
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 10, NO. 1, PP. 427-445, JAN. 2025 1

Segment-Based Trajectory Prediction and Risk

Assessment for RSU-assisted CAVs at Signalized

Intersections
Yue Cao , Wei Shangguan , Arnoud Visser , Junjie Chen , Linguo Chai , Baigen Cai

Preprint version, official version can be found at doi: 10.1109/TIV.2024.3414198

Abstract—Detecting surrounding situations and reacting ac-
cordingly to avoid collisions remains a challenging task for
autonomous driving. This task requires predicting the trajectories
of surrounding agents and assessing the potential risk of future
situations, which can be difficult to achieve solely through
onboard vehicle devices. Therefore, this paper proposes a coop-
erative architecture for trajectory prediction and risk assessment
conducted on roadside devices (RSUs) to assist Connected and
Autonomous Vehicles (CAVs). Firstly, we develop a segment-
based prediction model (SegNet) tailored to hub signalized in-
tersections. Intersections are divided into multiple segments, and
the Curvilinear coordinates are utilized to indicate the geometric
road features. The model leverages individual interaction cues
in the ego segment and group features in the merging segments,
while also incorporating traffic signal information to generate
multimodal prediction results. In terms of risk assessment, we
utilize the prediction results to provide hierarchical assistance,
such as risk values, risk maps, and reference trajectories. Offline
experimental results demonstrate that our SegNet model achieves
competitive and well-balanced performance compared to state-
of-the-art methods on the CitySim Database, with more accurate
and smooth prediction trajectories. Through real-time CARLA
and SUMO co-simulation, the performance of assisted CAVs
indicates that they can safely and effectively navigate with the
support of the proposed architecture.

Index Terms—Autonomous Driving, Trajectory prediction,
Risk assessment, Vehicle-road collaborative assistance

I. INTRODUCTION

A
UTONOMOUS driving has rapidly evolved as an ef-

fective approach to improve travel safety and efficiency.

The advancements in perception, planning, and control tech-

nologies demonstrate its feasibility to improve traffic safety,

relieve congestion, and reduce energy consumption in the near

future [1]. However, autonomous vehicles are still striving

with the challenges of maintaining safe operation in complex

environments [2]. A key aspect involves predicting future
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trajectories of surrounding agents like pedestrians, vehicles,

and bicycles to avoid potential risks. This necessitates vehicles

to precisely perceive the environment, with different sensors

actively combined to overcome diverse weather, lighting, and

occlusion conditions [3].

In recent years, competitions and challenges like nuScenes,

Argoverse [4], and Waymo have driven the development of

prediction technologies [5]. However, traffic rules are rarely

considered as explicit inputs to the model. Deeper extraction of

traffic geometric constraints and intricate vehicle interactions

is required to enhance algorithm robustness. The prediction

results lack effective integration with other autonomous driv-

ing modules such as planning and control, along with insuffi-

cient details on deployment. Additionally, complex predictions

impose a substantial computational burden, raising concerns

about real-time performance. These limitations [6] [7], which

solely rely on onboard vehicle devices, further lead to a

delayed response to imminent risks [8].

Thus, the Cooperative Vehicle Infrastructure System (CVIS)

leverages the prior information and powerful computing capa-

bilities of roadside units (RSUs) to provide assistance with

connected autonomous vehicles (CAVs) [3], [9]. Compared to

single-vehicle autonomous driving, CVIS integrates multiple

sources of information to obtain richer features, enabling

more efficient and intelligent traffic management functionali-

ties. Through rapid analysis of traffic conditions from macro

and micro perspectives, RSUs can identify risks within the

traffic environment, provide warnings to vehicles, and assume

increasing responsibility for various modules of autonomous

driving [10], [11].

At present, CVIS has been validated to reduce congestion

and traffic accidents, particularly at signalized intersections,

which serve as critical traffic hubs in urban areas due to their

capability to control and optimize traffic flow [12]. Vehicles

at intersections are regulated by traffic lights, but the mixed

scenario involves more factors to consider [13]. Consequently,

such attributes make them highly prospective for applications

and potentially become the pioneering deployment scenarios

for CVIS [14] [15].

A. Trajectory Prediction

The essence of trajectory prediction lies in maximizing the

utilization of all available environmental cues to construct an

accurate distribution model of future states [16]. Target agent

cues, complemented by static and dynamic contextual cues,

primarily constitute the inputs for trajectory prediction.
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Fig. 1. Illustration of three different trajectory prediction methods.

Fig. 2. Environmental cues used in trajectory planning.

Target agent cues, including position, velocity, orientation

and driver-related information, are widely regarded as the most

valuable features. The use of static cues varies across the litera-

ture. For unstructured road driving, obstacle data predominates

as key static information. Conversely, road geometry and map

information are employed to tackle the challenges associated

with structured road traffic that encompasses intricate traffic

constraints. Semantic cues are also incorporated in urban

scenarios, such as traffic signal phases, speed limits, and

restricted areas. Using dynamic cues still remains a challenge

in trajectory prediction. The inherent interaction between

traffic agents is highly complex, especially at intersections

[17]. Different literature adopts entirely distinct strategies for

handling dynamic agent information. While some research

attempts to account for the impact of all nearby vehicles

within a certain range [18], others take into account the social

interactions among contextual vehicles for analysis [19].

Therefore, as illustrated in Fig.1, trajectory prediction

methods can primarily be categorized into three approaches:

physics-based methods, planning-based methods, and pattern-

based methods [16], based on the strategy of utilizing different

types of cues shown in Fig.2.

1) Physics-based methods: Relying on the principles of

physics and mechanics, physics-based methods can be catego-

rized into deterministic and stochastic approaches. Determinis-

tic methods employ vehicle dynamics and kinematics models,

such as ”bicycle” models and constant velocity models, to

describe the motion of objects [20]. Non-deterministic employ

probabilistic models, such as Kalman filters and particle filters,

to account for the uncertainty in object motion. However, due

to the challenge of considering complex cues, these methods

commonly provide short-term estimates within 1 second [21].

2) Planning-based approaches: Planning-based methods

first reason about the likely target positions, followed by

the planning methods to find optimal solutions [22]. The

most common methods include search-based, sample-based,

and optimization-based methods. Graph search-based methods

discretize the configuration space and search for an optimal

solution using Dijkstra, A*, and their variants [23]. The

sampling-based planning method utilizes sampling to explore

the state space and find a feasible path, such as Rapidly-

exploring Random Tree (RRT) [24] and parameterized curve

methods [25]. Optimization-based methods generate an opti-

mal trajectory by optimizing a certain objective function. How-

ever, planning-based methods are computationally expensive

and unstable, making them difficult to apply in dynamic and

complex trajectory predictions encountered at intersections.

3) Pattern-based methods: Pattern-based methods employ

artificial intelligence (AI) to learn the motion characteristics of

vehicles based on historical data to address these limitations.

Among them, cluster-based methods aim to learn various

motion trajectory patterns directly from vehicle tracks [17].

These methods utilize clustering algorithms to divide the

trajectories into different clusters, each representing a group

of trajectories with similar motion characteristics. During real-

time prediction, matching methods are employed to identify

which best aligns with the current state of a vehicle. How-

ever, these approaches require extensive data processing and

struggle to consider real-time interactions among agents.

Sequential models excel in handling data with temporal

order or sequential structure, leveraging memory mechanisms

to capture contextual information and long-term dependencies

within the sequences. Long-term trajectory prediction can be

effectively modeled as a high-order Markov process, where the

system’s future state depends not only on its current state but

also on previous states. Therefore, sequential models are well-

suited for prediction tasks. Recurrent Neural Networks (RNNs)

have demonstrated remarkable proficiency in processing time

series data, yielding promising outcomes in the prediction task

within real-world contexts.
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Florent et al. [26] were among the first to apply Long

Short-Term Memory (LSTM) for trajectory prediction. Alahi

et al. [27] introduced the Social LSTM model (S-LSTM) that

integrates social interaction forces among pedestrians into its

unimodal framework. Leveraging similarities between vehicle

and pedestrian trajectory planning, Nachiket Deo [19] intro-

duced the Convolutional Social Pooling model (CS-LSTM),

designed for highway scenarios with six defined vehicle ma-

neuvers according to their lateral and longitudinal positions.

