
Creating a Bird-Eye View Map using an
Omnidirectional Camera

Steven Roebert Tijn Schmits Arnoud Visser

Intelligent System Laboratory Amsterdam 1

Universiteit van Amsterdam, 1098 SJ Amsterdam, the Netherlands

Abstract

An omnidirectional camera has properties which are highly beneficial for navigation of a mobile robot.
In this paper this is demonstrated with a new application; a visual map of the environment created from
bird-eye view perspective. This visual map can be created on-line, which allows an operator to navigate
the robot through an unknown environment based on this visual map. The quality of the map is tested in a
self-localization experiment.

1 Introduction
Robots operating in an unknown environment can strongly benefit from visual data obtained from their sur-
roundings. Visual information can be obtained with a variety of imaging devices, lenses and accessories.
Omnidirectional vision, providing a 360◦ view of the sensor’s surroundings, is popular in the robotics re-
search area (e.g. [5]).

Omnidirectional views can be obtained using multiple cameras, a single rotating camera, a fish-eye lens
and or a convex mirror. A catadioptric vision system, consisting of a conventional camera in front of a
convex mirror with the center of the mirror aligned with the optical axis of the camera, is the most generally
applied technique for omnidirectional vision. Mirrors which are conic, spherical, parabolic or hyperbolic all
are able to provide omnidirectional images [1].

An omnidirectional catadioptric camera has some great advantages over conventional cameras. One of
them being the fact that visual landmarks remain in the field of view much longer than with a conventional
camera, as demonstrated in section 3.3. Also does the imaging geometry have various properties that can be
exploited for navigation. A view in all directions on the close surroundings allows to avoid nearby obstacles,
allowing navigation through narrow passages and a safe retreat when the robot is cornered.

Omnidirectional vision has played a major part in past and present research. At the Intelligent Sys-
tems Laboratory Amsterdam omnidirectional vision is used for Trajectory SLAM and for appearance-based
self-localization using a probabilistic framework [3, 2]. For a complete overview of application of omnidi-
rectional vision in robotics, see [7, 5].

At the RoboCup Rescue Simulation League one of the simulators which is used and developed is USAR-
Sim [4], the 3-D simulation environment of Urban Search And Rescue (USAR) robots and environments,
built on top of the Unreal Tournament game and intended as a research tool for the study of human-robot
interfacing and multi-robot coordination [8]. The omnidirectional vision sensor is a recent extension [11] of
the USARSim environment. The Virtual Robots Competition, using USARSim as the simulation platform,
aims to be the meeting point between researchers involved in the Agents Competition and those active in
the RoboCup Rescue League. As the omnidirectional catadioptric camera (see Fig. 1) is an important sen-
sor in the robotics field, this USARSim extension allows new applications. In this paper we will describe
such a new application, the creation of a bird-eye view map which reconstructs the texture of the unknown
environment.

1A part of the research reported here is performed in the context of the Interactive Collaborative Information Systems (ICIS) project,
supported by the Dutch Ministry of Economic Affairs, grant nr: BSIK03024.



Figure 1: The catadioptric omnidirectional camera, real and simulated.

2 Method

2.1 Creating a Bird-Eye View Image
Omnidirectional image data provided by a parabolic catadioptric omnidirectional camera is hardly intuitive
to a human observer (see Fig. 3) as the parts of the image data shows the robot’s surroundings upside
down, which could makes recognition more complicated, and due to reflection the environment is mirrored.
The image also shows heavy counter-intuitive perspective distortion. It has already been shown [6] that
image post-processing can greatly improve the readability of omnidirectional data to a human observer.
Further, a large amount of automated vision techniques assume perspective projection, which makes the
transformation of omnidirectional image data to geometrically correct perspective images highly desirable.
Here is described how to transform real omnidirectional image data into the perspective of an observer above
the robot: the bird-eye view. This view allows to present the observation in a convenient way to a human
operator.

2.1.1 3D to Omnidirectional Pixel Relation

Bird-eye views are obtained by radial correction around the image center. The bird-eye view is a scaled
perspective projection of the ground plane, and significantly simplifies the navigation system. For example,
corridors appear as image bands of constant width.

