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Abstract—Detecting surrounding situations and reacting ac-
cordingly to avoid collisions remains a challenging task for
autonomous driving. This task requires predicting the trajectories
of surrounding agents and assessing the potential risk of future
situations, which can be difficult to achieve solely through
onboard vehicle devices. Therefore, this paper proposes a coop-
erative architecture for trajectory prediction and risk assessment
conducted on roadside devices (RSUs) to assist Connected and
Autonomous Vehicles (CAVs). Firstly, we develop a segment-
based prediction model (SegNet) tailored to hub signalized in-
tersections. Intersections are divided into multiple segments, and
the Curvilinear coordinates are utilized to indicate the geometric
road features. The model leverages individual interaction cues
in the ego segment and group features in the merging segments,
while also incorporating traffic signal information to generate
multimodal prediction results. In terms of risk assessment, we
utilize the prediction results to provide hierarchical assistance,
such as risk values, risk maps, and reference trajectories. Offline
experimental results demonstrate that our SegNet model achieves
competitive and well-balanced performance compared to state-
of-the-art methods on the CitySim Database, with more accurate
and smooth prediction trajectories. Through real-time CARLA
and SUMO co-simulation, the performance of assisted CAVs
indicates that they can safely and effectively navigate with the
support of the proposed architecture.

Index Terms—Autonomous Driving, Trajectory prediction,
Risk assessment, Vehicle-road collaborative assistance

I. INTRODUCTION

UTONOMOUS driving has rapidly evolved as an ef-

fective approach to improve travel safety and efficiency.
The advancements in perception, planning, and control tech-
nologies demonstrate its feasibility to improve traffic safety,
relieve congestion, and reduce energy consumption in the near
future [1]. However, autonomous vehicles are still striving
with the challenges of maintaining safe operation in complex
environments [2]. A key aspect involves predicting future
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trajectories of surrounding agents like pedestrians, vehicles,
and bicycles to avoid potential risks. This necessitates vehicles
to precisely perceive the environment, with different sensors
actively combined to overcome diverse weather, lighting, and
occlusion conditions [3].

In recent years, competitions and challenges like nuScenes,
Argoverse [4], and Waymo have driven the development of
prediction technologies [5]. However, traffic rules are rarely
considered as explicit inputs to the model. Deeper extraction of
traffic geometric constraints and intricate vehicle interactions
is required to enhance algorithm robustness. The prediction
results lack effective integration with other autonomous driv-
ing modules such as planning and control, along with insuffi-
cient details on deployment. Additionally, complex predictions
impose a substantial computational burden, raising concerns
about real-time performance. These limitations [6] [7], which
solely rely on onboard vehicle devices, further lead to a
delayed response to imminent risks [8].

Thus, the Cooperative Vehicle Infrastructure System (CVIS)
leverages the prior information and powerful computing capa-
bilities of roadside units (RSUs) to provide assistance with
connected autonomous vehicles (CAVs) [3], [9]. Compared to
single-vehicle autonomous driving, CVIS integrates multiple
sources of information to obtain richer features, enabling
more efficient and intelligent traffic management functionali-
ties. Through rapid analysis of traffic conditions from macro
and micro perspectives, RSUs can identify risks within the
traffic environment, provide warnings to vehicles, and assume
increasing responsibility for various modules of autonomous
driving [10], [11].

At present, CVIS has been validated to reduce congestion
and traffic accidents, particularly at signalized intersections,
which serve as critical traffic hubs in urban areas due to their
capability to control and optimize traffic flow [12]. Vehicles
at intersections are regulated by traffic lights, but the mixed
scenario involves more factors to consider [13]. Consequently,
such attributes make them highly prospective for applications
and potentially become the pioneering deployment scenarios
for CVIS [14] [15].

A. Trajectory Prediction

The essence of trajectory prediction lies in maximizing the
utilization of all available environmental cues to construct an
accurate distribution model of future states [16]. Target agent
cues, complemented by static and dynamic contextual cues,
primarily constitute the inputs for trajectory prediction.
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Fig. 1. Illustration of three different trajectory prediction methods.
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Fig. 2. Environmental cues used in trajectory planning.

Target agent cues, including position, velocity, orientation
and driver-related information, are widely regarded as the most
valuable features. The use of static cues varies across the litera-
ture. For unstructured road driving, obstacle data predominates
as key static information. Conversely, road geometry and map
information are employed to tackle the challenges associated
with structured road traffic that encompasses intricate traffic
constraints. Semantic cues are also incorporated in urban
scenarios, such as traffic signal phases, speed limits, and
restricted areas. Using dynamic cues still remains a challenge
in trajectory prediction. The inherent interaction between
traffic agents is highly complex, especially at intersections
[17]. Different literature adopts entirely distinct strategies for
handling dynamic agent information. While some research
attempts to account for the impact of all nearby vehicles
within a certain range [18], others take into account the social
interactions among contextual vehicles for analysis [19].

Therefore, as illustrated in Fig.1, trajectory prediction
methods can primarily be categorized into three approaches:
physics-based methods, planning-based methods, and pattern-
based methods [16], based on the strategy of utilizing different
types of cues shown in Fig.2.

1) Physics-based methods: Relying on the principles of
physics and mechanics, physics-based methods can be catego-
rized into deterministic and stochastic approaches. Determinis-
tic methods employ vehicle dynamics and kinematics models,
such as "bicycle” models and constant velocity models, to
describe the motion of objects [20]. Non-deterministic employ
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probabilistic models, such as Kalman filters and particle filters,
to account for the uncertainty in object motion. However, due
to the challenge of considering complex cues, these methods
commonly provide short-term estimates within 1 second [21].

2) Planning-based approaches: Planning-based methods
first reason about the likely target positions, followed by
the planning methods to find optimal solutions [22]. The
most common methods include search-based, sample-based,
and optimization-based methods. Graph search-based methods
discretize the configuration space and search for an optimal
solution using Dijkstra, A*, and their variants [23]. The
sampling-based planning method utilizes sampling to explore
the state space and find a feasible path, such as Rapidly-
exploring Random Tree (RRT) [24] and parameterized curve
methods [25]. Optimization-based methods generate an opti-
mal trajectory by optimizing a certain objective function. How-
ever, planning-based methods are computationally expensive
and unstable, making them difficult to apply in dynamic and
complex trajectory predictions encountered at intersections.

3) Pattern-based methods: Pattern-based methods employ
artificial intelligence (Al) to learn the motion characteristics of
vehicles based on historical data to address these limitations.
Among them, cluster-based methods aim to learn various
motion trajectory patterns directly from vehicle tracks [17].
These methods utilize clustering algorithms to divide the
trajectories into different clusters, each representing a group
of trajectories with similar motion characteristics. During real-
time prediction, matching methods are employed to identify
which best aligns with the current state of a vehicle. How-
ever, these approaches require extensive data processing and
struggle to consider real-time interactions among agents.

