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Abstract. The RoboCup is an initiative to promote the development
of robotics in a social relevant way. The competition consists of several
leagues and it would be beneficial if developments in one league could
be reused in other leagues. This paper describes the development of a
simulation model for a humanoid robot inside USARSim, which could
be the basis of synergy between the Rescue Simulation, Soccer Simula-
tion and @Home League. USARSim is an existing 3D simulator based
on the Unreal Engine, which provides facilities for good quality render-
ing, physics simulation, networking, a highly versatile scripting language
and a powerful visual editor. This simulator is now extended with the
dynamics of a walking robot and validated for the humanoid robot Nao.
On this basis many other robotic applications as benchmarked in the
RoboCup initiative become possible.
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1 Introduction

Robotic simulation is essential in developing control and perception algorithms
for robotics applications. Simulation creates the environment with known cir-
cumstances, which allows rapid prototyping of applications, behaviors, scenar-
ios, and many other high-level tasks. Robot simulators have been always used
in developing complex applications, and the choice of a simulator depends on
the specific tasks we are interested in simulating. Yet, the level of realism of a
simulator is also important in this choice.

A 3D simulator for mobile robots must also correctly simulate the dynamics
of the robots and of the objects in the environment, thus allowing for a correct
evaluation of robot behaviors in the environment. Moreover, real-time simula-
tion is important in order to correctly model interactions among the robots and
between the robots and the environment. Since simulation accuracy is computa-
tionally demanding, it is often necessarily an approximation to obtain real-time
performance [1].

In this paper the focus is on the humanoid Nao robot, which is selected by
the RoboCup organization as the standard platform for the Soccer competition.
In addition, this robot is also used in the @Home competition [2, 3] (see Fig. 1).
This robot is widely used in many research institutes around the globe. The Nao
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Fig. 1: Configuration of a humanoid robot on a wheeled platform in USARSim,
as used in the RoboCup @Home [2].

contains several kinematic chains (legs, arms, head), which means that its model
can be the basis of other robots with multiple kinematic chains.

A model is described to replicate the dynamics of the Nao robot in USARSim
[4]; an existing 3D simulator based on the Unreal Engine. Inside USARSim robots
are simulated on the sensor and actuator level, making a transparent migration
of code between real robots and their simulated counterparts possible. USARSim
is an open source project, available on sourceforge1. It includes a powerful editor
to create worlds and allows experiments, benchmarks and competition scenarios
to be set up easily.

2 Related Work

There are many robotic simulator platforms available. The first legged robot de-
veloped inside USARSim was the Aibo [5]. The first humanoid robot developed
inside USARSim was the Robovie-M [6], developed by the Artisti Humanoid
team. Both models were developed on basis of the Unreal Engine 2 / Karma
Physics engine. With this engine four Aibo’s or two Robovie-M could be simu-
lated before the framerate dropped below an acceptable level. Currently USAR-
Sim is based on Unreal Engine 3 / NVidia PhysX. The latter physics engine is
more focused on parallelization to make optimal usage of modern cpu’s.

Inside the RoboCup @Home League simulation are sparsely used [2, 3, 7–
10]. Teams typically use older simulation environments, such as Gazebo [7, 8]
or Carmen [9]. Another possibility is to use a commercial package like Webbots
[10]. Essential for this League is to be able to use innovative robot and sensor
combinations, a rich environment with a wide variety of shapes and textures,

1 http://usarsim.sourceforge.net



natural lighting, support of the Kinect and preferably a ROS interface. USARSim
fulfills all those prerequisites [11].

SimSpark2 is the official 3D RoboCup simulator and is primarily made for
this goal. The simulator is open source and freely available. It uses a client-server
architecture, where agents (i.e. robot controllers) are the clients that communi-
cate with the simulation server. A limited number of robots (mainly the Nao)
are supported, although it is made easy to add new robots with rsg files that
describe the physical representation of a robot.

Fig. 2: Screenshot of SimSpark, the simulator used in the Soccer Simulation
League

SimSpark always starts a football simulation, including a soccer field, game
states and referee. The robots are controlled using a custom protocol, not the
native interface of the Nao.

3 Simulation Model

The RoboCup version of the Nao (H21 model) has 21 joints, resulting in 21
degrees of freedom (DOF). There is also an academic version with 25 degrees of
freedom, which has 2 additional DOF in each hand.

