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Abstract—One of the main requirements in enabling au-
tonomous flight of Micro Aerial Vehicles is the ability of au-
tonomous navigation. One possible solution to solve this naviga-
tion problem is to use vision-based line-following algorithms. Such
vision-based algorithm could rely on the various linear structures,
which are present in the human constructed environment. Edge
detection and disparity estimation have proven to be strong
algorithms for the detection of nearby objects. However, these
detection algorithms have their weaknesses. The candidate lines
found by both algorithms are input for the Probabilistic Hough
Transform, which is used to select the best candidate and to
determine a directional vector from this line. This paper is a
survey for the experimental circumstances to fairly test both
algorithms for a line-following task, which is one of the challenges
of the Indoor Micro Aerial Vehicle competition.

I. INTRODUCTION

In robotics one of the main goals is to develop mobile
robots that can operate autonomously in the real world envi-
ronment. These autonomous robots have various purposes and
are used for a wide range of applications such as inspection,
exploration and rescue. Even though reasonable developments
have been made in the robotics field, robots cannot operate
autonomously in all circumstances the real world can provide.

One of the initiatives to promote the developments in
autonomous robots is the International Micro Aerial Vehicle
(IMAV) conference and competition, which is the basis of the
Iran Open Flying robot competition. The indoor challenge of
this competition consists of an arena with several mission ele-
ments (see Fig 1). One of the mission elements is ‘Following
a path’ (marked with ° in Fig 1). For this mission element a
path is laid out around the, four fixed poles which mark the
obstacle zone. The performance of the autonomous robot is
scored based on the number of laps done flying over the path.

The experiments described in this paper are performed
prior to the publication of the IMAV 2013 competition rules.
The major difference is that in our study the line can follow a
3D trajectory, while in the IMAV 2013 competition the line is
on the ground. This means that one of our algorithms, based
on edge detection, could be applied directly. The algorithm
based on disparity has to wait on more advanced challenges
in future competitions.

AR.Drone SLAM [1] is a development framework for the
Parrot AR.Drone developed and proposed by N. Dijkshoorn.

Figure 1. The indoor arena of the International Micro Aerial Vehicle (IMAV)
competitions (Courtesy IMAV committee).

This framework runs off-board and contains a real-time Simul-
taneous Localization and Mapping (SLAM) implementation
based on a down-pointing camera. Therefore, it allows a Micro
Aerial Vehicle (MAV) to know its position and movement in
the environment by generating a feature map of the environ-
ment so the MAV can localize itself on this map. Furthermore,
the framework facilitates control for a 3D mouse or a keyboard,
and enables the generation of visual and elevation maps. The
algorithms described in this study are an extension of this
framework.

Indoor navigation is possible based on Visual SLAM, but
when clear navigation clues are available in the environment
it is beneficial to make use of those clues (with potential
advances in efficiency and robustness). Human constructions
(walls, fences) have often linear structures, which could be
exploited with a line-following algorithm. There are various
approaches for line detection based on vision. Edge detection
and disparity estimation have proven to be strong algorithms
for the detection of nearby objects [2], [3]. Linear struc-
tures (i.e. power lines) have a specific brightness and height,
therefore, edge detection and disparity estimation are suitable
algorithms. Edge detection finds sharp brightness changes in
an image. A disparity map indicates the apparent motion in
an image and shows the foreground objects brighter, denoting
greater apparent motion and lesser distance.

Both algorithms are implemented as pre-processing alter-
native for the first stage. In the second stage a Probabilistic
Hough Transform (PHT) is applied to extract the best line from
the pre-processed image. This is a common feature extraction
technique used in the field of robotics [4], [5], [2]. PHT978-1-4673-6315-0/13/$31.00 c© 2013 IEEE



determines a directional vector for navigation purposes and
can be used to make the platform move accordingly. Based on
the output of the approach the platform will navigate according
to the instructions. Furthermore, this paper is a survey for the
experimental circumstances to fairly test both algorithms for a
line-following task.

Therefore, the main research question is to examine how
edge detection and disparity estimation can be combined to
strengthen each other in a line following task. This main
research question is divided up in the following sub-questions:

• What is the optimal configuration for the optical
sensors of the platform to follow a line?

• What are the experimental settings that demonstrate
the strength and weaknesses of both algorithms
clearly?

• What is the performance and robustness of different
vision-based methods to navigation over a linear struc-
ture in an indoor environment?

In this paper the quality of an edge detection and disparity
estimation algorithm will be separately examined to determine
where these can strengthen each other when combined. This
provides an essential component for autonomous navigation
using a single camera.

Section II gives an overview is given over the related
research regarding line-following on unmanned aerial vehicles.
The approach of this paper is given in section III. In section IV
the experiments are illustrated and in section V the results will
be presented and discussed. In section VI the conclusion of this
paper will be presented and directions for future research will
be proposed.

II. RELATED WORK

This section gives an overview of the related research that
has been done regarding autonomous navigation for unmanned
aerial vehicles. Small stable quadcopters have become afford-
able and research on this platform is moving towards more
intelligent and autonomous applications. Various autonomous
navigation methods have already been investigated in the field.
Various related autonomous applications are listed and briefly
described.