Sequential models excel in handling data with temporal
order or sequential structure, leveraging memory mechanisms
to capture contextual information and long-term dependencies
within the sequences. Long-term trajectory prediction can be
effectively modeled as a high-order Markov process, where the
system’s future state depends not only on its current state but
also on previous states. Therefore, sequential models are well-
suited for prediction tasks. Recurrent Neural Networks (RNNs)
have demonstrated remarkable proficiency in processing time
series data, yielding promising outcomes in the prediction task
within real-world contexts.
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Florent et al. [26] were among the first to apply Long
Short-Term Memory (LSTM) for trajectory prediction. Alahi
et al. [27] introduced the Social LSTM model (S-LSTM) that
integrates social interaction forces among pedestrians into its
unimodal framework. Leveraging similarities between vehicle
and pedestrian trajectory planning, Nachiket Deo [19] intro-
duced the Convolutional Social Pooling model (CS-LSTM),
designed for highway scenarios with six defined vehicle ma-
neuvers according to their lateral and longitudinal positions.
The Multiple Futures Prediction model (MFP) [18] improves
the approach by learning meaningful latent variables to predict
various possible futures without explicit labels, using a dy-
namic attention-based encoder. Planning-informed Prediction
model (PiP) [28] is proposed for predicting future trajectories
in a planning-informed approach, combining history tracks
and the future planning sequences to perform predictions of
surrounding agents. These approaches are further extended to
predict trajectories at intersections based on lanes or intentions
[17] [29], and also address predictions in complex urban
scenarios with multiple agents [30]. However, traffic rules like
traffic lights are rarely taken into account.

Furthermore, the integration of the attention mechanism
dynamically learns and allocates weights based on contextual
features, focusing attention on important information [31].
Multi-head Attention Social Pooling (MHA-LSTM) [32] uses
multi-head dot product attention method for modeling vehicle
interactions on highways. Due to their powerful capabilities in
processing image and video data, Convolutional Neural Net-
works (CNNSs) have achieved considerable success in the field
of computer vision. Therefore, CNNs are frequently utilized to
extract geometric features from bird’s-eye view images [18],
[33], [34]. Additionally, in recent years, other deep learning
methods such as Graph Neural Networks (GNN) and Gen-
erative Adversarial Networks (GAN) have also demonstrated
effectiveness in trajectory prediction tasks, as detailed in [6].

Notably, to ensure safety, most trajectory prediction methods
are validated using databases such as NIGSIM, Argoverse, and
Interaction Dataset. Simulations are sometimes used for vali-
dation [18], but those scenarios are simple with basic vehicle
motion models, limiting the analysis of complex interactions
under various congestion conditions.

B. Risk Assessment

Once future predicted trajectories are obtained, they can be
used for vehicle risk assessment [35] [36]. In risk assessment,
there are two main categories of methods: deterministic and
probabilistic methods.

In deterministic methods, a binary indicator is to determine
whether a collision will occur between two vehicles. The
most common approach is to calculate the distance difference
between discretized trajectory points at each time step, taking
the vehicle’s shape into account. This binary indicator is often
used for candidate trajectory screening. In addition, many
indicators are used to quantify potential risks, such as Time-
to-Collision (TTC), Time-to-Brake (TTB), and Time-to-Steer
(TTS) [13]. However, these indicators usually assume that the
vehicle travels according to the physics-based models, which
can result in errors in long-term prediction.

Probabilistic methods consider vehicle uncertainty by as-
suming a probability distribution, primarily Gaussian distribu-
tion [37] and Monte Carlo methods. Schreier et al. [38] in-
troduced the Time-To-Critical-Collision-Probability (TTCCP)
metric, a novel approach that extends TTC for uncertain multi-
object scenarios with extended prediction horizons, taking into
account the uncertain outcomes of all vehicular maneuvers.

Risk maps discretize the driving space in different dimen-
sions and integrate various types of future dynamic risks from
different sources. In this way, vehicles can intuitively evaluate
the feasibility and superiority of trajectory candidates with
different dimensional risk maps [39]. [40] build a risk field
model and test in intersection Car-Following scenario. In [41],
a twisted Gaussian risk model is proposed using both longitu-
dinal and lateral motion states for vehicle behavior description.
Both occupancy and flow are predicted in a spatio-temporal
grid using a deep learning network [42]. However, current risk
map generation methods rarely consider the prediction multi-
modality. [21] and [25] explored the utilization of multimodal
probabilities to create risk maps, focusing exclusively on in-
lane maneuvers without extending their predictions to cover
intersection-related risks.

C. Contributions

Motivated by the above problems, we leverage the ad-
vantages of RSU to provide assistance to CAVs, aiming to
mitigate and avoid collision risks. Integrating prior information
and real-time traffic situation updates, RSUs predict future
trajectories of traffic participants. Subsequently, hierarchical
risk-assistive information is generated to support CAVs. The
main contributions of this paper can be summarized as follows:

(1) We proposed a segment-based trajectory prediction
model SegNet for signalized intersection. Employing a seg-
mentation approach, signalized intersections are divided into
multiple segments, and a Curvilinear coordinate system is used
to present road geometric information. Incorporating inputs
such as traffic lights, vehicle kinematics, and both individual-
and group-aware interactions enables multimodal prediction of
all vehicles within intersection zones.

(2) We propose a risk assessment-oriented cooperative mo-
tion planning architecture based on RSUs. Three layers of
risk-assistive information, corresponding to various vehicle
motion planning stages, are derived from predicted results.
This process involves calculating a risk value, constructing a
risk map, and formulating a reference trajectory for CAVs.

(3) We validated the methods by combining an offline
dataset and real-time simulations. Offline data testing and vali-
dation are conducted using the CitySim database. Furthermore,
we innovatively conduct testing using a CARLA-SUMO co-
simulation and analyze three typical intersection scenarios.

The remainder of the paper is structured as follows. Section
IT presents the cooperative motion planning architecture and
the coordinate conversion. Section III constructs the SegNet
model. Section IV measures the risks. Then, Section V ana-
lyzes the test results in offline dataset and real-time simulation.
Finally, the conclusions and future work are discussed in
Section VI
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illustrates the trajectory prediction and risk assessment process conducted by

RSUs, which is the focus of this study. Right: various types of auxiliary information support the motion planning module of CAVs.

II. SYSTEM OVERVIEW
A. System Structure

The overall cooperative planning framework is illustrated in
Fig. 3. It should be noted that in this paper, the RSUs refer to
digital transportation infrastructure equipped with functions of
perception, communication, computation, control, and service
[43]. By enabling communication and information sharing
between RSUs and CAVs, it becomes feasible to construct
a bird’s-eye view of the intersection. This comprehensive
perspective can be achieved by integrating data from multi-
ple roadside sensors [44] or vehicle-mounted cameras [45],
employing techniques outlined in [46].

For CAVs, motion planning typically comprises global plan-
ning, prediction, and trajectory planning (or local planning)
modules [47]. Based on the degree of involvement that RSU
plays in the motion planning of CAYV, three types are primarily
divided:

Data layer: RSUs just provide prior traffic raw data, and
do not participate in the planning process.

Risk layer: RSUs cooperate with motion planning but do
not have a decisive role. They measure the traffic future
evolution, providing collision warnings, blind spot warnings,
and other information, thereby altering the attention of CAVs
at the motion planning level. Additionally, computing risk
maps can serve as constraints in trajectory screening.

Control layer: RSUs take over control of the CAV. RSUs
can directly provide processed reference driving trajectories,
while the CAV needs to judge, match, integrate, and execute
these provided trajectories.

During the offline period, RSUs collect historical traffic
data, encompassing road geometry, traffic rules, and signal

phase change patterns. Traffic agent trajectories are processed
and compiled into a dataset used for training the trajectory
prediction SegNet model.

In real-time applications, CAVs send various assistance
requests along with information such as the license plate
number and locations for RSU matching. RSUs then deploy
segmentation modules to classify CAVs. With SegNets, mul-
timodal future trajectories of all vehicles can be obtained.
Using this information, the risk assessment module computes
different auxiliary data, which are then relayed back to assist
CAVs. This paper primarily focuses on computing risk values
and risk maps for the Risk layer, and also introduces reference
trajectories for the Control layer.