The movement of each joint can be described by a rigid body equation[12].
The first step is to definition of unconstrained motion as described in equa-
tion (1). This equation contains four vectors, it takes both the spatial informa-
tion x(t), R(t) and the linear and angular momentum P (t), L(t) into account.
F (t) and τ(t) are external forces and the input to solve this equation. The linear
and angular speed v(t), ω(t) can be derived from the linear and angular mo-
mentum when the total mass M and the inertia tensor I(t) of a rigid body is
known.

2 http://simspark.sourceforge.net
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The inertia tensor I(t) is time dependent, but can be calculated from the
inertia tensor Ibody in body space, which is a fixed property, by taking the ori-
entation of the body into account I(t) = R(t)IbodyR(t)T .[

v(t) = P (t)
M , ω(t) = I(t)L(t)

]T
(2)

The next step is to take contacts into account. When the rigid body encoun-
ters a contact it imposes a constraint on the movement.

Two different types of contacts can be distinguished. The first is a contact
caused by bumping into another rigid body or into the world. The other type of
contact is caused by having a joint defined between two rigid bodies which are
part of the robot.

3.1 Joint definition and convention

As said in the previous section, a joint connects two rigid bodies and limits the
movement in some way. The type of movement limitation results in different
types of joints, like a rotational joint, translational joint (also called prismatic
joint), spherical joint, screw joint, etc.

A rotational joint, also called revolute joint, is as the name suggests capable
of rotating around an axis. This type of joint allows one degree of freedom (DOF)
between the two rigid bodies, namely the range of motion around the specified
axis. In case of this type of joint the motion is usually also limited to a specified
range around the axis.

It is important how the relative position and orientation of the frames is char-
acterized. A commonly used convention to describe this is the Denavit Hartenberg
(DH) notation. This convention uses homogeneous transformation matrices to
describe the relative positions of the frames (coordinate systems). This conven-
tion is used in USARSim. A full description can found in the book Robotics,
chapter 2.2.10, by K.S Fu et al.[13].

The Denavit Hartenberg representation is visualized in figure 3. Red lines
show the z axes (motion axis) of the joints, while the yellow and green lines
show respectively the y and x axes of the joints. The middle blue line shows the
start z axis. The other blue lines represent the end points of the five joint chains.
Each transformation is represented by a translation / rotation matrix.

3.2 Shape Definition

The shape of the robot is needed to detect collisions between parts of the robot.
To define the shape of each part use can be made of the representations of the



Fig. 3: Visualization of joints according to the Denavit Hartenberg convention.
Red lines show the z axes, yellow the y axes and green the x axes of the joints.

Unreal Engine. Two collision representations are relevant for simulations of robot
in USARSim. The first collision representation is intended for static meshes in
Unreal Engine. Static meshes are a type of meshes that are not dynamic. This
name does not imply they cannot move or interact with the world. The advanced
option for static meshes is to check collisions per polygon against the static mesh
3D model itself and is potentially expensive to use. There is also a (simplified)
collision hull option, but this option is not used for robots inside USARSim.
Additionally there is a collision representation which is intended for skeletal
meshes in the Unreal Engine. Skeletal meshes are used for game characters, not
for USARSim robots.

The second collision representation is intended for PhysX and is created in
the same way as the advanced static mesh version. The PhysX collision model
is used in the physics simulation. However sensors will usually involve collision
detection with the first representation. For example a simulated sonar sensor
uses Unreal Engine tracing to detect objects in the world, which uses the Unreal
Engine collision model. Both representations are needed for a realistic simulation
of a robot. Care has been taken (as can be seen in Fig. 4) to keep both repre-
sentations equivalent for the Nao robot. Both the link and shape representation
are described in more detail in [1].



Fig. 4: The left picture shows the PhysX collision model, the right picture the
Unreal Engine collision model.

4 Experiments

The experiments are divided into two categories; experiments which check gen-
eral properties for constrained rigid body motion and experiments that are di-
rectly related to the proposed Nao model. The basic experiments for constrained
rigid body motion are described in an earlier paper [1]. Here we concentrate on
the possible applications.