The Multiple Futures Prediction model (MFP) [18] improves

the approach by learning meaningful latent variables to predict

various possible futures without explicit labels, using a dy-

namic attention-based encoder. Planning-informed Prediction

model (PiP) [28] is proposed for predicting future trajectories

in a planning-informed approach, combining history tracks

and the future planning sequences to perform predictions of

surrounding agents. These approaches are further extended to

predict trajectories at intersections based on lanes or intentions

[17] [29], and also address predictions in complex urban

scenarios with multiple agents [30]. However, traffic rules like

traffic lights are rarely taken into account.

Furthermore, the integration of the attention mechanism

dynamically learns and allocates weights based on contextual

features, focusing attention on important information [31].

Multi-head Attention Social Pooling (MHA-LSTM) [32] uses

multi-head dot product attention method for modeling vehicle

interactions on highways. Due to their powerful capabilities in

processing image and video data, Convolutional Neural Net-

works (CNNs) have achieved considerable success in the field

of computer vision. Therefore, CNNs are frequently utilized to

extract geometric features from bird’s-eye view images [18],

[33], [34]. Additionally, in recent years, other deep learning

methods such as Graph Neural Networks (GNN) and Gen-

erative Adversarial Networks (GAN) have also demonstrated

effectiveness in trajectory prediction tasks, as detailed in [6].

Notably, to ensure safety, most trajectory prediction methods

are validated using databases such as NIGSIM, Argoverse, and

Interaction Dataset. Simulations are sometimes used for vali-

dation [18], but those scenarios are simple with basic vehicle

motion models, limiting the analysis of complex interactions

under various congestion conditions.

B. Risk Assessment

Once future predicted trajectories are obtained, they can be

used for vehicle risk assessment [35] [36]. In risk assessment,

there are two main categories of methods: deterministic and

probabilistic methods.

In deterministic methods, a binary indicator is to determine

whether a collision will occur between two vehicles. The

most common approach is to calculate the distance difference

between discretized trajectory points at each time step, taking

the vehicle’s shape into account. This binary indicator is often

used for candidate trajectory screening. In addition, many

indicators are used to quantify potential risks, such as Time-

to-Collision (TTC), Time-to-Brake (TTB), and Time-to-Steer

(TTS) [13]. However, these indicators usually assume that the

vehicle travels according to the physics-based models, which

can result in errors in long-term prediction.

Probabilistic methods consider vehicle uncertainty by as-

suming a probability distribution, primarily Gaussian distribu-

tion [37] and Monte Carlo methods. Schreier et al. [38] in-

troduced the Time-To-Critical-Collision-Probability (TTCCP)

metric, a novel approach that extends TTC for uncertain multi-

object scenarios with extended prediction horizons, taking into

account the uncertain outcomes of all vehicular maneuvers.

Risk maps discretize the driving space in different dimen-

sions and integrate various types of future dynamic risks from

different sources. In this way, vehicles can intuitively evaluate

the feasibility and superiority of trajectory candidates with

different dimensional risk maps [39]. [40] build a risk field

model and test in intersection Car-Following scenario. In [41],

a twisted Gaussian risk model is proposed using both longitu-

dinal and lateral motion states for vehicle behavior description.

Both occupancy and flow are predicted in a spatio-temporal

grid using a deep learning network [42]. However, current risk

map generation methods rarely consider the prediction multi-

modality. [21] and [25] explored the utilization of multimodal

probabilities to create risk maps, focusing exclusively on in-

lane maneuvers without extending their predictions to cover

intersection-related risks.

C. Contributions

Motivated by the above problems, we leverage the ad-

vantages of RSU to provide assistance to CAVs, aiming to

mitigate and avoid collision risks. Integrating prior information

and real-time traffic situation updates, RSUs predict future

trajectories of traffic participants. Subsequently, hierarchical

risk-assistive information is generated to support CAVs. The

main contributions of this paper can be summarized as follows:

(1) We proposed a segment-based trajectory prediction

model SegNet for signalized intersection. Employing a seg-

mentation approach, signalized intersections are divided into

multiple segments, and a Curvilinear coordinate system is used

to present road geometric information. Incorporating inputs

such as traffic lights, vehicle kinematics, and both individual-

and group-aware interactions enables multimodal prediction of

all vehicles within intersection zones.

(2) We propose a risk assessment-oriented cooperative mo-

tion planning architecture based on RSUs. Three layers of

risk-assistive information, corresponding to various vehicle

motion planning stages, are derived from predicted results.

This process involves calculating a risk value, constructing a

risk map, and formulating a reference trajectory for CAVs.

(3) We validated the methods by combining an offline

dataset and real-time simulations. Offline data testing and vali-

dation are conducted using the CitySim database. Furthermore,

we innovatively conduct testing using a CARLA-SUMO co-

simulation and analyze three typical intersection scenarios.

The remainder of the paper is structured as follows. Section

II presents the cooperative motion planning architecture and

the coordinate conversion. Section III constructs the SegNet

model. Section IV measures the risks. Then, Section V ana-

lyzes the test results in offline dataset and real-time simulation.

Finally, the conclusions and future work are discussed in

Section VI.
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Fig. 3. The framework of cooperative motion planning. Left: The gray area illustrates the trajectory prediction and risk assessment process conducted by
RSUs, which is the focus of this study. Right: various types of auxiliary information support the motion planning module of CAVs.

II. SYSTEM OVERVIEW

A. System Structure

The overall cooperative planning framework is illustrated in

Fig. 3. It should be noted that in this paper, the RSUs refer to

digital transportation infrastructure equipped with functions of

perception, communication, computation, control, and service

[43]. By enabling communication and information sharing

between RSUs and CAVs, it becomes feasible to construct

a bird’s-eye view of the intersection. This comprehensive

perspective can be achieved by integrating data from multi-

ple roadside sensors [44] or vehicle-mounted cameras [45],

employing techniques outlined in [46].

For CAVs, motion planning typically comprises global plan-

ning, prediction, and trajectory planning (or local planning)

modules [47]. Based on the degree of involvement that RSU

plays in the motion planning of CAV, three types are primarily

divided:

Data layer: RSUs just provide prior traffic raw data, and

do not participate in the planning process.

Risk layer: RSUs cooperate with motion planning but do

not have a decisive role. They measure the traffic future

evolution, providing collision warnings, blind spot warnings,

and other information, thereby altering the attention of CAVs

at the motion planning level. Additionally, computing risk

maps can serve as constraints in trajectory screening.

Control layer: RSUs take over control of the CAV. RSUs

can directly provide processed reference driving trajectories,

while the CAV needs to judge, match, integrate, and execute

these provided trajectories.

During the offline period, RSUs collect historical traffic

data, encompassing road geometry, traffic rules, and signal

phase change patterns. Traffic agent trajectories are processed

and compiled into a dataset used for training the trajectory

prediction SegNet model.

In real-time applications, CAVs send various assistance

requests along with information such as the license plate

number and locations for RSU matching. RSUs then deploy

segmentation modules to classify CAVs. With SegNets, mul-

timodal future trajectories of all vehicles can be obtained.

Using this information, the risk assessment module computes

different auxiliary data, which are then relayed back to assist

CAVs. This paper primarily focuses on computing risk values

and risk maps for the Risk layer, and also introduces reference

trajectories for the Control layer.