B. Coordinate Conversion

On-road urban driving is highly confined to lane-divided
structured roads. Therefore, the Curvilinear coordinate system
(also referred to as the Frenet coordinate system), which takes
the road centerline and tangential axis as the axes, is proposed
to deal with curved roads [20] [25]. Fig.4 illustrates the process
of converting between the Cartesian coordinate system and the
Curvilinear coordinate system. For moment ¢, the conversion

T (Zegor Yego) = T (s (to) ,d (to)) can be represented by the
following formula:

T (s (to) . d (o)) =s (o) T (s (to))+d (o) @} (s (t0)) (1)

Where the vector pairs [n,., t_:] are the tangential and normal
vectors of the closest point. [48] extensively details the process
for efficient conversion between the two coordinate systems
using Newton’s descent method. Utilizing both coordinate
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coordinate system

systems based on data features can significantly enhance data
processing efficiency. It is crucial to note that, for the purpose
of distinguishing between the two coordinate systems, this
paper represents positions in the Cartesian coordinate system
with x and y, while Curvilinear coordinate system with s
and d.

III. TRAJECTORY PREDICTION OF RSU
A. Problem Definition

The state of all vehicles n at time ¢ within the per-
ception range of the RSU can be represented by I, =
{I},I2,..., I}, where I7' = {z7,y?} denotes the current
state vector of the vehicle. Therefore, all historical trajectories
within 7 time units prior to ¢ can be represented as Iy =
{li—ryIt—ri1,..., I+ }. Qg represents all contextual cues at
time ¢. The future states at predicted time 7" can be denoted by
Ot = {Ot+la Ot+27 ey Ot—i—T}? where Ot = {Oi}v Ot27 ceey O;L}
represents the state of all vehicles.

Thus, the essence of trajectory forecasting lies in precisely
modeling p(O¢|It, Qt). To leverage geometric cues and in-
corporate multimodality, we use G representing feasible travel
segments and M representing maneuvers. Hence, our proposed
model aims to find:

pOIL.Q) = 3 3" p(0]M, G, 1, Qp(MIG, 1, Q)p(GIL, Q)
M G
(2

For each known maneuver and segment, we employ a bivari-
ate Gaussian distribution for modeling the future distribution,
denoted as ©; = {ul, ui, 0L, 0!, p'}, where i, and p,, are
mean vectors, 0,0, are the standard deviations, and p is
the correlation coefficient. We use the mean values p as the
predicted positions in our model. To distinguish, the object
that needs to be predicted is denoted as the Ego Vehicle (EV),
while other vehicles present in the environment are referred
to as Surrounding Vehicles (SVs).

B. Segmentation module

In contrast to highway environments, EVs at intersections
are subject to influences from SVs originating not only from
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Fig. 5. Illustrate of Intersection Segmentation.

the ego segment but also from other segments, exhibiting dis-
tinct characteristics. This phenomenon can be described as the
“intrusion” of vehicles from other segments into the primary
flow, akin to the merging process on highway ramps. Thus,
segments in which the ego vehicle is located are referred to as
ego segments, while segments that have a significant impact
on the ego segment are referred to as merging segments.

Additionally, RSUs are commonly deployed in a distributed
manner, enabling segmentation to efficiently assign predic-
tion tasks to different computational centers. On account of
these considerations, our approach incorporates a segmenta-
tion model that partitions an intersection into 4x4 segments,
covering 4 directions (east, south, west, north) and 4 types
of feasible maneuvers (U-turn, left-turn, proceeding straight,
right-turn), shown in Fig.5. For intersections that are ideally
centrosymmetric, a simpler division into four segments might
suffice. However, such symmetry is often too idealistic, com-
monly encountered in simulation environments rather than
real-world applications, and hence was not adopted in our
project. Meanwhile, this segmentation approach is applicable
to various traffic scenarios with guiding functions, such as T-
junctions and roundabouts.

Initially, we extract the road geometry and discretize it into a
set of road points. Areas of higher curvature necessitate denser
sampling to maintain continuity. These road points are then
integrated with cubic splines to form the reference line for
each segment. Based on the hist tracks in Cartesian coordinate
system, the vehicles are allocated to different segments by a
single LSTM encoder followed by a softmax layer. Notably, a
vehicle may be assigned to multiple segments, as long as the
segment probability exceeds a certain threshold (as 0.03 in this
paper). Through this module, vehicle intentions at intersections
are better represented.
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C. Overall SegNet

Historical trajectories of all vehicles along with contextual
information are collected for input, and a segmentation mod-
ule categorizes the vehicles accordingly. Our model utilizes
an encoder-decoder architecture, with the overall framework
depicted in Fig.6.

Employing the Curvilinear coordinate system, we process
the dynamic features of agent cues in the ego segment. An
attention-like mechanism is used to derive individual-aware
interaction features based on relative positions. Using the
Cartesian coordinate system, we extract group-aware interac-
tion features for the merging segment. Contextual cues, with a
focus on signal features, are handled independently. Incorpo-
rating the one-hot maneuver encoder, multimodal results are
decoded.

D. Segment-based encoder

The encoder module, depicted in the middle of Fig.6,
explains how the model employs encoder modules for the ego
segment, merging segment, and signal features sequentially.

1) Ego segment features: Initially, within the Curvilinear
coordinate framework, a Point of View (POV) transformation
normalizes each vehicle track relative to its current lateral
and longitudinal positions. Following this, an embedding mod-
ule maps each track into a high-dimensional vector, thereby
enhancing the model’s capacity to understand the intricate
movement features. These vectors are further processed by
an LSTM to capture their temporal characteristics. An LSTM

- A
Red Vellow Green! %
1

=
2l B

unit can be represented as follows:

iy = o (Wi + bis + Whihi—1 + bps),

Je = 0o(Wigze + bif + Whyhe—1 + bry),

g¢ = tanh(Wigay + big + Whghi—1 + brg), 3)
ot = c(Wioxs + bio + Whoht—1 4 bho),

et = ft ©cio1+1it © g,

ht = oy © tanh(c;).

Here, i, fi, g+, and o; represent input, forget, cell, and output
gates. o is the sigmoid function. h; and c; are the hidden
and cell states at time ¢, with x; as input. Weights (W) and
biases (b) are used for computations, and ® denotes hadamard
product. Vehicles within the same coordinate system exhibit
consistent dynamics models, thereby sharing the same LSTM
parameters. This implies that all vectors, directed toward the
same LSTM encoder in Fig.6, inherit the same parameters.
The kinematic model of the EV itself proves to be highly
beneficial. Thus, a dedicated Fully Connected (FC) network
is employed to further capture its characteristics with LSTM
output hidden states. In addition, vehicles behave differently
at a signal intersection as the path progresses. To this end, our
model incorporates locational context, processing the current
absolute position of the ego vehicle through an embedding
module, succeeded by a linear layer.

It is essential to address the individual-aware interaction
between EV and each SV within the ego segment. Motivated
by [18], we implement a dynamic, attention-like mechanism
to delineate the features of surrounding vehicles. While their
model is used to identify patterns associated with various
directions at intersections, our approach takes a different path
by focusing on the latent effects of relative position, velocity,
and turning angles of nearby vehicles within the ego segment.
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We developed 8 patterns to dynamically understand these
variables, tailored to the vehicle’s orientation (front, back, left,
right) relative to the EV, each containing 8 parameters. To
match the patterns, we utilize a two-layer FC to refine the
interaction features into 8 elements. Then, these patterns are
then matched against them in the following way:

3(x) = e~ (el xparern D? )

Where € is a scaling factor. Leveraging the attention-like
mechanism enhances the comprehension of interaction fea-
tures of SVs in the ego segment. Subsequently, a three-layer
FC network further refines the feature vectors.

