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Abstract. This year’s contribution of the UvA Rescue Team is twofold.
On one hand a theoretical contribution is made by describing the plan-
ning and coordination problem formally as an POMDP problem, which
will allow to apply POMDP-solution methods in this application area.
On the other hand the impact of the introduction of flying agents will
be studied. Flying agents, when applied correctly, have the potential to
reduce the uncertainty in the planning process considerably.

1 Introduction

The UvA Rescue Team has a long history. The first participation in the Rescue
Simulation League was by Stef Post and Maurits Fassaert, who competed in the
2003 competition in Paduva [10, 9]. In 2006 the first Virtual Robot competition
was held. Max Pfingsthorn and Bayu Slamet participated in this competition
and won the Best Mapping award [8]. The team from Amsterdam started a
cooperation with Oxford University in 2008, which continued for 4 years [16, 13,
15, 1]. In 2012 the team operated again under its original name; the UvA Rescue
Team [14], which resulted in the Infrastructure award.

During those years the team published several journal articles, book chapters
and theses. The team described their approach every year in a Team Descrip-
tion Paper and published their source code1 with a public license. Finally, the
details and rational behind the code used in the Virtual Robot competition is
described in a Technical Report [12], which also contains a complete overview of
our publications (up to 2012).

2 Approach

The intention of our team is to formulate the coordination problem of the Agent
competition in such a way that solution methods of the MultiAgent decision

1 http://www.jointrescueforces.eu/wiki/tiki-index.php?page=Downloads



process toolbox [11] can be used. In earlier contributions [9] it was demonstrated
that the coordination problem is too large for an optimal solution, yet in recent
years much progress is made in approximate solutions [7]. For instance, the online
Bayesian Game Approximation (Forward-Sweep Policy Computation) algorithm
[2] has been demonstrated to be effective for large multi-agent problems [4], and
has been reimplemented into the MADP Toolbox.

In a first attempt, the coordination problem of the Agent competition is
described as a DEC-POMDP, following the description in Oliehoek et al [7].
A second attempt is made to formulate the problem in a hierarchical manner,
inspired by Oliehoek et al [5].

2.1 General approach

State Description The state space for the task of fire fighting in RoboCup
Rescue is limited to dynamic factors in the RoboCup Rescue world. Static fac-
tors, i.e. factors that do not change throughout the simulation, will not have
to be explicitly incorporated in the state space, although they are implicitly
present via the transition model. In RoboCup Rescue, the world is given by a
map, consisting of buildings, roads and nodes, which act as the glue between
roads and buildings. A typical map consists of more than 1000 buildings and the
same number of roads and nodes.

This world is populated by civilians, rescue agents (platoons) and the im-
mobile rescue centers. The rescue agents (both mobile and center agents) can in
turn be divided into fire, police and ambulance agents. The center agents func-
tion as communication centers. In this description only mobile firefighting agents
are considered; the same exercise has to be done for the police and ambulance
agents.

The mobile agents can be located on roads, nodes or in buildings. So the
number of valid positions on a map is the sum of these elements. Also these
mobile agents have a particular health, expressed in health points (HPs). Fire-
brigade agents have a particular amount of water left.

The earthquake that takes place at the beginning of the simulation has a
large effect on the state: buildings collapse and catch fire, these collapses can
cause roads to get blocked (in either direction) and civilians to get trapped in
debris. Starting from this initial state, fires will spread if left unattended. The
fire simulator is based on heat energy as primary concept. Fire propagation’s
main component is heat radiation, which is simulated by dividing the open (non-
building) area of the map in cells for which the air temperature is computed.
Other factors that determine the spread of fire are properties of buildings. The
dynamic factors are the heat of a building, whether it is burning, how much fuel
is left and how much water is put in by extinguish actions. Static properties
like the size and composition of a particular building (wood, steel or reinforced
concrete) and how close it is to surrounding buildings also influence the spreading
of fire. However, because these properties are static, they do not need to be
incorporated in the state description. Instead the probability of a particular



building i catching fire given that a neighboring building j is on fire is modeled
through the transition model.

Actions The actions for an agent i in RoboCup Rescue can be divided in
domain level actions Ad

i and communication actions Ac
i . A mobile agent can

perform both a domain level action as communication within one time-step (e.g.
a fire-brigade agent can move/extinguish and communicate). This means that
the set of actions Ai for a mobile agent i is the Cartesian product of all domain
level and communication actions Ai = Ad

i × Ac
i . In this section we will discuss

the domain level actions Ad
i . The subsection at the end of this page will deal

with communication actions Ac
i .