B. Coordinate Conversion

On-road urban driving is highly confined to lane-divided

structured roads. Therefore, the Curvilinear coordinate system

(also referred to as the Frenet coordinate system), which takes

the road centerline and tangential axis as the axes, is proposed

to deal with curved roads [20] [25]. Fig.4 illustrates the process

of converting between the Cartesian coordinate system and the

Curvilinear coordinate system. For moment t0, the conversion
−→p (xego, yego) ⇒

−→p (s (t0) , d (t0)) can be represented by the

following formula:

−→p (s (t0) , d (t0))=s (t0)
−→
tr (s (t0))+d (t0)

−→nr (s (t0)) (1)

Where the vector pairs [−→nr,
−→
tr ] are the tangential and normal

vectors of the closest point. [48] extensively details the process

for efficient conversion between the two coordinate systems

using Newton’s descent method. Utilizing both coordinate
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Fig. 4. Conversion between Cartesian coordinate system and Curvilinear
coordinate system

systems based on data features can significantly enhance data

processing efficiency. It is crucial to note that, for the purpose

of distinguishing between the two coordinate systems, this

paper represents positions in the Cartesian coordinate system

with x and y, while Curvilinear coordinate system with s

and d.

III. TRAJECTORY PREDICTION OF RSU

A. Problem Definition

The state of all vehicles n at time t within the per-

ception range of the RSU can be represented by It =
{I1t , I

2
t , ..., I

n
t }, where Int = {xnt , y

n
t } denotes the current

state vector of the vehicle. Therefore, all historical trajectories

within τ time units prior to t can be represented as It =
{It−τ , It−τ+1, ..., It}. Qt represents all contextual cues at

time t. The future states at predicted time T can be denoted by

Ot = {Ot+1, Ot+2, ..., Ot+T }, where Ot = {O1
t , O

2
t , ..., O

n
t }

represents the state of all vehicles.

Thus, the essence of trajectory forecasting lies in precisely

modeling p(Ot|It,Qt). To leverage geometric cues and in-

corporate multimodality, we use G representing feasible travel

segments and M representing maneuvers. Hence, our proposed

model aims to find:

p(O|I,Q) =
∑

M

∑

G

p(O|M,G, I,Q)p(M |G, I,Q)p(G|I,Q)

(2)

For each known maneuver and segment, we employ a bivari-

ate Gaussian distribution for modeling the future distribution,

denoted as Θt = {µt
x, µ

t
y, σ

t
x, σ

t
y, ρ

t}, where µx and µy are

mean vectors, σx, σy are the standard deviations, and ρ is

the correlation coefficient. We use the mean values µ as the

predicted positions in our model. To distinguish, the object

that needs to be predicted is denoted as the Ego Vehicle (EV),

while other vehicles present in the environment are referred

to as Surrounding Vehicles (SVs).

B. Segmentation module

In contrast to highway environments, EVs at intersections

are subject to influences from SVs originating not only from

Fig. 5. Illustrate of Intersection Segmentation.

the ego segment but also from other segments, exhibiting dis-

tinct characteristics. This phenomenon can be described as the

“intrusion” of vehicles from other segments into the primary

flow, akin to the merging process on highway ramps. Thus,

segments in which the ego vehicle is located are referred to as

ego segments, while segments that have a significant impact

on the ego segment are referred to as merging segments.

Additionally, RSUs are commonly deployed in a distributed

manner, enabling segmentation to efficiently assign predic-

tion tasks to different computational centers. On account of

these considerations, our approach incorporates a segmenta-

tion model that partitions an intersection into 4x4 segments,

covering 4 directions (east, south, west, north) and 4 types

of feasible maneuvers (U-turn, left-turn, proceeding straight,

right-turn), shown in Fig.5. For intersections that are ideally

centrosymmetric, a simpler division into four segments might

suffice. However, such symmetry is often too idealistic, com-

monly encountered in simulation environments rather than

real-world applications, and hence was not adopted in our

project. Meanwhile, this segmentation approach is applicable

to various traffic scenarios with guiding functions, such as T-

junctions and roundabouts.

Initially, we extract the road geometry and discretize it into a

set of road points. Areas of higher curvature necessitate denser

sampling to maintain continuity. These road points are then

integrated with cubic splines to form the reference line for

each segment. Based on the hist tracks in Cartesian coordinate

system, the vehicles are allocated to different segments by a

single LSTM encoder followed by a softmax layer. Notably, a

vehicle may be assigned to multiple segments, as long as the

segment probability exceeds a certain threshold (as 0.03 in this

paper). Through this module, vehicle intentions at intersections

are better represented.
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Fig. 6. Structure of SegNet.

C. Overall SegNet

Historical trajectories of all vehicles along with contextual

information are collected for input, and a segmentation mod-

ule categorizes the vehicles accordingly. Our model utilizes

an encoder-decoder architecture, with the overall framework

depicted in Fig.6.

Employing the Curvilinear coordinate system, we process

the dynamic features of agent cues in the ego segment. An

attention-like mechanism is used to derive individual-aware

interaction features based on relative positions. Using the

Cartesian coordinate system, we extract group-aware interac-

tion features for the merging segment. Contextual cues, with a

focus on signal features, are handled independently. Incorpo-

rating the one-hot maneuver encoder, multimodal results are

decoded.

D. Segment-based encoder

The encoder module, depicted in the middle of Fig.6,

explains how the model employs encoder modules for the ego

segment, merging segment, and signal features sequentially.

1) Ego segment features: Initially, within the Curvilinear

coordinate framework, a Point of View (POV) transformation

normalizes each vehicle track relative to its current lateral

and longitudinal positions. Following this, an embedding mod-

ule maps each track into a high-dimensional vector, thereby

enhancing the model’s capacity to understand the intricate

movement features. These vectors are further processed by

an LSTM to capture their temporal characteristics. An LSTM

unit can be represented as follows:

it = σ(Wiixt + bii +Whiht−1 + bhi),

ft = σ(Wifxt + bif +Whfht−1 + bhf ),

gt = tanh(Wigxt + big +Whght−1 + bhg),

ot = σ(Wioxt + bio +Whoht−1 + bho),

ct = ft ⊙ ct−1 + it ⊙ gt,

ht = ot ⊙ tanh(ct).

(3)

Here, it, ft, gt, and ot represent input, forget, cell, and output

gates. σ is the sigmoid function. ht and ct are the hidden

and cell states at time t, with xt as input. Weights (W ) and

biases (b) are used for computations, and ⊙ denotes hadamard

product. Vehicles within the same coordinate system exhibit

consistent dynamics models, thereby sharing the same LSTM

parameters. This implies that all vectors, directed toward the

same LSTM encoder in Fig.6, inherit the same parameters.

The kinematic model of the EV itself proves to be highly

beneficial. Thus, a dedicated Fully Connected (FC) network

is employed to further capture its characteristics with LSTM

output hidden states. In addition, vehicles behave differently

at a signal intersection as the path progresses. To this end, our

model incorporates locational context, processing the current

absolute position of the ego vehicle through an embedding

module, succeeded by a linear layer.

It is essential to address the individual-aware interaction

between EV and each SV within the ego segment. Motivated

by [18], we implement a dynamic, attention-like mechanism

to delineate the features of surrounding vehicles. While their

model is used to identify patterns associated with various

directions at intersections, our approach takes a different path

by focusing on the latent effects of relative position, velocity,

and turning angles of nearby vehicles within the ego segment.
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We developed 8 patterns to dynamically understand these

variables, tailored to the vehicle’s orientation (front, back, left,

right) relative to the EV, each containing 8 parameters. To

match the patterns, we utilize a two-layer FC to refine the

interaction features into 8 elements. Then, these patterns are

then matched against them in the following way:

ϕ(x) = e−(ϵ∥x−xpattern∥)
2

(4)

Where ϵ is a scaling factor. Leveraging the attention-like

mechanism enhances the comprehension of interaction fea-

tures of SVs in the ego segment. Subsequently, a three-layer

FC network further refines the feature vectors.

2) Merging segment features: Initially, SVs within merging

segments are filtered by calculating their relative distances

within the Cartesian coordinate system. Subsequently, these

vehicles are organized into a group based on the number of

merging segments and their capacity. For a typical four-way

intersection, each ego segment corresponds to three merging

segments. Therefore, we use a 3x3 group grid, which considers

the three nearest SVs within each merging segment relative to

the midpoint of the exiting crosswalk. The group inputs are

transformed by POV, after which independent LSTM units

are deployed to capture temporal features. By integrating

features related to the relative distances to the EV, group-

aware interaction features are obtained through a four-layer

FC network.