2) Merging segment features: Initially, SVs within merging
segments are filtered by calculating their relative distances
within the Cartesian coordinate system. Subsequently, these
vehicles are organized into a group based on the number of
merging segments and their capacity. For a typical four-way
intersection, each ego segment corresponds to three merging
segments. Therefore, we use a 3x3 group grid, which considers
the three nearest SVs within each merging segment relative to
the midpoint of the exiting crosswalk. The group inputs are
transformed by POV, after which independent LSTM units
are deployed to capture temporal features. By integrating
features related to the relative distances to the EV, group-
aware interaction features are obtained through a four-layer
FC network.

3) Signal context features: One of the great benefits of
utilizing RSUs is the integration with traffic signals, enabling
access to information that may be difficult for vehicles to
obtain directly, such as the Remaining Signal Phase Time
(RSP). In this module, we first determine the vehicle-to-
crosswalk distance, assigning a value of -999 if it has passed
the crosswalk. Traffic light phases are represented using one-
hot encoding for red, yellow, and green. We aggregate them
and then process them through a three-layer FC network to
extract their contextual features. Ultimately, these features,
together with one-hot encoded signal phase information, con-
stitute the module’s output. Such attributes are crucial in
facilitating the prediction of a vehicle’s intention to decelerate,
stop, or startup.

E. Multimodal Decoder

The segmentation module has already categorized the vehi-
cle’s maneuvers based on segments. We further conclude four
maneuvers: stop, deceleration, constant speed, and acceler-
ation. The Maneuver module independently extracts vehicle
maneuvers and employs a linear network to reduce dimensions
to 4. Subsequently, a softmax layer normalizes it to obtain the
probability p(M|G,1, Q) for each maneuver.

In the trajectory decoder, we combine the one-hot encod-
ings of each maneuver (e.g., representing constant speed as
[0,0,1,0]) with the aggregated features. The LSTM decodes
each integrated input for future timesteps. Subsequently, a
linear network performs dimensionality reduction on the fea-
tures to generate a bivariate Gaussian distribution, denoted
as p(O|M,G,I,Q). This process results in a multimodal
distribution, as illustrated in the lower right of Fig. 6.

E Training

Our training is divided into two phases. Segmentation
models are trained independently to measure p(G|I, Q) by
minimizing the cross-entropy loss function.

G
LGp = - Zgi log(gi) &)
i=1

Where ¢; is a binary indicator (1 if sample ¢ is of segment G
and O otherwise), and g; is the model’s predicted probability
belongs to segment G.

On the other hand, for each SegNet model, we integrate the
maneuver loss L]gE and trajectory loss Ly to formulate the
comprehensive model loss function, which the networks are
trained to minimize. The trajectory loss is quantified using the
Negative Log Likelihood (NLL) of the vehicle’s conditional
distribution. Given that the maneuver for each dataset is fixed
and unique, a cross-entropy loss function LJgE corresponding
to maneuver m; is employed.

Ltrain = —ZOQ(Z p@(0|mi, Gu L Q)p(m1|G7 Iu Q))
=1
= Lynpp + LYy

LNLL = _log<p@(o|mtrue7 Gtrue, Ia Q))

M
LYy =— Z m; log(m;)
i=1

(6)

IV. RISK ASSESSMENT

With SegNets, the multimodal predicted trajectories of
vehicles within the perception range of RSU at the intersection
are obtained. Based on these multi-dimensional information,
RSUs can provide more comprehensive support for the motion
planning part of the vehicle. In this paper, we introduce
three types of auxiliary information: risk value, risk map,
and reference trajectory, corresponding to the Risk layer and
Control layer discussed in Section II.

A. Risk value

Like Advanced Driver Assistance Systems (ADAS), RSUs
can provide vehicles with warnings. Acknowledging future
motions enables the quantification of collision risk between the
EV and SVs. This can be described as the collision risk value

if the EV travels as planned state, considering the maneuvers
of SVs M:

C(collision|state) = Z C(collison|state, M)p(M |state)

M

(N

Through the prediction module, we obtain the future mul-
timodal trajectories of the SVs, where the probability of
each maneuver p(M|state) is represented as P,, in Fig.7.
As illustrated in Fig.7, the future closest encounter distance
between the two vehicles ADAf , as well as the corresponding
time of encounter tiw , lateral distance difference Adj”f , and

longitudinal distance difference As{tf , for each maneuver can
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Fig. 7. Risk related parameters calculation with spatiotemporal multimodal
prediction trajectories.

all be calculated. The ¢} is dependent on the prediction step
and varies for different maneuvers.

In intersections, vehicles have varying impacts on the EV
across different segments. For instance, within the ego seg-
ment, considerations are akin to those on a highway, primarily
focusing on the vehicle’s lateral and longitudinal behavior
relative to EV. However, in other segments, road guidance
and orientation become important considerations. Therefore,
we adopt different approaches for handling these two ways.

1) Ego segment: Vehicles in this segment are traveling in
the same direction, which means that the lateral and longitu-
dinal relationship between vehicles can be better analyzed in
the Curvilinear coordinate system. Therefore, for vehicles in
the same lane:

CEgO — A

Z c
/AR + (6(ver)As)?

Where A. is a constant number. The lateral and longitudinal
distance difference are calculated by Ad = max(}Ad,{‘f ‘ -
%,O) and As = max(|AsM)| — %,O) [ and L
represent the length and width of a vehicle. For structured on-
road driving, lateral and longitudinal distances have different
mapping coefficients for risk. We adopt a concept of virtual
distance, which magnifies differences in the longitudinal di-
rection to match the lateral risk:

p(M|state)  (8)

g(vev) =& (,Uev) e—ﬂ(ﬂeu—vsv)ﬁevﬁ 9)
do ev > do

evy _ Trvew vz Ty 10

S0 (v) { 1 otherwise (10

Where (3 is a scaling factor, The quantity &, (v¢”) takes the
absolute velocity of EV into account and adjust £ (v°¥) when

the vehicles are traveling at the same speed. dg and T
represent the vertical impact distance and desired following
time, respectively.

2) Merging segments: Calculating risk in merging segments
significantly differs from that in the ego lane, primarily due to
the heightened need to consider orientation and road guidance.
By factoring in vehicle orientation and velocity, we calculate
TTC in Cartesian coordinate for evaluating vehicle risk:

oM = — A, Z log(¢p * TTCya )p(M |states) (11)
M

where A; and ¢ jointly align the scale with ego risk. At the
time tM in the future, the relationship between the position
and relative speed between the two vehicles needs to be
considered, namely, v = (27’ — x¢",y;" — y;’) and d =
(vsY, — 3% vl —vsY, ) When @+ d < 0, the two vehicles
are moving away. When ¥'x d>0, we decompose the velocity
of EV and EV along the x-axis and y-axis and get v’ =
vz’ cos by, + vyUsinb;, and v’ = vi”cos by, + v, sinb; ,
Where 6, represents the angle between the position vector
and the x-axis. Then TTC can be calculated by the following
formula:
ADt

: 12)

(vgv —v3v) cos O, + (v5? — viv) sin by,

TTC,, =

Finally, the risk values are normalized to a range of O to
1 using a Sigmoid function. In practical applications, graded
thresholds can be set to provide alerts and warnings to the
EV, and it can serve as an indicator for assessing the safety
performance of autonomous driving. Additionally, it can be
used as an attention value transmitted to the EV for planning
and decision modules. In this paper, this result will also serve
as a parameter influencing the calculation of the risk map.