Shree K. Nayar describes a direct relation between a location in a 3D environment and the location in the
omnidirectional image where this point can be seen if nothing obstructs the view [10]. The correspondence
between a pixel in the omnidirectional image pomni = (xomn, yomn) and a pixel in the birds-eye view image
pbe = (xbe, ybe) is defined by the following equations:

θ = arccos
z√

x2
be + y2

be + z2
, φ = arctan

ybe

xbe
(1)

ρ =
h

1 + cos θ
(2)

xomn = ρ sin θ cos φ, yomn = ρ sin θ sinφ (3)

where h is the radius of the circle describing the 90◦ incidence angle on the omnidirectional camera
effective viewpoint. The variable z is defined by the distance between the effective viewpoint and the
projection plane in pixels. These equations can be used to construct perspectively correct images based
on omnidirectional camera data by translating 3D projection plane pixel locations to omnidirectional pixel
locations. The results of these transformations can be seen in Figure 4.

2.1.2 3D to Standard Perspective Pixel Relation

Bird-eye views can also be obtained using data obtained from a standard perspective camera. The corre-
spondence between a pixel in the standard perspective image pp = (xp, yp) and a pixel in the birds-eye view



image pbe = (xbe, ybe) is defined by rotation matrices

Rx =

1 0 0
0 cos(−xθ) sin(−xθ)
0 − sin(−xθ) cos(−xθ)


Ry =

cos(−yθ) 0 cos(−yθ)
0 1 0

cos(−yθ) 0 cos(−yθ)


Rz =

 cos(−zθ) sin(−zθ) 0
− sin(−zθ) cos(−zθ) 0

0 0 1


(4)

where θ = (xθ, yθ, zθ) is defined by the camera orientation, and the equationsx′

y′

z′

 = RxRyRz

xbe

ybe

0

−
xcam

ycam

zcam

 (5)

xp = c
x′

z′ , yp = c
y′

z′ (6)

where lcam = (xcam, ycam, zcam) is defined by the camera location and c is a scaling factor which can
be derived from the camera image width in pixels, the camera FOV angle and the desired resolution of the
bird-eye view.

2.2 Creating a Map
To create a map of the environment using the bird-eye view images, it is necessary to know the exact location
where the image is taken by the robot. An estimate of the robot’s location can be provided with SLAM
algorithm, which processes the observations. The observations can be visual (e.g. landmark detection) or
based on the accurate laser scanners used. The center of the bird-eye view image would then be placed at
the estimated location and from there it is possible to start constructing a map.

2.2.1 Transforming the Images

When the images are taken by the camera, the robot can be at any orientation on the map. Although these
images have a field of view of 360◦ the images will still be different if the robot is facing another direction.
This means the images have to be rotated in order to fit on the map. To obtain the required images which
are all aligned in the same way, one can simply rotate the images using the same angle as the robot’s current
rotation on the map. An alternative approach would be to estimate the relative orientation between two
omnidirectional images, as done by [6].

As mentioned earlier, the image taken from an omnidirectional camera is mirrored due to reflection.
Since we do not want any mirrored images on a map, the image needs to be flipped. After all these transfor-
mations it is time to use the transformed image to create the map.

2.2.2 Gradual Overlap

If the acquired images are drawn on the map directly (e.g. the pixels on the map are set to the exact same
values of the acquired image), without taken into account the previously drawn images, the major parts of the
visual map would be overwritten by new information (dependent on the amount of overlap). Furthermore,
small errors in the location of images (e.g. the robot’s estimated location was not precise) would be directly
visible on the map, and do not smooth out by averaging. To overcome these errors, the image will not be
drawn directly but the colors of the map will gradually be changed towards the values of the bird-eye view
images. This gradual change can be controlled by the use of the alpha component of the RGBA color space.
This alpha component will be a number between 0 and 255 (i.e. possible color values) and will represent
the maximum change in color value for a pixel when a camera image is being processed. It will then take
multiple images from the camera to build up a visual map. Small errors will be gracefully smooth out as can
be seen in Figure 2(a).