3) Signal context features: One of the great benefits of

utilizing RSUs is the integration with traffic signals, enabling

access to information that may be difficult for vehicles to

obtain directly, such as the Remaining Signal Phase Time

(RSP). In this module, we first determine the vehicle-to-

crosswalk distance, assigning a value of -999 if it has passed

the crosswalk. Traffic light phases are represented using one-

hot encoding for red, yellow, and green. We aggregate them

and then process them through a three-layer FC network to

extract their contextual features. Ultimately, these features,

together with one-hot encoded signal phase information, con-

stitute the module’s output. Such attributes are crucial in

facilitating the prediction of a vehicle’s intention to decelerate,

stop, or startup.

E. Multimodal Decoder

The segmentation module has already categorized the vehi-

cle’s maneuvers based on segments. We further conclude four

maneuvers: stop, deceleration, constant speed, and acceler-

ation. The Maneuver module independently extracts vehicle

maneuvers and employs a linear network to reduce dimensions

to 4. Subsequently, a softmax layer normalizes it to obtain the

probability p(M |G, I,Q) for each maneuver.

In the trajectory decoder, we combine the one-hot encod-

ings of each maneuver (e.g., representing constant speed as

[0,0,1,0]) with the aggregated features. The LSTM decodes

each integrated input for future timesteps. Subsequently, a

linear network performs dimensionality reduction on the fea-

tures to generate a bivariate Gaussian distribution, denoted

as p(O|M,G, I,Q). This process results in a multimodal

distribution, as illustrated in the lower right of Fig. 6.

F. Training

Our training is divided into two phases. Segmentation

models are trained independently to measure p(G|I,Q) by

minimizing the cross-entropy loss function.

LG
CE = −

G
∑

i=1

gi log(ĝi) (5)

Where gi is a binary indicator (1 if sample i is of segment G
and 0 otherwise), and ĝi is the model’s predicted probability

belongs to segment G.

On the other hand, for each SegNet model, we integrate the

maneuver loss LM
CE and trajectory loss LNLL to formulate the

comprehensive model loss function, which the networks are

trained to minimize. The trajectory loss is quantified using the

Negative Log Likelihood (NLL) of the vehicle’s conditional

distribution. Given that the maneuver for each dataset is fixed

and unique, a cross-entropy loss function LM
CE corresponding

to maneuver mi is employed.

Ltrain = −log(

mi
∑

i=1

pΘ(O|mi, G, I,Q)p(mi|G, I,Q))

= LNLL + LM
CE

LNLL = −log(pΘ(O|mtrue, gtrue, I,Q))

LM
CE = −

M
∑

i=1

mi log(m̂i)

(6)

IV. RISK ASSESSMENT

With SegNets, the multimodal predicted trajectories of

vehicles within the perception range of RSU at the intersection

are obtained. Based on these multi-dimensional information,

RSUs can provide more comprehensive support for the motion

planning part of the vehicle. In this paper, we introduce

three types of auxiliary information: risk value, risk map,

and reference trajectory, corresponding to the Risk layer and

Control layer discussed in Section II.

A. Risk value

Like Advanced Driver Assistance Systems (ADAS), RSUs

can provide vehicles with warnings. Acknowledging future

motions enables the quantification of collision risk between the

EV and SVs. This can be described as the collision risk value

if the EV travels as planned state, considering the maneuvers

of SVs M :

C(collision|state) =
∑

M

C(collison|state,M)p(M |state)

(7)

Through the prediction module, we obtain the future mul-

timodal trajectories of the SVs, where the probability of

each maneuver p(M |state) is represented as Pm in Fig.7.

As illustrated in Fig.7, the future closest encounter distance

between the two vehicles ∆DM
tc

, as well as the corresponding

time of encounter tMc , lateral distance difference ∆dMtc , and

longitudinal distance difference ∆sMtc , for each maneuver can
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Fig. 7. Risk related parameters calculation with spatiotemporal multimodal
prediction trajectories.

all be calculated. The tMc is dependent on the prediction step

and varies for different maneuvers.

In intersections, vehicles have varying impacts on the EV

across different segments. For instance, within the ego seg-

ment, considerations are akin to those on a highway, primarily

focusing on the vehicle’s lateral and longitudinal behavior

relative to EV. However, in other segments, road guidance

and orientation become important considerations. Therefore,

we adopt different approaches for handling these two ways.

1) Ego segment: Vehicles in this segment are traveling in

the same direction, which means that the lateral and longitu-

dinal relationship between vehicles can be better analyzed in

the Curvilinear coordinate system. Therefore, for vehicles in

the same lane:

Cego =
∑

M

Ac
√

∆d2 + (ξ(vev)∆s)
2
p(M |state) (8)

Where Ac is a constant number. The lateral and longitudinal

distance difference are calculated by ∆d = max(
∣

∣∆dMtc
∣

∣ −
lev+lsv

2 , 0) and ∆s = max(
∣

∣∆sMtc )
∣

∣ − Lev+Lsv

2 , 0). l and L
represent the length and width of a vehicle. For structured on-

road driving, lateral and longitudinal distances have different

mapping coefficients for risk. We adopt a concept of virtual

distance, which magnifies differences in the longitudinal di-

rection to match the lateral risk:

ξ (vev) =ξ0 (v
ev) e−β(vev−vsv)

sev−ssv

|sev−ssv| (9)

ξ0 (v
ev) =

{

d0

Tfvev
vev ≥ d0

Tf

1 otherwise
(10)

Where β is a scaling factor, The quantity ξ0 (v
ev) takes the

absolute velocity of EV into account and adjust ξ (vev) when

the vehicles are traveling at the same speed. d0 and Tf
represent the vertical impact distance and desired following

time, respectively.

2) Merging segments: Calculating risk in merging segments

significantly differs from that in the ego lane, primarily due to

the heightened need to consider orientation and road guidance.

By factoring in vehicle orientation and velocity, we calculate

TTC in Cartesian coordinate for evaluating vehicle risk:

Cmer = −As

∑

M

log(ψ ∗ TTCtMc
)p(M |states) (11)

where As and ψ jointly align the scale with ego risk. At the

time tMc in the future, the relationship between the position

and relative speed between the two vehicles needs to be

considered, namely, v⃗ = (xsvtc − xevtc , y
sv
tc

− yevtc ) and d⃗ =

(vevx,tc − vsvx,tc , v
ev
y,tc

− vsvy,tc) When v⃗ ∗ d⃗ < 0, the two vehicles

are moving away. When v⃗ ∗ d⃗ > 0, we decompose the velocity

of EV and EV along the x-axis and y-axis and get vev =
vevx cos θtc + vevy sin θtc and vsv = vsvx cos θtc + vsvy sin θtc ,

Where θtc represents the angle between the position vector

and the x-axis. Then TTC can be calculated by the following

formula:

TTCtc =

∣

∣

∣

∣

∆Dtc

(vevx − vsvx ) cos θtc + (vevy − vsvy ) sin θtc

∣

∣

∣

∣

(12)

Finally, the risk values are normalized to a range of 0 to

1 using a Sigmoid function. In practical applications, graded

thresholds can be set to provide alerts and warnings to the

EV, and it can serve as an indicator for assessing the safety

performance of autonomous driving. Additionally, it can be

used as an attention value transmitted to the EV for planning

and decision modules. In this paper, this result will also serve

as a parameter influencing the calculation of the risk map.

B. risk map

The spatiotemporal risk map rasterizes the environment

at different resolutions and then evaluates the potential risk

values for each occupied grid. RSUs can provide detailed and

rapid feedback on changes in the scene offline based on pre-

known information. Static risks, such as the risk of a collision

with the road and the risk of staying within lane boundaries,

can be calculated in advance.

Rroad =
Aroad

2

∑

i∈E

(

H

d− dei

)2

(13)

Where Aroad is weight factor. dei is the lateral offset of the

ith edge in set E which contains the boundary of the road.