B. risk map

The spatiotemporal risk map rasterizes the environment
at different resolutions and then evaluates the potential risk
values for each occupied grid. RSUs can provide detailed and
rapid feedback on changes in the scene offline based on pre-
known information. Static risks, such as the risk of a collision
with the road and the risk of staying within lane boundaries,
can be calculated in advance.

Aroad H ?
Rroad: D) Z(d—df)

i€E

(13)

Where A,,q.q is weight factor. df is the lateral offset of the
it" edge in set E which contains the boundary of the road.

On the contrary, moving traffic agents, including vehicles,
motorcycles, bicycles, and pedestrians, introduce a significant
level of uncertainty into the traffic flow, making it challeng-
ing to quantify their associated risks. This paper primarily
focuses on vehicles. Fig.8 illustrates the risk map calculation
schematic, showing computation methods for the ego segment
on the left and the merging segment on the right.



IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 10, NO. 1, PP. 427-445, JAN. 2025 9

i s 5
&= 5 \

=
2: \
e M
=5 20 0
'III 100 150 2000 0 25 50
1200 1300 1400, -

20 20

M 1 L

75 100 125

80 % > Ego Segment '
Virtual distance - ”

i\-‘ellgl’:

1200 1250 1300 1350
S

ceel
w

Merging Segment| = .
0 10 20

63.825
D

Fig. 8. Risk Map Generation: Vehicles are categorized into the ego segment and merging segment, as shown in the middle. The left side depicts gradient
and 3D representations of the risk map for the ego segment, while the right side illustrates the risk map and risk curve generated in the merging segment.

1) Ego segment: For vehicles in the ego segment, where
main considerations involve lateral and longitudinal maneuvers
along the road, we simplify by using the concept of virtual
distance to generate the risk map. The left of Fig.§ illustrates
a risk map depicting the risk from a leading vehicle to the
EV, where the virtual distance varies with the speeds of two
vehicles. And the potential risk influence of the forward SV
should not be linear and evenly distributed in the lateral
direction. Therefore, a wedge can be appended to the affected
side of the SV to better describe the impact of risks [49].

g A e—aK

car = Acar =77 14

RCaT car K ( )

K= : d—d;)? Vs s s
(dmz)HEB (\/( )"+ (& (Vew) 5 — 55) > (15)

Where A, is a weight factor and « is a scale. (d;, s;) is the
position of point ¢ in set B comprising the edge of the SV.

2) Merging Segments: For vehicles in the merging segment,
we aim to calculate the risk they pose to the EV’s path.
Therefore, we employ the Gaussian distribution in advantage
of taking uncertainty into account, which is influenced by
factors such as the encounter time, minimum distance, and
driving speed.

R = Acor Z P(encounter|tM, M, state)
M

16

p(tM| M, state)p(M |state)p(damage|encounter) 1o
p(encounter|t™, M, state) :e_ﬁ P’ (17)
p(tM| M, state) :67% & (18)
p(damagelencounter) :efﬁvev(t)ﬂ (19)

Where p(encounter|tM, M, states) quantifies the risk at-

tributed to the proximity between vehicles during an encounter,
with shorter distances correlating with an escalation in risk
levels. p(tM|M, states) assesses the encounter time, with
larger values suggesting longer reaction times and thus lower
risk. Additionally, p(damage|encounter) represents the risk
to the driver due to kinetic energy in the event of a collision,

with higher ego speeds v, (t) resulting in greater danger. o1,
09, and o3 are model parameters.

On the right side of Fig.8, the risk calculation for vehicles
in the merging segment is depicted. It is worth mentioning that
we calculate the risk on the segment where the SV applies to
the EV’s route. Therefore, this risk is not necessarily aligned
with the SV’s direction of travel. On the contrary, the areas
where the two vehicles encounter or collide will have a higher
level of risk. The red and green curves in Fig.8 represent lateral
and longitudinal risk curves in the Curvilinear coordinate
system. Due to symmetry around the SV at turning points, the
vehicle’s risk can be decoupled into lateral and longitudinal
curves resembling Gaussian distributions (which are actually
fused by three Gaussian distributions).

By aggregating the risks associated with different vehicle
segments, we can provide varying levels of risk map assistance
for the trajectory planning of EVs. It is worth noting that,
to account for the curvature of the vehicle’s driving route,
certain risks are more effectively calculated in the Curvilinear
coordinate system and subsequently converted to the Cartesian
coordinate system. In this paper, we perform the temporal
revolution of the risk map by adopting the same step as the
predicted trajectory. Additionally, we utilize the spatiotemporal
risk map to restrict the candidates.

Pot (d,s,t) = RS2 (d, s, t) + R (d, s,t) + Rroaa (20)

Pot (d, s,t) < Apisk (21

Where Pot (d, s,t) Represents the risk for the longditudinal
and lateral positions in the Curvilinear coordinate system at
future time. A,;s, eliminates candidates with high risks.

C. Reference Trajectory

In the CVIS, the highest level of assistance that RSUs can
provide is to directly take over the CAVs. This ideal strategy
can maximize the capacity of traffic flow and minimize the ran-
domness of traffic evolution. However, the trajectories directly
output by the prediction module are often discontinuous in
curvature, which makes it difficult to satisfy the kinematics and
dynamics model of a vehicle. Methods proposed in [25] [50]
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TABLE I
NLL AND RMSE COMPARISON RESULTS OF PREDICTION MODELS OVER A 5-SECOND PREDICTION HORIZON

S- V- CS- V- CS-

CS- MHA- MFP MFP MFP MFP

Metric Horizon(s) €V yopy [gTM LSTM LSTM(M) LSTM(M) LSTM(M)»+i TPM) pormy -1 -3 5 54 SegNets
T Isc. - 270 104 061 006 031 2029 004 001 055 057 065 056 -0.68
2 2. - 554 336 198 112 0.24 023 0.58 059 192 -008 -0.14 -0.08 -0.33
S 3see. - 696 514 313 2.14 0.57 0.54 1.00 098 304 018 006 020 -0.21
2 4sec. - 802 618 399 3.08 0.81 0.72 1.44 133 398 042 033 043 001

Ssec. - 929 696 469 3.94 1.05 0.88 1.94 171 492 093 069 083 036
 Isec. 609 286 048 042 048 0.40 042 0.49 048 067 036 036 037 039
E 2sec. 1152 522 125 1.00 122 0.90 0.92 115 L1l 138 082 084 083 088
2 3 1617 728 240 181 2343 1.8 1.68 2.09 202 258 150 155 159 141
S dsec. 1995 899 405 299 3.93 274 3.01 3.32 326 395 254 258 271 197

Ssec. 2270 1028 605 457 5.93 427 459 4381 477 572 419 430 433 2.68

can well perform trajectory optimization based on a reference
trajectory. In this paper, we directly use the prediction results
as the reference trajectory for vehicle control input. But if the
risk constraints are not satisfied, a re-planning method will
be called. The planning section is not the main focus of this
paper, as detailed explanations can be found in [47].

V. EVALUATION

To apply the cooperative motion planning system, it begins
with training a prediction model using collected historical
traffic data. Subsequently, the trained model is deployed in
real-time traffic scenarios. Therefore, we validate the perfor-
mance of our proposed method through offline and real-time
verification using a database and simulation, respectively.

A. Dataset Evaluation

1) CitySim Dataset: CitySim dataset is an open-source
drone video trajectory and co-simulation dataset [51]. Innova-
tively, to the best of our knowledge, this dataset is the only one
capable of providing signal timing data and CARLA&SUMO
base maps in hub intersections.