4.1 Advanced Experiments

In this section experiments are done with the simulated and real Nao. The results
of these experiments are compared to see how close they resemble each other.
The experiments all consist of the combined movement of multiple joints. A more
simple version of this experiment would be the movement of a single joint (for
instance turning the head). Such simple experiments are performed and show
close correspondence. The more advanced experiments are more interesting in
the sense that they show sometimes unexpected results due to the interaction
of the constraints in between joints. Alternative advanced experiments would
the Tai Chi balance (demonstrated in [1]) and collisions between two robots
(demonstrated in [5]).

Walking Realistic walking comparable to the walking behavior of the real Nao
is crucial in a humanoid simulation. During a RoboCup match a robot will have
to walk a large part of the time.

For this experiment several walking and turning tests were done for the sim-
ulated and real Nao using the included walk engine of the Nao provided by



Aldebaran. This walk engine uses a simple dynamic model inspired by work of
Kajita et al.[14] and is solved using Quadratic programming [15]. When walking
at full speed it can reach a velocity of 9.52cm/s and 42deg/s when turning.

In this test the Nao was set to do a single full step with the left leg. The joint
angles of the real and simulated Nao were recorded and compared.

Fig. 5 shows the average joint angles of the LKneePitch joint (i.e. the left
knee) with standard deviation over ten recordings of the real and simulated Nao.
The standard deviation for the real Nao is lower than the simulated Nao. The
same behavior is also seen for the standard deviations of the other joints.
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Fig. 5: Average joint angles with standard deviation of the LKneePitch joint
while executing a single step. Joint angles were averaged over ten runs for the
real (red) and simulated (green) Nao. The blue line shows the difference between
the joint angles trajectories.

More walking experiments (including walking multiple steps straight and in
circles) are described in [1].

Kicking Another motion is a kick of a ball with the right leg. The motion was
performed ten times for both the real as simulated Nao robot. The recorded joint
angles were averaged and the standard deviation was computed.

Figure 6 shows the average joint angles of the RAnkleRoll joint with the
standard deviation and the difference between the average joint angles. This
joint is interesting because the joint angles trajectory is not the same. During
the kick motion the RAnkleRoll joint is told to move to 10 degrees in half a
second and stay at 10 degrees for the remaining part of the motion.

The angles trajectory shows not much difference in moving towards 10 de-
grees, although the standard deviation of the real Nao angles is higher than the
simulated Nao angles. However when staying at 10 degrees the real Nao joint is
not able to maintain this angle around 1.5 second. In this case the Nao fails to
reproduce the behavior of the real joints because we did not include the restric-
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Fig. 6: Joint angles and standard deviation of the RAnkleRoll joint while exe-
cuting a kick motion. Results were averaged over ten runs. The red line shows
the angles trajectory of the real Nao, while the green line shows the same for
the simulated Nao. The blue line shows the difference between the two angle
trajectories.

tions of the collision hull of this particular joint in our model3. The joint angle
range of this joint is limited by the movements of the AnklePitch joint. Around
1.5 second the RAnklePitch joint moves from around -30 degrees to -60 degrees.
At this joint angle the RAnkleRoll becomes limited to a range of between -6 and
3 degrees.

5 Full Application Experiment

To test how well the performance is for real applications, the source code of the
Dutch Nao Team[16] has been tested with USARSim.

This application not only involves walking around, but also perception of the
ball and dedicated behaviors like kicks and standing up.

To test real applications an intermediate program has been created, Usar-
NaoQi, which works as a proxy server, converting NaoQi messages in USARSim
messages and vice versa. NaoQi is the framework provided by Aldebaran and
allows the user to control the Nao in various programming languages (C++,
Python, C# or Urbi).

The source code of the Dutch Nao Team is written in Python, and could
be directly applied. The code was fully functional, the robots could standup,
position themselves on the field, locate the ball and kick the ball. The only
observed difference is in the approach of the ball; the Dutch Nao Team code
makes a number of small steps to get in a good position behind the ball. In
simulation those steps are too small; the Nao needs too much time to position
itself.

3 http://www.aldebaran-robotics.com/documentation/nao/hardware/kinematics/
nao-joints-33.html.



The experiment was performed by putting a number of Nao robots in the
simulated RoboCup environment. The average frames per second (FPS) was
recorded for two different scenarios. In the first scenario the Nao is simply stand-
ing and doing nothing. In the second scenario we executed the Nao with robot
controller from the Dutch Nao Team. The controller was set in play mode. In
this mode the Nao will walk around scanning for the ball.