All mobile agents can perform the move action. The argument of this move
action is a path along which the agent should move. Clearly the move actions
are dependent on the current position of the agent. Also, there is a maximum
distance that an agent can travel in one time-step (333m). This means that two
paths that deviate only after this point lead to the same action. Fire-brigades
have 2 specialized actions: extinguish and refill. The extinguish action specifies a
building and the amount of water (in liters) to direct to that building.The refill
action restores the water supply of the brigade and can only be performed at
‘refuges’, these are special buildings were agents can find shelter.

Observations As with actions we specify the set of observations for agent i as
the Cartesian product of domain and communication observations Oi = Od

i ×Oc
i .

Here we treat the domain observations Oi = Od
i , communicationobservationsOc

i

are treated in The next subsection.
At each time-step, only objects within a range of 10m are seen, except for

fiercely burning buildings, which can be observed from a larger distance. When
an agent executed a move action, only observations of the new position are
received (i.e. no observations are made ‘en route’). On average 4-6 static objects
(building and roads) can be visually observed during a time-step [9].

Observing an object means that the agent receives the object ID, its type
and properties. For a road this property is whether or not it is blocked (in both
ways), for a building, the so-called ‘fieriness’, is observed. This fieriness factor
is a direct function of the amount of fuel and water left in the building and
determines the part of the area counted as damaged.

Communication Communication is a transaction consisting of both an action
(by the sender) ac and an observation (for the receiver) oc. In RoboCup Rescue
there are two forms of communication actions: say and tell. The say messages are
directly transferred (i.e., shouted), the latter transmitted by radio. Both types
of communication are broadcast: say messages can be picked up by agents of all
types within 30m, tell messages can be received by all agents of the same type
regardless of the distance. The restrictions that are posed on communication
vary per competition. We assume that platoon agents can send 4 tell messages



and one say message and that all agents can receive all messages. Restrictions
on the number of received messages can also be incorporated [6].

In a Dec-POMDP, we can model communication by introducing communica-
tion actions and observations. The basic idea is that for each joint communication
action ac one joint communication observation oc can be introduced that for each
agent contains the messages sent by the other agents. Restrictions with respect
to communication distance can be modeled by making communication depen-
dent on the (next) state s′. That is, it is possible to specify a communication
model of the form Pr(oc|ac, s′).

The complete observation model is then given as the product of this commu-
nication model and the regular, domain observation model:

Pr(〈od,oc〉|〈ad,ac〉, s′) = Pr(oc|ac, s′) · Pr(od|ad, s′).

In a pure planning framework, messages have no a-priori semantics. Instead
the planning process should embed the ‘optimal meaning’ in each communication
action.

Transition, observation and reward model The transition model of a fac-
tored Dec-POMDP can be compactly described by a two-stage dynamic Bayesian
network (DBN). Because the state description is the same as used by the simu-
lator components, these structure and probabilities for this DBN can be found
by analyzing the code of the simulation system. For the (domain) observation
model we can make a similar argument.

The reward function is easily derived from the scoring function. A typical
scoring function is

Score(s) = (P + S/S0) ·
√
B/B0, (1)

where P is the number of living agents, S0 is the total sum of health points
(HPs) at start of the simulation, S is the remaining sum of HPs, B0 is the total
area of houses, B is the area of houses that remained undamaged.

This gives us the reward function of the Dec-POMDP in the following way:

R(s,a, s′) = R(s, s′) = Score(s′)− Score(s).

The horizon is finite in the RoboCup Rescue competition (300 time-steps).
However in the real-life setting we will typically want to plan for a varying
horizon (until all fire is extinguished and all trapped people are either rescued
or dead). This can be accomplished by treating the problem as one of infinite
horizon.

2.2 Hierarchical approach

As mentioned in subsection 2.1, the state description depends on a large number
of factors. Unless an efficient encoding of these elements is devised, the state
space becomes prohibitively large, as shown in [7]. One way to address this issue



is to consider an hierarchical approach, such as the one described in [5], under
which the general problem is subdivided into multiple, simpler problems, orga-
nized hierarchically. For each of these problems, the state space and associated
action space are greatly reduced, thus allowing efficient reasoning.

For our hierarchical approach we will consider only two levels of abstraction,
with a less conventional method for the macro level and a Dec-POMDP model
for the micro-level. The goal of reasoning at the macro level is to efficiently
distribute the agents along the map in order to address the existent threats (i.e.
rescue victims, extinguish fires and clear roads). Consequently, the role of the
agents at the micro level is to effectively adress the threats in the area assigned
at the macro level.