Moreover, the dataset collects bird-view naturalistic driving
data on more than a dozen locations in the USA and other
countries. More specifically, the area of interest is the large
signalized intersection in Orlando, Florida, covering an ap-
proximate area of 500x100 meters and comprising nine lanes
spanning four directions. Currently, it contains vehicle trajecto-
ries extracted from over 60 minutes of drone videos recorded
at 30Hz. Specifically, it captures a period from 5:40pm to
6:42pm, encompassing mild, moderate, and congested traffic
conditions. Each of them includes the position of the center
and the four bounding box vertex of the vehicle, as well as
the speed, heading, and lane ID. The dataset is divided into 14
subdatasets, excluding two with insufficient U-turn data. Each
subdataset is randomly split into 70% for training, 10% for
validation, and 20% for testing purposes.

2) Implemention Details: The dataset was firstly downsam-
pled by a factor of 6. We employ a trajectory history of 3
seconds and a prediction horizon of 5 seconds. Additionally,
The prediction models are trained using Adam optimizer
which the learning rate decreases exponentially with epochs.
The initial learning rate is 0.001 and the minimum is 0.0003.

The dimensions of the encoder and decoder LSTMs are 64
and 128, respectively. A batch size of 128 is used. The Leaky-
ReLU activation is used as the activation function for all the
LSTM cells. The models are trained on two RTX3080 GPUs
with Pytorch implementation.

3) Evaluation Metric: We evaluate our results with two
different metrics for all the predicted position points.

The root mean square error (RMSE) calculates the average
difference between predicted and actual positions within a
given prediction horizon ¢;,. We use the maneuver with the
highest probability for calculating:

th
1
E Z(mgrue - x;red)z + (ygrue - y;red)2 (22)
t=1

erse =

The negative log-likelihood (NLL) quantifies the degree of
fit between the bivariate Gaussian distribution predictions and
the real one. A lower NLL value indicates a better fit of the
model to the true trajectories. It can be negative as we used a
continuous density function done in [27].

4) Models Compared: we compare the performance of our
proposed model with the following models:

o Constant Velocity (CV): This method assumes the vehicle
maintains a constant velocity. This is the simplest baseline
used for comparison.

o Vanilla LSTM (V-LSTM) [26]: This model simply uses
the previous tracks of EV in the encoder LSTM.

e Social LSTM (S-LSTM) [27]: employs an encoder-decoder
framework that only takes into account the social inter-
action forces of SVs.

o Convolutional Social Pooling LSTM (CS-LSTM) [19]:
employs social convolutional pooling to handle com-
plex interactions in the encoder-decoder framework. This
model generates multimodal predictions based on 2 lon-
gitudinal and 3 lateral maneuvers. If a model adopts
multimodal output, denoted as (M).

o Planning-informed trajectory (PiP) [28]: This model
combines a planning-informed approach by incorporating
the future planning of the controllable agent.

o Multi-head Attention Social Pooling (MHA-LSTM) [32]:
This model employs a multi-head dot product attention
mechanism to highlight the surrounding vehicles. We add
a multimodal output module to facilitate comparisons.
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TABLE 11
DETAILED NLL/RMSE RESULTS OF DIFFERENT SEGNETS

Zone SegID  Extracted Number

Metric: NLL(nats) / RMSE(m)

Is 2s 3s 4s 5s
U-turn 9 5717 -0.72/0.51 -046/0.88 -026/136 -0.21/223 -0.14/248
13 15001 -1.56 /052 -151/1.04 -148/149 -143/203 -1.37/257
2 493688 -1.23/0.43 -1.2/0.92 -1.17 /143  -1.14/198 -1.09/2.55
Left turn 6 141973 -1.67/032 -1.66/0.62 -164/099 -1.63/123 -1.61/1.99
10 208907 -1.49/035 -147/0.63 -145/094 -143/125 -141/1.69
14 248485 -1.00/042 -087/0.86 -0.79/130 -0.73/1.63 -0.69/2.68
3 320638 -0.61 /7 0.42 -0.6 / 0.82 -0.59/148 -057/212 -0.56/2.63
Keep straight 7 278716 -1.37/039 -137/0.83 -136/124 -135/1.76 -1.33/2.38
11 1098593 -1.00/0.36 -089/1.03 -0.82/150 -0.77/2.03 -0.72/2.76
15 180997 -1.17/0.39 -1.14/0.81 -1.14/145 -1.13/2.07 -1.11/294
4 11108 0.50 / 0.39 0.52 / 0.64 0.53 / 1.00 0.55/ 1.64 0.61/2.75
Right turn 8 21461 -0.28/0.25 -0.28/040 -026/0.66 -022/1.19 -0.14/224
12 231271 -0.27/044 -027/0.76 -026/120 -022/1.77 -0.17/229
16 154482 0.21/0.35 0.31/0.73 0.42/1.35 0.51/2.02 0.55/3.01

o Multiple Futures Prediction with K-latent modes (MFP-
K) [18]: This model efficiently learns latent future motion
modes of agents using a dynamic attention-based state
encoder. In addition, map information is further utilized
by applying a three-layer CNN for feature extraction. If
a model incorporates map image, denoted as +i.

5) Results: Table.I shows the experimental results. Here,
we can compare the performance of different methods based
on the use of cues in the input, as well as the multimodal
maneuvers in the output. It is worth mentioning that we
attempted training and testing with the Gated Recurrent Unit
(GRU) replacing LSTM, but the performance still lags behind
LSTM.

In the context of self-motion information, both the CV
model and S-LSTM model disregard the vehicle’s tracks
entirely, resulting in the two worst performances among all
the models evaluated. The RMSE can even reach as high as
22.7m. These findings underscore the utmost importance of
incorporating the vehicle’s kinematic and dynamic character-
istics into trajectory planning tasks.

In terms of leveraging road features, CS-LSTM(M)+i and
MFP-5+i employ a three-layer CNN network to extract
map image features. In comparison to CS-LSTM(M), CS-
LSTM(M)+i exhibits improvements in terms of NLL per-
formance, with a decrease of 16.2% for 5-second long-term
predictions. But there is a 7.5% increase in RMSE, indicating
map image contributes to the uncertainty of maneuver recog-
nization. However, the incorporation of map image data does
not always guarantee improved performance. In the case of
MFP-5+, this addition has actually resulted in a decrease in
performance. We construct the Curvilinear coordinate system
for each segment to fully leverage the geometric information
of the road. We categorized the segments into four types: U-
turn, left turn, go straight, and right turn. It is worth mentioning
that Segment 1 and 5 were excluded from the analysis due to
insufficient data (less than 2000 extracted trajectories).

As shown in Table.Il, the detailed results for each SegNet
are presented according to the numbering in Fig.5. It is
important to note that the NLL results are trained within
their respective Curvilinear coordinate systems, thus exhibiting
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Fig. 9. The upper illustrates the segment data distribution and recognition
accuracy comparison, while the lower part presents the vehicle maneuver
pattern distribution and recognition accuracy comparison.

distinct characteristics. The RMSE in Cartesian coordinate
enables comparison on the same scale. The performance of
the right-turn segments is the weakest, largely due to the
complex interactions involved in right turns, especially with
merging segments. In addition, the performance in the right
turn models are also influenced by pedestrians, which were not
considered in this paper. Due to the nonlinear transformation
between the two coordinate systems, we directly estimate
the distribution in the new coordinate system through Monte
Carlo simulation, thereby increasing the error. This superior
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performance is largely attributed to the fact that the SegNets
fully leverage the road geometry configuration and traffic
signal information. Drawn in the upper part of Fig.9, We
observed that the majority of vehicles opt to go straight,
representing 54.9% of the total dataset. We also compared
the prediction accuracies by two ways: use a single LSTM
model to abstract time-series hist features (Hist_ LSTM) and
a fully connected network based on the current position
(Position_FC). This comparison was performed by matching
the maximum predicted probability with the actual one. It can
be observed that Hist_LSTM accurately classifies the segments
where vehicles travel, with a minimum accuracy of 91.6%.