On the contrary, moving traffic agents, including vehicles,

motorcycles, bicycles, and pedestrians, introduce a significant

level of uncertainty into the traffic flow, making it challeng-

ing to quantify their associated risks. This paper primarily

focuses on vehicles. Fig.8 illustrates the risk map calculation

schematic, showing computation methods for the ego segment

on the left and the merging segment on the right.
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Fig. 8. Risk Map Generation: Vehicles are categorized into the ego segment and merging segment, as shown in the middle. The left side depicts gradient
and 3D representations of the risk map for the ego segment, while the right side illustrates the risk map and risk curve generated in the merging segment.

1) Ego segment: For vehicles in the ego segment, where

main considerations involve lateral and longitudinal maneuvers

along the road, we simplify by using the concept of virtual

distance to generate the risk map. The left of Fig.8 illustrates

a risk map depicting the risk from a leading vehicle to the

EV, where the virtual distance varies with the speeds of two

vehicles. And the potential risk influence of the forward SV

should not be linear and evenly distributed in the lateral

direction. Therefore, a wedge can be appended to the affected

side of the SV to better describe the impact of risks [49].

Rego
car = Acar

e−αK

K
(14)

K = min
(di,si)∈B

(

√

(d− di)
2
+ (ξ (vev) s− si)

2

)

(15)

Where Acar is a weight factor and α is a scale. (di, si) is the

position of point i in set B comprising the edge of the SV.

2) Merging Segments: For vehicles in the merging segment,

we aim to calculate the risk they pose to the EV’s path.

Therefore, we employ the Gaussian distribution in advantage

of taking uncertainty into account, which is influenced by

factors such as the encounter time, minimum distance, and

driving speed.

Rmer
car = Acar

∑

M

P (encounter|tMc ,M, state)

p(tMc |M, state)p(M |state)p(damage|encounter)

(16)

p(encounter|tMc ,M, state) =e
− 1

2σ2
1

∆DM
tc

2

(17)

p(tMc |M, state) =e
− 1

2σ2
2

tMc
2

(18)

p(damage|encounter) =e
− 1

2σ3
2
vev(t)

−2

(19)

Where p(encounter|tMc ,M, states) quantifies the risk at-

tributed to the proximity between vehicles during an encounter,

with shorter distances correlating with an escalation in risk

levels. p(tMc |M, states) assesses the encounter time, with

larger values suggesting longer reaction times and thus lower

risk. Additionally, p(damage|encounter) represents the risk

to the driver due to kinetic energy in the event of a collision,

with higher ego speeds vev(t) resulting in greater danger. σ1,

σ2, and σ3 are model parameters.

On the right side of Fig.8, the risk calculation for vehicles

in the merging segment is depicted. It is worth mentioning that

we calculate the risk on the segment where the SV applies to

the EV’s route. Therefore, this risk is not necessarily aligned

with the SV’s direction of travel. On the contrary, the areas

where the two vehicles encounter or collide will have a higher

level of risk. The red and green curves in Fig.8 represent lateral

and longitudinal risk curves in the Curvilinear coordinate

system. Due to symmetry around the SV at turning points, the

vehicle’s risk can be decoupled into lateral and longitudinal

curves resembling Gaussian distributions (which are actually

fused by three Gaussian distributions).

By aggregating the risks associated with different vehicle

segments, we can provide varying levels of risk map assistance

for the trajectory planning of EVs. It is worth noting that,

to account for the curvature of the vehicle’s driving route,

certain risks are more effectively calculated in the Curvilinear

coordinate system and subsequently converted to the Cartesian

coordinate system. In this paper, we perform the temporal

revolution of the risk map by adopting the same step as the

predicted trajectory. Additionally, we utilize the spatiotemporal

risk map to restrict the candidates.

Pot (d, s, t) = Rego
car (d, s, t) +Rmer

car (d, s, t) +Rroad (20)

Pot (d, s, t) ≤ Arisk (21)

Where Pot (d, s, t) Represents the risk for the longditudinal

and lateral positions in the Curvilinear coordinate system at

future time. Arisk eliminates candidates with high risks.

C. Reference Trajectory

In the CVIS, the highest level of assistance that RSUs can

provide is to directly take over the CAVs. This ideal strategy

can maximize the capacity of traffic flow and minimize the ran-

domness of traffic evolution. However, the trajectories directly

output by the prediction module are often discontinuous in

curvature, which makes it difficult to satisfy the kinematics and

dynamics model of a vehicle. Methods proposed in [25] [50]
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TABLE I
NLL AND RMSE COMPARISON RESULTS OF PREDICTION MODELS OVER A 5-SECOND PREDICTION HORIZON

Metric Horizon(s) CV
S-

LSTM
V-

LSTM
CS-

LSTM
V-

LSTM(M)
CS-

LSTM(M)
CS-

LSTM(M)+i
PiP(M)

MHA-
LSTM(M)

MFP
-1

MFP
-3

MFP
-5

MFP
-5+i

SegNets

N
L

L
(n

at
s)

1 sec. - 2.70 1.04 0.61 0.06 -0.31 -0.29 -0.04 -0.01 0.55 -0.57 -0.65 -0.56 -0.68

2 sec. - 5.54 3.36 1.98 1.12 0.24 0.23 0.58 0.59 1.92 -0.08 -0.14 -0.08 -0.33

3 sec. - 6.96 5.14 3.13 2.14 0.57 0.54 1.00 0.98 3.04 0.18 0.06 0.20 -0.21

4 sec. - 8.02 6.18 3.99 3.08 0.81 0.72 1.44 1.33 3.98 0.42 0.33 0.43 0.01

5 sec. - 9.29 6.96 4.69 3.94 1.05 0.88 1.94 1.71 4.92 0.93 0.69 0.83 0.36

R
M

S
E

(m
) 1 sec. 6.09 2.86 0.48 0.42 0.48 0.40 0.42 0.49 0.48 0.67 0.36 0.36 0.37 0.39

2 sec. 11.52 5.22 1.25 1.00 1.22 0.90 0.92 1.15 1.11 1.38 0.82 0.84 0.83 0.88

3 sec. 16.17 7.28 2.40 1.81 2.343 1.58 1.68 2.09 2.02 2.58 1.50 1.55 1.59 1.41

4 sec. 19.95 8.99 4.05 2.99 3.93 2.74 3.01 3.32 3.26 3.95 2.54 2.58 2.71 1.97

5 sec. 22.70 10.28 6.05 4.57 5.93 4.27 4.59 4.81 4.77 5.72 4.19 4.30 4.33 2.68

can well perform trajectory optimization based on a reference

trajectory. In this paper, we directly use the prediction results

as the reference trajectory for vehicle control input. But if the

risk constraints are not satisfied, a re-planning method will

be called. The planning section is not the main focus of this

paper, as detailed explanations can be found in [47].

V. EVALUATION

To apply the cooperative motion planning system, it begins

with training a prediction model using collected historical

traffic data. Subsequently, the trained model is deployed in

real-time traffic scenarios. Therefore, we validate the perfor-

mance of our proposed method through offline and real-time

verification using a database and simulation, respectively.

A. Dataset Evaluation

1) CitySim Dataset: CitySim dataset is an open-source

drone video trajectory and co-simulation dataset [51]. Innova-

tively, to the best of our knowledge, this dataset is the only one

capable of providing signal timing data and CARLA&SUMO

base maps in hub intersections.

Moreover, the dataset collects bird-view naturalistic driving

data on more than a dozen locations in the USA and other

countries. More specifically, the area of interest is the large

signalized intersection in Orlando, Florida, covering an ap-

proximate area of 500x100 meters and comprising nine lanes

spanning four directions. Currently, it contains vehicle trajecto-

ries extracted from over 60 minutes of drone videos recorded

at 30Hz. Specifically, it captures a period from 5:40pm to

6:42pm, encompassing mild, moderate, and congested traffic

conditions. Each of them includes the position of the center

and the four bounding box vertex of the vehicle, as well as

the speed, heading, and lane ID. The dataset is divided into 14

subdatasets, excluding two with insufficient U-turn data. Each

subdataset is randomly split into 70% for training, 10% for

validation, and 20% for testing purposes.

2) Implemention Details: The dataset was firstly downsam-

pled by a factor of 6. We employ a trajectory history of 3

seconds and a prediction horizon of 5 seconds. Additionally,

The prediction models are trained using Adam optimizer

which the learning rate decreases exponentially with epochs.