2.2.3 Loss of Resolution

A main disadvantage of catadioptric omnidirectional cameras is the loss of resolution. This loss of resolution
mainly occurs for pixels further from the center of the image. Pixels further from the center should have
less effect on the visual map. This effect can be implemented by adding a 2-dimensional Gaussian filter
(equation 7).

e
−(x−x0)2+(y−y0)2

2σ2 (7)

This filter also takes into account the fact that the localization and perspective errors are more likely
to occur further from the center of the image. The value of the Gaussian filter is used to scale the alpha
component of section 2.2.2. The further away from the center, the lower the value for the Gaussian will be
and thus the lower the change in color value will be performed. Because of this filter pixels will change to
acquired color more quickly if they lie closer to the center of the image. The result of this filter can be seen
in Figure 2(b).

2.2.4 Obstacle Filtering

When creating a bird-eye view from an omnidirectional camera image, there will be one significant differ-
ence from an image actually taken directly above the scene. This difference comes from the fact that an
omnidirectional camera at the height of the robot can only see the sides of larger objects and not the actual
top. So any part of the map that lies behind such an obstacle, will not be visible from the robots point of
view. Instead the obstacle will be stretched out over the part that lies behind it. This results in obstacles
distorting the visual map behind them, polluting the map from all directions that those obstacles have been
seen.

The best way to deal with these objects is to not draw them at all, by applying an additional rendering
filter. However, for such filter a form of obstacle detection sensors on the robot should be present. In these
experiments laser scanners where used for self localization and object detection. Using the laser scanners
one can establish the location of the obstacles as objects in the bird-eye view image. The algorithm to filter
the objects is build into the algorithm for merging the camera images with the map (i.e. the algorithm using
the alpha component and the Gaussian filter). The algorithm will go through all pixels from the camera
image and decides if there exists an object on this location. This is done by consulting the data from the
laser scanner that pointed towards the angle of that specific location. If the data provides the evidence for
an existing object, every pixel that lies behind this object (in a line from the center of the image) will be
filtered. Since we can not know exactly how tall an object will be, we do not consider any pixels behind it.
Once applied, this obstacle filter helps creating in a better outline of the visual map as can be seen in Figure
2(c).

(a) Gradual Overlap (b) Gaussian Filter (c) Obstacle Filtering

Figure 2: Three filters used for the creation of the visual map.

2.3 Localization and Mapping
Besides creating a map, we studied the effect of the bird-eye view transformation on the quality of the
maps. To estimate the quality, a visual self-localization algorithm was applied on both the omnidirectional



and bird-eye view images. The self-localization algorithm is based on an Extended Kalman Filter (EKF), a
recursive filter which estimates a Markov process based on a Gaussian noisy model, is based on formulas
provided by Thrun and Burgard in [12]. The robot position µt is estimated on the control input ut and
landmark measurement mt, as defined by Equations 8 to 10 respectively.

µt = (xt, yt, φt) (8)
ut = (vt, δφt) (9)
mt = (rt, γt) (10)

where xt and yt define the robot location in world coordinates, φt defines the robot direction, vt defines
the robot velocity, δφt defines robot rotation angle, γt defines the landmark perception angle. User input ut

is defined by noisy odometry sensor data and the measured distance to a landmark, rt, is calculated based
on the inverse of Equation 2.

3 Experimental Results

3.1 Image Transformation
Using the equations 1 to 6, the following images were created. These resulting bird-eye view images portray
a perspectively correct top-down view of the environment from directly above the robot.

(a) Omnidirectional view of DM-
spqrSoccer2006 250.utx

(b) Omnidirectional view of DM-
compWorldDay1 250.utx

(c) Perspective view of DM-
spqrSoccer2006 250.utx

Figure 3: Images taken in the USARSim environment.

(a) transformation of figure 3(a)
using Equations 1 to 3 with zw =
40.

(b) transformation of figure 3(b)
using Equations 1 to 3 with zw =
40.