When considering vehicle interactions, CS-LSTM, PiP,
MHA-LSTM and MFP models, in comparison to the V-LSTM
method, incorporate the mutual interactions of SVs in distinct
manners. The evaluation results confirm the importance of
intervehicle interaction cues in accurately predicting vehicle
behavior, regardless of the presence of multimodality. On the
other hand, the way of handling interaction cues also plays a
pivotal role in determining the predictive performance. Among
the maneuver-aware models, CS-LSTM(M) employs social
pooling to effectively process SV cues based on relative lateral
and longitudinal distances. In contrast, the MFP model learns
and matches the latent influences of SVs, taking into account
their directions and positions. MHA-LSTM(M) pays increased
attention to important SVs based on their contextual features.
PiP(M) utilizes the interaction between planned future tra-
jectories and surrounding vehicles. Consequently, in CitySim
dataset, the MFP model outperforms the other three methods in
terms of performance. In comparison to these models, SegNet
further enhances performance by adopting a segmentation
methodology. On one hand, it considers the closed individual
interactions within the ego segment, while on the other, it
also takes into account the interaction features of vehicles
grouped in merging segments towards the EV. The strategy
of segmenting the treatment of different vehicle interactions
significantly contributes to exceptional performance.

We noted that, compared to uni-modal models, multimodal
prediction models exhibited significant advantages. This is
most evident in the pairs of CS-LSTM and CS-LSTM (M),
as well as MFP-1 and MFP-3. Once multimodal maneu-
vers were considered, there was a significant improvement
in performance, with MFP-3 surpassing MFP-1 by 18.9%.
Certainly, the significant disparity is also attributed to the
inclusion of a wider variety of vehicle operations under signal
control in the CitySim database, particularly the infrequent
occurrence of stopping behaviors on highways. In addition, it
is worth mentioning that employing more maneuver patterns
does not necessarily guarantee better results. For example, CS-
LSTM(M) predefines six maneuvers, while MFP-3 achieves
superior performance with only three maneuvers. Furthermore,
although MFP-5 exhibits some optimization compared to
MFP-3, increasing the maneuver patterns K results in longer
training times with minimal improvement in performance, and
in some cases, even a decrease.

The distribution of longitudinal maneuvers in the dataset
is shown in the lower part of Fig.9. Unlike on highways,
vehicles exhibit more frequent acceleration, deceleration, and

stopping behaviors in signalized intersections. Compared to
segmentation models, the recognition of longitudinal maneu-
vers is more complex. Therefore, we independently train the
SegNet only using the multimodal decoder and compare it
with Hist LSTM and Position_FC. The results show that our
model effectively integrates additional features, enabling much
more precise identification of acceleration, deceleration, and
constant speed maneuvers.

As the prediction horizon increases, the prediction errors
tend to increase accordingly. Based on the RMSE, it can be
observed that MFP-3 and MFP-5 exhibit better performance
in short-term prediction. However, in long-term (>3s) predic-
tions, the performance gradually diverges between SegNets.
From the NLL perspective, SegNets demonstrate a consistent
advantage throughout the entire prediction horizon.

Fig.10 provides an intuitive visualization of the prediction
results. The CV model performs poorly, as expected. MFP-
1 shows acceptable performance in short-term predictions.
However, its effectiveness diminishes as the prediction horizon
increases. The multimodal predictions shown in Fig.10(c-h)
present a significant improvement in the alignment with actual
trajectories. Among them, V-LSTM falls short in considering
vehicle interactions, resulting in significant disparities between
predicted and actual results. By incorporating interaction
features, both MHA-LSTM(M), CS-LSTM(M), and MFP-5
exhibit better. Unfortunately, these networks become more
complex and struggle to accurately capture certain intricate ve-
hicle features, leading to convoluted outcomes in some cases.
And combining map image features, the predicted trajectories
of CS-LSTM(M)+i appear smoother but still exhibit poor
fitting to real trajectories. In contrast, SegNets demonstrate
a clear superiority in performance.

Fig.11 also showcases multimodal prediction trajectories
with probabilities in this scenario. For instance, vehicle 1942
decelerates upon detecting a red light, during which SegNets
effectively utilize signal information and identify a decelera-
tion probability of 0.99, surpassing MFP-5 and CS-LSTM(M).
And the results of SegNets exhibit a close alignment with
the actual trajectory. As observed in this case, the MFP
model demonstrates a significant bias when confronted with
variations between the learned slots. Unexpectedly, all multi-
modal prediction models successfully identify the deceleration
maneuver for vehicle 1931. However, V-LSTM(M) and CS-
LSTM(M), which neglect considerations of vehicle interac-
tions and road geometry features in merging segment 2, still
exhibit issues such as convoluted trajectories and poor align-
ment. And it can be noticed that CS-LSTM(M)+i demonstrates
higher accuracy and better alignment with real trajectories
than CS-LSTM(M). Furthermore, MHA-LSTM(M) exhibits
unstable performance as it fails to provide reliable trajectory
predictions for many vehicles. In contrast, both MFP-5 and
SegNets demonstrate an excellent matching of trajectories,
with our model exhibiting more confidence in predicting the
deceleration maneuver. Similarly, vehicle 48 and 1940 provide
evidence of the exceptional performance of our proposed
model when incorporating road geometry features and vehicle
interactions within the segment.
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TABLE III
SIMULATION RESULTS
Metric (6\Y V-LSTM(M) CS-LSTM(M) MFP-3  SegNets
Average jerk [m/s3] 0 3.61 7.16 9.22 4.24
Average speed [m/s] 8.78 7.56 6.59 7.80 5.80
Vehicle collision Rate  4.9% 4.7% 3.0% 3.0% 0.6%
Road collision Rate 31.2% 11.9% 7.6% 7.1% 0%
Rules violation Rate 78.1% 32.3% 23.0% 26.7% 0%
Average risk value 2.17 1.47 1.24 1.38 1.14

/’/-?E-p:?‘?
;m—.m
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Fig. 12. CARLA-SUMO co-simulation framework

B. Real-time simulation

We carried out real-time simulation tests To validate the
effectiveness of prediction models. CARLA is an outstanding
open-source validation software in the field of autonomous
driving [52], developed on the UE4 platform. It provides real-
istic environments, exceptional vehicle and sensor simulations,
and flexible control interfaces, supporting a wide range of
academic research [20] [53]. Importantly, to compensate for
the limitations in the joint intermodal simulation of extensive
road networks, CARLA has opened interfaces with SUMO,
which is a powerful traffic simulation software that can
simulate various aspects of urban traffic systems, including
road networks, vehicle behavior, and traffic signal control
[54]. Remarkably, the CitySim dataset includes CARLA maps
constructed by RoadRunner and SUMO maps constructed
using OpenStreetMap for an accurate representation of the
road network.