The experiment was performed on a computer with an Intel iCore 7 920
processor and an AMD Radeon HD 6850 graphics card. USARSim was used in
combination with the UDK December build 2011. UsarNaoQi was set to use a
time step of 10ms; the Naos in USARSim sent status updates at a rate of 100
times per seconds (joint angle updates).

Without any Naos the scene is rendered at a FPS of 320. With one and
two Naos the FPS drops to around 110 and 55 respectively, which is enough for
running a decent simulation. With three Naos the FPS drops to 30, which is still
acceptable. With four Naos the simulation frame rate drops to 10 FPS, resulting
in incorrect movements.

Fig. 7: Four Naos in action with the physics statistics displayed

To find the performance bottlenecks in the simulation various profiler tools
provided by UDK are used (PhysX statistics and UnrealScript code profiler).
Using these tools reveals that when simulating four Naos half of the frame time
is spent in the physics. The remaining part of the time goes to the sonar sensor
(tracing), receiving and processing messages in the bot connection with the con-
troller, sending the current status to the controller (joint angles) and updating
the current joint angles.



6 Discussion

Sensors The experiments are limited to the motion of the simulated Nao caused
by the movement of the joints. However the Nao is equipped with a wide range of
sensors (as discussed in the introduction). The different sensors like the cameras,
bumpers, sonars and inertial unit also contribute to the behavior of the Nao.
More research is needed specifically aimed at these sensors. For example the Nao
is equipped with two cameras. Although the camera sensors obviously function, it
is not possible to say much about the correct working of these cameras without
validation. Figure 8 shows an example of the problems you encounter when
simulating a camera. The sensitivity of the camera of the different Nao versions
results in a different camera image. Such differences would need to be modeled
to simulate a camera properly. Although Unreal Engine already offers excellent
rendering options, the current implementation in USARSim limits the simulation
of the camera to simply capturing the image and sending it without modification.

Fig. 8: Camera image of Nao 3.3 vs 4.0 (Courtesy Aldebaran Robotics)

Servo motor Another interesting research option is to extend the simulator with
a more realistic servo motor and gears simulation, as used in the MoToFlex
simulator[17]. In a physics engine a common way to control the joints of a robot
is to set the desired joint angles and leave it to the physics engine to satisfy the
constraints between the links (as described in this paper). This approach is not
the most realistic way to drive a joint and the method seen in the MoToFlex
simulator[17] could improve the behavior of the joints.

Scaling issues Due several design choices it is not possible to scale up to high
number of simulated Nao robots. Scaling up the number of Naos is important
for simulating a RoboCup scenario. The goal of the RoboCup competition is to
play a real football match with 22 Naos. Part of the reason why the simulation
cannot scale up to this number of Naos is due the choice of the collision model,
the physics timing step and possible overhead of message parsing and other
sonar sensor. Scaling of the number of Naos could be improved by simplifying



the collision model by using more simple shapes (spheres, boxes) and lowering
the Physics timestep settings. The same could be applied to the message parsing
(moving the code from Unreal Script to C for example) and the sonar sensor
(using less traces to determine the sonar distance).

Extending to other legged robots One of the goals was to make a generic model
that could be applied to other limb typed robots, like the ABB Frida or a spider
like robot. The collision tools of Unreal Engine allows to quickly create varies
collision shapes, varying from simple models (boxes, spheres) to complex convex
models, possible based on the visual shape of the robot.

This model can easily be applied to other robots with multiple kinematic
chains as shown in figure 9.

(a) A spiderlike robot (b) A two arm manupulator robot

Fig. 9: Example of robots with multiple kinematic chains

7 Conclusion

In this paper we demonstrated that the simulation of the Nao in USARSim
resembles reality quite closely. Our current model is usable in practice on the
condition that one keeps in mind the limits of the method; like the walking
behavior and the scaling issues with the number of Naos. The combination of
Unreal/USARSim provides several advantages over other robot simulators. The
simulation is at such a level that transparent migration of code between real
robots and their simulated counterparts is possible. In this paper this is demon-
strated with an intermediate program, UsarNaoQi, which enables access to the
simulated robot with its native interface. Using this interface several experiments
have been performed with both the real and simulated robot. The model devel-
oped for this humanoid robot demonstrates that robots with complex dynamics
could be realistically modeled inside USARSim, which could be the basis of the
introduction of other models of complex robots into USARSim like two-arm
manipulators and/or service robots.
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