(c) transformation of figure 3(c)
using Equations 4 to 6 with c =
550.

Figure 4: 500× 500 pixel bird-eye transformations of Figures 3.

Ideally, all landmarks and soccer goals in Figures 4(a) and 4(c) would be depicted as if they were
observed from far above as would be the case with a vertical orthographic projection of the environment.
Unfortunately, orthographic projection cannot be performed on images produced by cameras which have a
single effective viewpoint close to the ground. Perspective projection in combination with a relatively low
position of the camera results in a depiction of landmarks and goals which is exceptionally stretched.



3.2 Mapping
The first map construction experiments where done without the obstacle filtering. They where performed in
three different RoboCup worlds. Unfortunately, most of the RoboCup worlds resemble an environment after
a disaster, which means that there color scheme is mainly gray. The constructed maps are not that sharp as
the single images depicted in Fig. 4, because they are a combination of many bird-eye views, every time
from a slightly different location. The constructed maps cover more area than a single bird-eye view. For
instance Fig. 5(b) covers an area of 20x20 meter.

(a) DM-spqrSoccer2006 250 (b) DM-Mapping 250.utx (c) DM-compWorldDay1 250.utx

Figure 5: Bird-eye view maps created in 3 different RoboCup worlds, without object filter

The best resemblance to the real world was gained with the DM-spqrSoccer2006 250 map (Figure 5(a)),
obviously because this is a relatively small map with hardly any obstacles. As can be seen in Figure 5(b), the
obstacles (mainly the walls) oppose a huge problem in the final outcome of the map. They greatly overlap
other parts of the map. This fact combined with the overall grayness of the world, results in a quite unclear
and unusable map. For the map to be of any use, there must at least be a clear distinction between free
space and non-free space. Since this distinction can not be made without any form of obstacle detection, the
obstacle filter was introduced (see section 2.2.4).

When using the obstacle filter, one can clearly see a huge improvement in the created maps. Figure 6
shows the same maps as discussed above, only now the obstacle filter has been used. The greatest improve-
ment can be found in the DM-Mapping 250 map (Figure 6(b)). The free space is now clearly visible, while
the non-free space is not drawn at all, leaving the original blue color. This results in an image with clearly
visible outlines of the actual world, while Figure 5(b) did not have this effect at all.

(a) DM-spqrSoccer2006 250 (b) DM-Mapping 250.utx (c) DM-compWorldDay1 250.utx

Figure 6: Bird-eye view maps created in 3 different RoboCup worlds, with object filter

When taking a closer look at the generated maps using the objects filter, there are some details that
need to be discussed. One typical error that seems to occur more often when the robot makes a lot of
sharp turns, is the breaking of some straight lines. This can be seen quite clearly in the image from DM-
compWorldDay1 250.utx. The lines of the zebra crossing are distorted and two divided parts of the map
with a different rotation can be seen. This error can be attributed to 90 deg turn on the left hand side.

Another detail worth mentioning is the black trail that is visible on most parts of the map. This is the
path the robot traveled. Because the center of the omnidirectional images will always exist of the robot,
the robot will be drawn on every part of the map where an image is taken. If needed (depending on the
application), this trail could be easily removed by including the robot shape as an obstacle in the obstacle



filter. The robot’s image would then be filtered when applying the objects filter and it will no longer leave a
black trail.

3.3 Self Localization
From the previous examples it is clear that bird-eye view maps can be created. What remains is the ques-
tion how accurate these maps are. In previous work [11], self-localization experiments where performed to
measure the accuracy. These experiments were based directly on the omnidirectional images. The same ex-
periments are now performed, this time with bird-eye view images. The overall results from the experiments
(Figure 7) show a lot of resemblance. In both cases the robot can estimate its location quite accurately. The
location as estimated from the user input slowly drifts off, accummulating in an error up to a meter. Both
Kalman filters reduce this error to a few decimeters. The performance on omnidirectional and bird-eye view
images result are comparable. However, for the bird-eye view the stretching of the images as mentioned in
section 2 results in larger landmarks. These larger landmarks are easier to detect, but small errors on the om-
nidirectional image will also be stretched and become larger. This results in more landmarks being detected
simultaneously (see Figure 7(b)), which results in a better pose estimate and an overall better localization.
Also the number of false positives increases; quite a few landmarks are found at wrong locations (sometimes
meters off), compared to results with the omnidirectional images. Fortunately, these false positives do not
influence the localization results, because such large detection errors can be removed with a validation gate
[9].