The initial learning rate is 0.001 and the minimum is 0.0003.

The dimensions of the encoder and decoder LSTMs are 64

and 128, respectively. A batch size of 128 is used. The Leaky-

ReLU activation is used as the activation function for all the

LSTM cells. The models are trained on two RTX3080 GPUs

with Pytorch implementation.

3) Evaluation Metric: We evaluate our results with two

different metrics for all the predicted position points.

The root mean square error (RMSE) calculates the average

difference between predicted and actual positions within a

given prediction horizon th. We use the maneuver with the

highest probability for calculating:

Lrmse =

√

√

√

√

1

th

th
∑

t=1

(xttrue − xtpred)
2 + (yttrue − ytpred)

2 (22)

The negative log-likelihood (NLL) quantifies the degree of

fit between the bivariate Gaussian distribution predictions and

the real one. A lower NLL value indicates a better fit of the

model to the true trajectories. It can be negative as we used a

continuous density function done in [27].

4) Models Compared: we compare the performance of our

proposed model with the following models:

• Constant Velocity (CV): This method assumes the vehicle

maintains a constant velocity. This is the simplest baseline

used for comparison.

• Vanilla LSTM (V-LSTM) [26]: This model simply uses

the previous tracks of EV in the encoder LSTM.

• Social LSTM (S-LSTM) [27]: employs an encoder-decoder

framework that only takes into account the social inter-

action forces of SVs.

• Convolutional Social Pooling LSTM (CS-LSTM) [19]:

employs social convolutional pooling to handle com-

plex interactions in the encoder-decoder framework. This

model generates multimodal predictions based on 2 lon-

gitudinal and 3 lateral maneuvers. If a model adopts

multimodal output, denoted as (M).

• Planning-informed trajectory (PiP) [28]: This model

combines a planning-informed approach by incorporating

the future planning of the controllable agent.

• Multi-head Attention Social Pooling (MHA-LSTM) [32]:

This model employs a multi-head dot product attention

mechanism to highlight the surrounding vehicles. We add

a multimodal output module to facilitate comparisons.



IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 10, NO. 1, PP. 427-445, JAN. 2025 11

TABLE II
DETAILED NLL/RMSE RESULTS OF DIFFERENT SEGNETS

Zone SegID Extracted Number
Metric: NLL(nats) / RMSE(m)

1s 2s 3s 4s 5s

U-turn
9 5717 -0.72 / 0.51 -0.46 / 0.88 -0.26 / 1.36 -0.21 / 2.23 -0.14 / 2.48

13 15001 -1.56 / 0.52 -1.51 / 1.04 -1.48 / 1.49 -1.43 / 2.03 -1.37 / 2.57

Left turn

2 493688 -1.23 / 0.43 -1.2 / 0.92 -1.17 / 1.43 -1.14 / 1.98 -1.09 / 2.55

6 141973 -1.67 / 0.32 -1.66 / 0.62 -1.64 / 0.99 -1.63 / 1.23 -1.61 / 1.99

10 208907 -1.49 / 0.35 -1.47 / 0.63 -1.45 / 0.94 -1.43 / 1.25 -1.41 / 1.69

14 248485 -1.00 / 0.42 -0.87 / 0.86 -0.79 / 1.30 -0.73 / 1.63 -0.69 / 2.68

Keep straight

3 320638 -0.61 / 0.42 -0.6 / 0.82 -0.59 / 1.48 -0.57 / 2.12 -0.56 / 2.63

7 278716 -1.37 / 0.39 -1.37 / 0.83 -1.36 / 1.24 -1.35 / 1.76 -1.33 / 2.38

11 1098593 -1.00 / 0.36 -0.89 / 1.03 -0.82 / 1.50 -0.77 / 2.03 -0.72 / 2.76

15 180997 -1.17 / 0.39 -1.14 / 0.81 -1.14 / 1.45 -1.13 / 2.07 -1.11 / 2.94

Right turn

4 11108 0.50 / 0.39 0.52 / 0.64 0.53 / 1.00 0.55 / 1.64 0.61 / 2.75

8 21461 -0.28 / 0.25 -0.28 / 0.40 -0.26 / 0.66 -0.22 / 1.19 -0.14 / 2.24

12 231271 -0.27 / 0.44 -0.27 / 0.76 -0.26 / 1.20 -0.22 / 1.77 -0.17 / 2.29

16 154482 0.21 / 0.35 0.31 / 0.73 0.42 / 1.35 0.51 / 2.02 0.55 / 3.01

• Multiple Futures Prediction with K-latent modes (MFP-

K) [18]: This model efficiently learns latent future motion

modes of agents using a dynamic attention-based state

encoder. In addition, map information is further utilized

by applying a three-layer CNN for feature extraction. If

a model incorporates map image, denoted as +i.

5) Results: Table.I shows the experimental results. Here,

we can compare the performance of different methods based

on the use of cues in the input, as well as the multimodal

maneuvers in the output. It is worth mentioning that we

attempted training and testing with the Gated Recurrent Unit

(GRU) replacing LSTM, but the performance still lags behind

LSTM.

In the context of self-motion information, both the CV

model and S-LSTM model disregard the vehicle’s tracks

entirely, resulting in the two worst performances among all

the models evaluated. The RMSE can even reach as high as

22.7m. These findings underscore the utmost importance of

incorporating the vehicle’s kinematic and dynamic character-

istics into trajectory planning tasks.

In terms of leveraging road features, CS-LSTM(M)+i and

MFP-5+i employ a three-layer CNN network to extract

map image features. In comparison to CS-LSTM(M), CS-

LSTM(M)+i exhibits improvements in terms of NLL per-

formance, with a decrease of 16.2% for 5-second long-term

predictions. But there is a 7.5% increase in RMSE, indicating

map image contributes to the uncertainty of maneuver recog-

nization. However, the incorporation of map image data does

not always guarantee improved performance. In the case of

MFP-5+i, this addition has actually resulted in a decrease in

performance. We construct the Curvilinear coordinate system

for each segment to fully leverage the geometric information

of the road. We categorized the segments into four types: U-

turn, left turn, go straight, and right turn. It is worth mentioning

that Segment 1 and 5 were excluded from the analysis due to

insufficient data (less than 2000 extracted trajectories).

As shown in Table.II, the detailed results for each SegNet

are presented according to the numbering in Fig.5. It is

important to note that the NLL results are trained within

their respective Curvilinear coordinate systems, thus exhibiting

Fig. 9. The upper illustrates the segment data distribution and recognition
accuracy comparison, while the lower part presents the vehicle maneuver
pattern distribution and recognition accuracy comparison.

distinct characteristics. The RMSE in Cartesian coordinate

enables comparison on the same scale. The performance of

the right-turn segments is the weakest, largely due to the

complex interactions involved in right turns, especially with

merging segments. In addition, the performance in the right

turn models are also influenced by pedestrians, which were not

considered in this paper. Due to the nonlinear transformation

between the two coordinate systems, we directly estimate

the distribution in the new coordinate system through Monte

Carlo simulation, thereby increasing the error. This superior
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performance is largely attributed to the fact that the SegNets

fully leverage the road geometry configuration and traffic

signal information. Drawn in the upper part of Fig.9, We

observed that the majority of vehicles opt to go straight,

representing 54.9% of the total dataset. We also compared

the prediction accuracies by two ways: use a single LSTM

model to abstract time-series hist features (Hist LSTM) and

a fully connected network based on the current position

(Position FC). This comparison was performed by matching

the maximum predicted probability with the actual one. It can

be observed that Hist LSTM accurately classifies the segments

where vehicles travel, with a minimum accuracy of 91.6%.