Thus, we adopted the CARLA-SUMO co-simulation frame-
work, as illustrated in Fig.12. In our simulation setup, SVs
are controlled and synchronized with CARLA through the
use of SUMO. The road network is generated using the net
file, vehicle behavior is defined in the rou file, and traffic
signals are controlled by the tls file. Vehicles use the Krauss
car-following model with acceleration=2.6 m/s?, deceleration
=4.5 m/s?, and sigma=0.5. These settings adhere to the
default configurations provided by the CitySim dataset. Note
that the spawned vehicles from SUMO always perceive the
risk and avoid collision. This means that at each step we
take, SUMO vehicles will exhibit different reactions, includ-
ing collision avoidance, acceleration to pass, deceleration for
yielding, and stopping, among other behaviors. So in the
test, a subset of 10% of SVs were randomly generated and
programmed to disregard collision avoidance within junctions.
This behavior was achieved by configuring parameters such
as jmlgnoreFoeProb = 1, jmlIgnoreFoeSpeed = 50,
and jmlIgnoreJunctionFoeProb = 1. Meanwhile, CARLA

generates the EV that are controlled by scripts. The predicted
trajectory of maximum probability is employed as the input
for the vehicle’s control system when simulating the takeover
of the CAV by RSU. In Carla, the EV planning module
utilizes a quintic polynomial Parametric curve within the
Longitudinal-Lateral trajectory decomposition framework. The
control module employs PID control. Each model underwent
1000 iterations of testing, with data collection performed at a
frame rate of 5 Hz. The next test iteration was initiated when
detected a collision. The results are presented in Table.IIl.

Jerk is an important metric for evaluating vehicle comfort,
calculated by the derivative of acceleration. The average of
the three highest 1/TTC is used to assess the vehicle’s risk,
with lower values indicating better safety. The rules violation
rate records the proportion of abnormal behaviors such as red
light violations, speeding, illegal lane changes, and wrong-way
driving. Focusing on vehicle kinematic features, V-LSTM (M)
demonstrates commendable performance in terms of comfort.
However, there are still limitations in improving efficiency
and safety. CS-LSTM (M) and MFP offer their respective
advantages, but their effectiveness falls short of meeting safety
requirements. In comparison, SegNets exhibit the slowest
average speeds as they consistently adhere to traffic signals,
resulting in zero rule violations and the lowest risk coeffi-
cients. Additionally, SegNets exhibit excellent performance in
terms of vehicle interactions and utilization of road geometric
information.

To showcase and validate additional assistance function-
alities offered by RSU, we conducted further analysis on
three scenarios: left turn under signal control, merging into
a right turn, and avoiding of red-light violation vehicle. In
this context, the maximum value of the risk map is capped at
20, while the maximum value for the risk value is set to 1.

1) Left turn under signal control: The scenario is composed
of an EV and three SVs approaching a zebra crossing, as
illustrated in Fig.13. At 16s, the left-turning vehicle should
decelerate upon detecting the red light. SegNets promptly
identified this characteristic, while other models failed to
recognize the traffic signal control information. By utilizing
the predicted multimodal trajectories, the risk values for the
SVs were calculated as 0.58, 0.43, and 0.46, respectively.
Fig.13(a) provides an overview of the overall risk on the road.

38 seconds later, the vehicles reach the junction, as dis-
played in Fig.13(b). It can be intuitively observed that Seg-
Nets effectively incorporate the road’s geometric structure
and predict smooth trajectories, while CS-LSTM and MFP
exhibit slightly inferior performance. At this moment, the
leading vehicle accelerates and swiftly moves ahead of the EV,
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resulting in a low-risk value of 0.19. In contrast, the trailing
vehicle gradually approaches and poses a higher threat to the
EV, indicated by a risk value of 0.60. This simple scenario
demonstrates the fundamental capability of our proposed ar-
chitecture in considering traffic signal lights and road structure.

2) Merges into a right turn: Considering the interaction
between vehicles in merging segments of a signalized in-
tersection can be a complex scenario. Different perspectives
of the scenario are illustrated in Fig.14(a)(b). At 60.4s, only
SegNets successfully identify the intention of the EV to make
a right turn with a probability of 0.58. It is not until 61.2
seconds that MFP and CS-LSTM finally capture the intended
movement of the vehicle. Throughout the merging process, the
SegNet model effectively captures the interaction information
with the merging convoy. There is an 83% probability of
deceleration and a 16% probability of maintaining a constant
speed, highlighting its effectiveness.

Through the analysis of prediction results, we have iden-

tified the merging SV which poses the highest risk for the
EV, with a risk value of 0.66. This vehicle deserves more
attention, and a cautionary warning is issued accordingly.
Referring to Fig.14(d), the SVs ahead on the left side of the
EV are merging. Using the risk map calculation module, we
evaluated the potential impact of these SVs on the EV. If
the EV continues its current forward deceleration, there is a
risk of encounters between SVs and the EV at the corner.
Furthermore, since we assess the risk of the SVs on the
EV’s path, the area of convergence with the vehicle platoon
remains the most critical position in terms of risk. There is a
notable peak in risk level approximately 100 pixels ahead of
the vehicle at the corner with a wide range of potential impact.
As depicted in Fig.14(d), it is represented by two curved areas
of high risk in the Curvilinear coordinate. This information
can provide valuable support for trajectory planning and other
related modules.
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3) Avoiding a red-light violation vehicle: To validate
the effectiveness of our proposed architecture in enhancing
driving safety through the collision avoidance and replan-
ning modules, we created a scenario in SUMO by setting
jmDriveAfter RedTime = 1000 to generate a vehicle that
violates a red light, as depicted in Fig.15.

Clearly, the offline CitySim database does not account for
such abnormal behavior. As a result, all models, including
ours, make judgments based on constant speed or acceleration,
resulting in a collision.

To address this, we can incorporate a re-planning module.
In Fig.15(b), the RSU identifies the violating vehicle as highly
dangerous, with an attention value reaching 0.94, enabling
the transmission of collision warnings to the vehicle. Addi-
tionally, the RSU can swiftly calculate more comprehensive
and detailed risk zones, such as the Lateral-Longitudinal
position risk map in Fig.15(d), the Longitudinal position-
velocity risk map in Fig.15(e), and the Time-Yaw risk map
in Fig.15(f). These varied risk maps play a crucial role in
facilitating different approaches for vehicle trajectory planning
and collision avoidance modules. In this scenario, these risk
maps are represented by curved elliptical shapes, providing a
more intuitive visualization of the hazardous areas in front of
the EV if it follows its own predicted trajectory.

We employed a re-planning method described in [25].
Initially, we generated a diverse set of candidate trajectories by
varying the speed, as well as lateral and longitudinal distances.
Subsequently, we utilized the S-D risk map and applied a cost
function to prune the candidates, thereby obtaining a feasible
trajectory set. Fig.15(c)(a) illustrates the obtained optimal re-
planned trajectory, represented by the deep red color. The EV
followed this trajectory, successfully avoiding collision at the
intersection. This result not only validates the superiority of
our algorithm but also highlights the scalability of integrating
different modules.

VI. CONCLUSION

This paper proposes a trajectory prediction and risk as-
sessment framework to assist CAVs using the CVIS. The
SegNet model is introduced to predict the future trajectories
of all vehicles at a hub intersection. It divides the intersection
into segments and utilizes the Curvilinear coordinate system
to extract road geometric features. The model effectively
utilizes individual interaction cues within the ego segment
and leverages group features within the merging segment.
Additionally, it incorporates valuable traffic signal information
to output multimodal results. Consequently, risk value, risk
map, and reference trajectory are calculated based on the mul-
timodal prediction results. Validation results using the CitySim
database and CARLA-SUMO co-simulation demonstrate that
SegNet outperforms other state-of-the-art models by accurately
and precisely predicting smooth trajectories that comply with
traffic rules. The utilization of auxiliary information effectively
helps CAVs avoid collisions and enhances driving safety.

In future research, more traffic agents will be considered to
improve prediction accuracy. More comprehensive and hier-
archical assistance will be introduced to enhance the driving
efficiency and safety of CAVs. Ultimately, our objective is to
develop a robust and versatile system capable of seamlessly
adapting to diverse scenarios, encompassing a wide range of
traffic conditions and road environments.
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