(a) Path prediction results

(b) Landmark detection

Figure 7: Self Localization results in the DM-spqrSoccer2006 250 world for omnidirectional and bird-eye
view images



4 Discussion and Further Work
Based on the theory described in section 2 and regarding the results in the previous section we can conclude
that it is possible to create maps from a bird-eye view’s perspective using an omnidirectional camera that
are more intuitive and can provide an additional layer to the user interface of the operator of the robot. Such
a layer with a bird-eye view map can be very valuable in environments where surfaces with a different level
of traversability can be distinguished by their color or their texture. Furthermore, the bird-eye view images
are suitable for self-localization algorithms and might even be more suitable than the default omnidirec-
tional images. Since the landmarks are enlarged by the transformation they remain detectable over longer
distances.

However, there is still enough room for improvement. Possibly the most important next step would be
to fix the localization errors that occur, this would then result in maps more true to the actual world and thus
more useful to rescuers. To fix these errors one could use the omnidirectional images for self localization
in an unstructured environment. The image might even be used for object detection when accompanied
by a learning algorithm which can learn to detect objects. This would then result in a robot that uses the
omnidirectional camera for all basic navigation algorithms and uses the other sensors only as an extra aid
for localization.

References
[1] S. Baker and S. K. Nayar. A theory of single-viewpoint catadioptric image formation. International

Journal of Computer Vision, 35(2):1–22, 1999.

[2] O. Booij, B. Terwijn, Z. Zivkovic, and B.J.A. Kröse. Navigation using an appearance based topological
map. In Proceedings of the International Conference on Robotics and Automation ICRA’07, pages
3927–3932, Roma, Italy, 2007.

[3] R. Bunschoten and B.J.A. Kröse. Robust scene reconstruction from an omnidirectional vision system.
IEEE Transactions on Robotics and Automation, 19(2):351–357, 2003.

[4] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper. Bridging the Gap Between Simulation
and Reality in Urban Search and Rescue. In G. Lakemeyer, E. Sklar, D.G. Sorrenti, and T. Taka-
hashi, editors, RoboCup 2006: Robot Soccer World Cup X, volume 4434 of Lecture Notes on Artificial
Intelligence, pages 1–12, Berlin Heidelberg New York, October 2007. Springer.

[5] K. Daniilides and N. Papanikolopoulos. Special issue on panoramic robots. IEEE Robotics & Automa-
tion Magazine, 11(4), December 2004.

[6] J. Gaspar, N. Winters, and J. Santos-Victor. Vision-based navigation and environmental representations
with an omnidirectional camera. IEEE Transactions on Robotics and Automation, 16(6):890–898,
2000.

[7] H. Ishiguro and R. Benosman. Special issue on omnidirectional vision and its applications. Machine
Vision and Applications, 14(2), June 2003.

[8] A. Jacoff, E. Messina, and J. Evans. A standard test course for urban search and rescue robots. In
Proceedings of the Performance Metrics for Intelligent Systems Workshop, pages 253–259, 2000.

[9] Steen Kristensen and Patric Jensfelt. An experimental comparison of localisation methods, the mhl
se ssions. In Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS’03), pages 992–997, October 2003.

[10] Shree K. Nayar. Catadioptric Omnidirectional Camera. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 482–488, Jun 1997.

[11] Tijn Schmits and Arnoud Visser. An Omnidirectional Camera Simulation for the USARSim World.
In Proceedings of the 12th RoboCup International Symposium, July 2008. Proceedings CD. To be
published in the Lecture Notes on Artificial Intelligence series.

[12] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, Inc., Cambridge, MA, USA,
2005.