When considering vehicle interactions, CS-LSTM, PiP,

MHA-LSTM and MFP models, in comparison to the V-LSTM

method, incorporate the mutual interactions of SVs in distinct

manners. The evaluation results confirm the importance of

intervehicle interaction cues in accurately predicting vehicle

behavior, regardless of the presence of multimodality. On the

other hand, the way of handling interaction cues also plays a

pivotal role in determining the predictive performance. Among

the maneuver-aware models, CS-LSTM(M) employs social

pooling to effectively process SV cues based on relative lateral

and longitudinal distances. In contrast, the MFP model learns

and matches the latent influences of SVs, taking into account

their directions and positions. MHA-LSTM(M) pays increased

attention to important SVs based on their contextual features.

PiP(M) utilizes the interaction between planned future tra-

jectories and surrounding vehicles. Consequently, in CitySim

dataset, the MFP model outperforms the other three methods in

terms of performance. In comparison to these models, SegNet

further enhances performance by adopting a segmentation

methodology. On one hand, it considers the closed individual

interactions within the ego segment, while on the other, it

also takes into account the interaction features of vehicles

grouped in merging segments towards the EV. The strategy

of segmenting the treatment of different vehicle interactions

significantly contributes to exceptional performance.

We noted that, compared to uni-modal models, multimodal

prediction models exhibited significant advantages. This is

most evident in the pairs of CS-LSTM and CS-LSTM (M),

as well as MFP-1 and MFP-3. Once multimodal maneu-

vers were considered, there was a significant improvement

in performance, with MFP-3 surpassing MFP-1 by 18.9%.

Certainly, the significant disparity is also attributed to the

inclusion of a wider variety of vehicle operations under signal

control in the CitySim database, particularly the infrequent

occurrence of stopping behaviors on highways. In addition, it

is worth mentioning that employing more maneuver patterns

does not necessarily guarantee better results. For example, CS-

LSTM(M) predefines six maneuvers, while MFP-3 achieves

superior performance with only three maneuvers. Furthermore,

although MFP-5 exhibits some optimization compared to

MFP-3, increasing the maneuver patterns K results in longer

training times with minimal improvement in performance, and

in some cases, even a decrease.

The distribution of longitudinal maneuvers in the dataset

is shown in the lower part of Fig.9. Unlike on highways,

vehicles exhibit more frequent acceleration, deceleration, and

stopping behaviors in signalized intersections. Compared to

segmentation models, the recognition of longitudinal maneu-

vers is more complex. Therefore, we independently train the

SegNet only using the multimodal decoder and compare it

with Hist LSTM and Position FC. The results show that our

model effectively integrates additional features, enabling much

more precise identification of acceleration, deceleration, and

constant speed maneuvers.

As the prediction horizon increases, the prediction errors

tend to increase accordingly. Based on the RMSE, it can be

observed that MFP-3 and MFP-5 exhibit better performance

in short-term prediction. However, in long-term (>3s) predic-

tions, the performance gradually diverges between SegNets.

From the NLL perspective, SegNets demonstrate a consistent

advantage throughout the entire prediction horizon.

Fig.10 provides an intuitive visualization of the prediction

results. The CV model performs poorly, as expected. MFP-

1 shows acceptable performance in short-term predictions.

However, its effectiveness diminishes as the prediction horizon

increases. The multimodal predictions shown in Fig.10(c-h)

present a significant improvement in the alignment with actual

trajectories. Among them, V-LSTM falls short in considering

vehicle interactions, resulting in significant disparities between

predicted and actual results. By incorporating interaction

features, both MHA-LSTM(M), CS-LSTM(M), and MFP-5

exhibit better. Unfortunately, these networks become more

complex and struggle to accurately capture certain intricate ve-

hicle features, leading to convoluted outcomes in some cases.

And combining map image features, the predicted trajectories

of CS-LSTM(M)+i appear smoother but still exhibit poor

fitting to real trajectories. In contrast, SegNets demonstrate

a clear superiority in performance.

Fig.11 also showcases multimodal prediction trajectories

with probabilities in this scenario. For instance, vehicle 1942

decelerates upon detecting a red light, during which SegNets

effectively utilize signal information and identify a decelera-

tion probability of 0.99, surpassing MFP-5 and CS-LSTM(M).

And the results of SegNets exhibit a close alignment with

the actual trajectory. As observed in this case, the MFP

model demonstrates a significant bias when confronted with

variations between the learned slots. Unexpectedly, all multi-

modal prediction models successfully identify the deceleration

maneuver for vehicle 1931. However, V-LSTM(M) and CS-

LSTM(M), which neglect considerations of vehicle interac-

tions and road geometry features in merging segment 2, still

exhibit issues such as convoluted trajectories and poor align-

ment. And it can be noticed that CS-LSTM(M)+i demonstrates

higher accuracy and better alignment with real trajectories

than CS-LSTM(M). Furthermore, MHA-LSTM(M) exhibits

unstable performance as it fails to provide reliable trajectory

predictions for many vehicles. In contrast, both MFP-5 and

SegNets demonstrate an excellent matching of trajectories,

with our model exhibiting more confidence in predicting the

deceleration maneuver. Similarly, vehicle 48 and 1940 provide

evidence of the exceptional performance of our proposed

model when incorporating road geometry features and vehicle

interactions within the segment.
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Fig. 10. Results visualization of different prediction models. In V-LSTM(M) and CS-LSTM(M), the symbols K, L, and R stand for lane-keeping, left lane
change, and right lane change, respectively, while C and D indicate constant speed and deceleration. For MFP, M represents different modes. In SegNet, S,
A, D, and C denote stopping, accelerating, decelerating, and maintaining constant speed, respectively.



IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 10, NO. 1, PP. 427-445, JAN. 2025 14

Fig. 11. multimodal prediction trajectory results of typical vehicles in scenario. Each row represents a typical vehicle, and each column represents a method.
The transparency of trajectories decreases with lower probabilities (minimum 50%).
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TABLE III
SIMULATION RESULTS

Metric CV V-LSTM(M) CS-LSTM(M) MFP-3 SegNets

Average jerk [m/s³] 0 3.61 7.16 9.22 4.24
Average speed [m/s] 8.78 7.56 6.59 7.80 5.80

Vehicle collision Rate 4.9% 4.7% 3.0% 3.0% 0.6%
Road collision Rate 31.2% 11.9% 7.6% 7.1% 0%
Rules violation Rate 78.1% 32.3% 23.0% 26.7% 0%
Average risk value 2.17 1.47 1.24 1.38 1.14

Fig. 12. CARLA-SUMO co-simulation framework

B. Real-time simulation

We carried out real-time simulation tests To validate the

effectiveness of prediction models. CARLA is an outstanding

open-source validation software in the field of autonomous

driving [52], developed on the UE4 platform. It provides real-

istic environments, exceptional vehicle and sensor simulations,

and flexible control interfaces, supporting a wide range of

academic research [20] [53]. Importantly, to compensate for

the limitations in the joint intermodal simulation of extensive

road networks, CARLA has opened interfaces with SUMO,

which is a powerful traffic simulation software that can

simulate various aspects of urban traffic systems, including

road networks, vehicle behavior, and traffic signal control

[54]. Remarkably, the CitySim dataset includes CARLA maps

constructed by RoadRunner and SUMO maps constructed

using OpenStreetMap for an accurate representation of the

road network.

Thus, we adopted the CARLA-SUMO co-simulation frame-

work, as illustrated in Fig.12. In our simulation setup, SVs

are controlled and synchronized with CARLA through the

use of SUMO. The road network is generated using the net
file, vehicle behavior is defined in the rou file, and traffic

signals are controlled by the tls file. Vehicles use the Krauss

car-following model with acceleration=2.6 m/s2, deceleration

=4.5 m/s2, and sigma=0.5. These settings adhere to the

default configurations provided by the CitySim dataset. Note

that the spawned vehicles from SUMO always perceive the

risk and avoid collision. This means that at each step we

take, SUMO vehicles will exhibit different reactions, includ-

ing collision avoidance, acceleration to pass, deceleration for

yielding, and stopping, among other behaviors. So in the

test, a subset of 10% of SVs were randomly generated and

programmed to disregard collision avoidance within junctions.