Macro level To illustrate the macro-level approach, let us first consider just
the problem of rescuing burried and/or injured civilians. Each discovered civilian
can be viewed as a sample drawn from a hidden ”threat” distribution over the 2D
space of the map (a hidden distribution which could be discovered by the flying
agents described in section 3). The ambulance agents can then be considered to
”generate” a ”help” distribution around their position (for example a Gaussian,
albeit better choices may be possible). Thus, the goal at a macro level would be
to fit the ”help” distributions such that they approximate as well as possible the
”threat” distribution, which can be done using Expectation Maximization or a
similar algorithm.

For this approach to yield satisfactory results, additional constraints must
be taken into consideration, such as restricting the values of the covariances of
”help” distributions, such that they reflect reasonably small areas which can be
dealt with efficiently by an agent at the micro-level. Also, in order to be able to
deal with the undiscovered victims, a total number of citizens can be assumed
(e.g. a function of the total number of buildings). Subtracting the observed ones
from this total number, gives an estimative number of unknown victims, which
can then be distributed uniformly over the unexplored space. As more victims
get observed, these randomly distributed points decrease in number and the
estimation of the ”threat” distribution becomes more accurate. After fitting, the
means of the ”help” distributions would indicate towards which points of the
map should the ambulances focus.

Similar methods can be employed for the police and firefighting agents as well.
In particular to the firefighting case, the burning buildings can be considered as
samples weighted by their fieriness.

Micro level In order to enable an efficient behaviour of the agents at a tactical
level, regardless of the actual position on the map where they get assigned by
the macro level reasoning, a new state space must be devised. This state space
must be general enough so as not to depend on the particularities of the map, yet
informative enough to enable meaningful reasoning. However, balancing between
these two characteristics, as well as choosing relevant ”sufficient statistics” to
include in the state description is not straight forward.



Taking into account the fact that each agent type has different specific goals
(e.g. ambulances save civilians), as well as specific actions (e.g. only firefighting
agents can extinguish fires), it seems reasonable to have specific state and action
definitions for each agent type.

Thus, a possible implementation of the state space for the ambulance agents,
incorporating the above desired properties, would include the following informa-
tion:

– distance to the nearest refuge

– distance to the nearest victim

– distance to the nearest unexplored node

– victim on board

– HP of victim on board

– number of citizens in effective range

The first three properties can be discretized as needed to avoid the complica-
tions of a continuous state space. Operating upon this state space requires also
a new domain action set definition:

– go to closest unexplored node

– pick up nearest victim

– drop carried victim at nearest refuge

– drop victim immediately

Translating the observations received from the environment such as to be able
to reason about the newly defined state space and transforming the new actions
into standard actions to be sent to the simulation kernel is straight forward.
The partial observability character of the model still holds because, even if the
observations themselves may be correct (no faulty sensors), the agent cannot
observe the entire surrounding area (up to it’s ”effective” range) entirely, being
conditioned by the particularities of the map (which makes this problem partial
observable). Thus, for example, it may not be able to observe a victim which
is closer to it than a previously observed victim, considered so far as being the
closest one. Therefore, it’s observations may not allow it to determine the true
state.

Since the goals in the sub-problem are the same as in the general problem (i.e.
rescue as many victims as possible and prevent as much fire damage as possible),
the reward function remains unchanged. However, given the new definitions of
the state and action space, the transition probabilities must be learned. Also,
the communication observations and actions remain the same.

The fact that each agent makes its own observations and, in general, is aware
of only its own actions, along with the particularities highlighted in the previous
paragraphs, indicate that the model of the problem at the micro-level is still a
Dec-POMDP.



Similar to the ambulance agents, the firefighting agents can incorporate the
following elements in their state space definition:

– carried water volume

– distance to nearest refuge

– distance to nearest low burning building

– distance to nearest medium burning building

– distance to nearest high burning building

– number of other firefighting agents in effective range

– distance to nearest unexplored node

Again, we need to define a new domain action set:

– extinguish nearest low burning building

– extinguish nearest medium burning building

– extinguish nearest high burning building

– go to nearest refuge and refill

– go to nearest unexplored node

Finally, the state space definition for the police agents can include the fol-
lowing information:

– distance to nearest unattended blockade

– distance to nearest unexplored node

The domain action set for police agents becomes:

– attend nearest unattended blockade

– go to nearest unexplored node

3 New challenges

Our team is interested in the new challenge of flying agents, which can be used
as explorers, as introduced in the Infrastructure competition [3]. This challenge
will force to explicitly reason about information gathering about the dynamics
of the fire front.

4 Conclusion

The UvA Rescue Team looks forward to be active again in the Agent competition
of the Rescue Simulation League.
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