9] T. A. Nssle, A. Kleiner, and M. Brenner. Approaching
urban disaster reality: The resQ firesimulator.
Technical report, Universitt Freiburg, 2004.

[10] S. Paquet, N. Bernier, and B. Chaib-draa.
DAMAS-Rescue description paper. Technical report,
DAMAS labaratory, Laval University, 2004.

[11] S. Paquet, L. Tobin, and B. Chaib-draa. An online
POMDP algorithm for complex multiagent
environments. In Proc. of Int. Joint Conference on
Autonomous Agents and Multi Agent Systems, 2005.

[12] J. Pineau, G. Gordon, and S. Thrun. Point-based
value iteration: An anytime algorithm for POMDPs.
In International Joint Conference on Artificial
Intelligence (IJCAI), pages 1025 – 1032, August 2003.

[13] S. Post and M. Fassaert. A communication and
coordination model for ‘robocuprescue’ agents.
Master’s thesis, University of Amsterdam, June 2004.

[14] P. Poupart and C. Boutilier. VDCBPI: an
approximate scalable algorithm for large POMDPs. In
Advances in Neural Information Processing Systems
17, pages 1081–1088, 2004.

[15] M. L. Puterman. Markov Decision Processes—Discrete
Stochastic Dynamic Programming. John Wiley &
Sons, Inc., New York, NY, 1994.

[16] D. V. Pynadath and M. Tambe. The communicative
multiagent team decision problem: Analyzing
teamwork theories and models. Journal of AI research
(JAIR), 16:389–423, 2002.

[17] M. T. J. Spaan and N. Vlassis. Perseus: Randomized
point-based value iteration for POMDPs. Journal of
Artificial Intelligence Research, 24:195–220, 2005.