This behavior was achieved by configuring parameters such

as jmIgnoreFoeProb = 1, jmIgnoreFoeSpeed = 50,

and jmIgnoreJunctionFoeProb = 1. Meanwhile, CARLA

generates the EV that are controlled by scripts. The predicted

trajectory of maximum probability is employed as the input

for the vehicle’s control system when simulating the takeover

of the CAV by RSU. In Carla, the EV planning module

utilizes a quintic polynomial Parametric curve within the

Longitudinal-Lateral trajectory decomposition framework. The

control module employs PID control. Each model underwent

1000 iterations of testing, with data collection performed at a

frame rate of 5 Hz. The next test iteration was initiated when

detected a collision. The results are presented in Table.III.

Jerk is an important metric for evaluating vehicle comfort,

calculated by the derivative of acceleration. The average of

the three highest 1/TTC is used to assess the vehicle’s risk,

with lower values indicating better safety. The rules violation

rate records the proportion of abnormal behaviors such as red

light violations, speeding, illegal lane changes, and wrong-way

driving. Focusing on vehicle kinematic features, V-LSTM (M)

demonstrates commendable performance in terms of comfort.

However, there are still limitations in improving efficiency

and safety. CS-LSTM (M) and MFP offer their respective

advantages, but their effectiveness falls short of meeting safety

requirements. In comparison, SegNets exhibit the slowest

average speeds as they consistently adhere to traffic signals,

resulting in zero rule violations and the lowest risk coeffi-

cients. Additionally, SegNets exhibit excellent performance in

terms of vehicle interactions and utilization of road geometric

information.

To showcase and validate additional assistance function-

alities offered by RSU, we conducted further analysis on

three scenarios: left turn under signal control, merging into

a right turn, and avoiding of red-light violation vehicle. In

this context, the maximum value of the risk map is capped at

20, while the maximum value for the risk value is set to 1.

1) Left turn under signal control: The scenario is composed

of an EV and three SVs approaching a zebra crossing, as

illustrated in Fig.13. At 16s, the left-turning vehicle should

decelerate upon detecting the red light. SegNets promptly

identified this characteristic, while other models failed to

recognize the traffic signal control information. By utilizing

the predicted multimodal trajectories, the risk values for the

SVs were calculated as 0.58, 0.43, and 0.46, respectively.

Fig.13(a) provides an overview of the overall risk on the road.

38 seconds later, the vehicles reach the junction, as dis-

played in Fig.13(b). It can be intuitively observed that Seg-

Nets effectively incorporate the road’s geometric structure

and predict smooth trajectories, while CS-LSTM and MFP

exhibit slightly inferior performance. At this moment, the

leading vehicle accelerates and swiftly moves ahead of the EV,
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Fig. 13. Sequential display of results: SegNets multimodal outputs from vehicle view (probabilities < 0.01 excluded), comparative results from bird’s eye
view, risk map in pixel coordinates, and risk map in Curvilinear coordinates. (a) Test Results under red light at 16s. (b) Test Results of EV making a left turn
at 54s after Green Light.

Fig. 14. Test results of Scenario 2. (a) Visualization results from different views at t=60.4. (b) Visualization results from different views at t=61.2. (c) Risk
values and risk map in pixel coordinates. (d) Risk map in Curvilinear coordinates.

resulting in a low-risk value of 0.19. In contrast, the trailing

vehicle gradually approaches and poses a higher threat to the

EV, indicated by a risk value of 0.60. This simple scenario

demonstrates the fundamental capability of our proposed ar-

chitecture in considering traffic signal lights and road structure.

2) Merges into a right turn: Considering the interaction

between vehicles in merging segments of a signalized in-

tersection can be a complex scenario. Different perspectives

of the scenario are illustrated in Fig.14(a)(b). At 60.4s, only

SegNets successfully identify the intention of the EV to make

a right turn with a probability of 0.58. It is not until 61.2

seconds that MFP and CS-LSTM finally capture the intended

movement of the vehicle. Throughout the merging process, the

SegNet model effectively captures the interaction information

with the merging convoy. There is an 83% probability of

deceleration and a 16% probability of maintaining a constant

speed, highlighting its effectiveness.

Through the analysis of prediction results, we have iden-

tified the merging SV which poses the highest risk for the

EV, with a risk value of 0.66. This vehicle deserves more

attention, and a cautionary warning is issued accordingly.

Referring to Fig.14(d), the SVs ahead on the left side of the

EV are merging. Using the risk map calculation module, we

evaluated the potential impact of these SVs on the EV. If

the EV continues its current forward deceleration, there is a

risk of encounters between SVs and the EV at the corner.

Furthermore, since we assess the risk of the SVs on the

EV’s path, the area of convergence with the vehicle platoon

remains the most critical position in terms of risk. There is a

notable peak in risk level approximately 100 pixels ahead of

the vehicle at the corner with a wide range of potential impact.

As depicted in Fig.14(d), it is represented by two curved areas

of high risk in the Curvilinear coordinate. This information

can provide valuable support for trajectory planning and other

related modules.
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Fig. 15. Test results of Scenario 3. (a) Prediction results and re-planned trajectory from different views. (b) Risk values and risk map in pixel coordinates.
(c) Risk map and replanned trajectory candidates trimming in Curvilinear coordinates. (d) Longitudinal-velocity risk map. (e) Time-Yaw risk map.

3) Avoiding a red-light violation vehicle: To validate

the effectiveness of our proposed architecture in enhancing

driving safety through the collision avoidance and replan-

ning modules, we created a scenario in SUMO by setting

jmDriveAfterRedT ime = 1000 to generate a vehicle that

violates a red light, as depicted in Fig.15.

Clearly, the offline CitySim database does not account for

such abnormal behavior. As a result, all models, including

ours, make judgments based on constant speed or acceleration,

resulting in a collision.

To address this, we can incorporate a re-planning module.

In Fig.15(b), the RSU identifies the violating vehicle as highly

dangerous, with an attention value reaching 0.94, enabling

the transmission of collision warnings to the vehicle. Addi-

tionally, the RSU can swiftly calculate more comprehensive

and detailed risk zones, such as the Lateral-Longitudinal

position risk map in Fig.15(d), the Longitudinal position-

velocity risk map in Fig.15(e), and the Time-Yaw risk map

in Fig.15(f). These varied risk maps play a crucial role in

facilitating different approaches for vehicle trajectory planning

and collision avoidance modules. In this scenario, these risk

maps are represented by curved elliptical shapes, providing a

more intuitive visualization of the hazardous areas in front of

the EV if it follows its own predicted trajectory.

We employed a re-planning method described in [25].

Initially, we generated a diverse set of candidate trajectories by

varying the speed, as well as lateral and longitudinal distances.

Subsequently, we utilized the S-D risk map and applied a cost

function to prune the candidates, thereby obtaining a feasible

trajectory set. Fig.15(c)(a) illustrates the obtained optimal re-

planned trajectory, represented by the deep red color. The EV

followed this trajectory, successfully avoiding collision at the

intersection. This result not only validates the superiority of

our algorithm but also highlights the scalability of integrating

different modules.

VI. CONCLUSION

This paper proposes a trajectory prediction and risk as-

sessment framework to assist CAVs using the CVIS. The

SegNet model is introduced to predict the future trajectories

of all vehicles at a hub intersection. It divides the intersection

into segments and utilizes the Curvilinear coordinate system

to extract road geometric features. The model effectively

utilizes individual interaction cues within the ego segment

and leverages group features within the merging segment.

Additionally, it incorporates valuable traffic signal information

to output multimodal results. Consequently, risk value, risk

map, and reference trajectory are calculated based on the mul-

timodal prediction results. Validation results using the CitySim

database and CARLA-SUMO co-simulation demonstrate that

SegNet outperforms other state-of-the-art models by accurately

and precisely predicting smooth trajectories that comply with

traffic rules. The utilization of auxiliary information effectively

helps CAVs avoid collisions and enhances driving safety.

In future research, more traffic agents will be considered to

improve prediction accuracy. More comprehensive and hier-

archical assistance will be introduced to enhance the driving

efficiency and safety of CAVs. Ultimately, our objective is to

develop a robust and versatile system capable of seamlessly

adapting to diverse scenarios, encompassing a wide range of

traffic conditions and road environments.
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