Corridor following is a task performed by robots for
autonomous navigation in indoor environments (i.e. an office).
Recently, a new navigation method for the MAV [2] was
introduced by navigating in the indoor environment based on
single image perspective cues. This is in contrast with previous
approaches where a 3D model is built before planning and
control. This method first classifies the type of indoor envi-
ronment and then the MAV navigates through the environment
using vision algorithms based on perspective cues to estimate
the desired direction. The environment is detected through a
confidence classifier, where estimates of the stair and corridor
algorithms are used to compute the confidence values. The
highest confidence value, above a threshold, is deemed as the
current environment. The corridor and stair algorithm both use
the Canny edge detector and probabilistic Hough transform to
acquire the line segments. The corridor algorithm then tries to
determine the vanishing point in the image. The stair algorithm

on the other hand tries to determine the middle of the stairs
by looking at horizontal line segments of the stairs.

Power line inspection is an essential task for the mainte-
nance of the electric grids, which is difficult due to the range
of grid distributions. Over the last years rapid development
has been made driven by the need for fast, accurate, safe and
low-cost power line inspection [6]. Important requirements for
power line inspection robots are to maintain position above
power lines and to navigate over them, which is also the case
for small aircraft. A vision-based power line following method
has already been proposed [7]. This algorithm makes use of the
Hough transform to detect the line segments in the image. The
method makes the assumption that power lines run vertically
through the screen. Therefore, the method uses the vertical
line segments to adjust its position. The main advantage of
power line inspection is that the MAV can make use of the
redundancy in power line design as it can follow three parallel
lines. Therefore, it is easier to navigate over power lines as
when one of the conductors is not detected; the MAV can
adjust its position according to the other two.

Road-Following is a task performed by robots for au-
tonomous navigation in outdoor environments. Small au-
tonomous aircraft [4] have already been able to follow a
road based on real-time road detection and localization. The
algorithm uses multiple vision-based methods to detect the
road and the lane markings. First the Bayesian Pixel Classifier,
an advanced alternative of the HSV-color filter, is applied
on every pixel to see whether it belongs to the road. The
classifier makes use of a database of RGB values of over
20000 pixels. Then connected-component analysis is used by
labeling pixels in order to remove noise in the image and detect
connected regions. After detecting the road in the image the
lane markings are detected by the Bayesian pixel classification
algorithm. Then a Hough transformation is applied to test
multiple candidate lanes. This results in a rough discretization
of the lanes. Lastly, robust line fitting, least-trimmed square,
is applied to finalize the position and orientation of the center
lane markings. This produced encouraging results; however,
improvements of the algorithm can still be made.

Elementary Motion Detectors is an approach presented in
a previous IMAV competition by the BioMAV team [3]. Their
approach was to combine motion information provided by
Elementary Movement Detectors (EMDs) with edge detection.
EMDs are useful for UAVs due to the detection of temporal
and motion effects caused by the flight of the platform. The
motion information is generated by the EMD implementation
[8], which is barely dependent on differences in contrast and
color. In this approach EMDs are applied to improve the
image segmentation as borders of relevant objects produce
higher responses. Rotational movements of the drone will
lead to edge enhancements and translational movements to
larger apparent motion of objects closer to the drone. The
constant self-motion will provide steady and a reliable source
of information. Although the EMD is useful, it rarely gives a
complete picture of the environment as they rely on contrast
differences. Therefore, the EMDs alone are not enough to
segment the image and provide the vehicle with sufficient
information. However, the EMDs provide an abundance of
additional information to the traditional approach. For this
reason, a combination of edge detection and motion detection



is used to detect objects in the environment. In this study, the
same combination is proposed, although the motion detection
is based on a disparity map.

III. ALGORITHM

In this section the various algorithms that are used for edge
and motion detection for this paper are discussed.

A. Main Approach

The main approach of this paper for line-following naviga-
tion consists of three phases. These are the following phases:

In the pre-processing phase, the edge detection and
disparity estimation algorithms are applied to the image in
preparation for the feature extraction phase.

The feature extraction phase extracts objects, in this case
lines, from the pre-processed image by using a probabilistic
Hough transform.

In the navigation phase, the lines found are interpreted
and controls are given to the platform.

The system is a closed loop system, as shown in Fig. 2,
and will loop through these phases, so that the system keeps
on following the line. The approach is real-time and integrated
in the AR.Drone SLAM [1] development framework. In this
paper the edge detection and disparity estimation were inde-
pendently implemented in order to examine their strengths and
weaknesses. In the following sections these phases will be
described.
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Figure 2. Schematic overview of the approach

B. Pre-processing

There are two types of pre-processing method implemented
in this paper. In this section the implementation of the edge
detection and disparity estimation will be described.

1) Edge Detection: In this paper edge detection is imple-
mented in the following way: The color filter is applied to
the image and filters for the color of the line. The resulting
binary image is combined with the result of the Canny edge
detector. A color filter was chosen as this paper focuses on
simple linear structures. However, a texture filter would also
be an appropriate choice since the system flies at a low altitude,
textures can easily be detected.

Gaussian smoothing is applied to prepare the image for
the Canny edge detector so that small distortions will be
removed. The resulting image is provided to the Canny Edge
Detector.

Subsequently, the Canny edge detector is applied to
the image in order to find the edges indicated in a binary

image. The Canny edge detector was chosen as it already was
successful in previous studies regarding MAV navigation [2].
For this reason, this method is suitable to be surveyed for use
in combination with motion detection.

By combining the resulting images of the color filter and
Canny edge detector the number of candidates for the line can
be reduced. Combining the two techniques filters out noisy
edges.

The result of this algorithm is a binary image containing the
edges of the images. On this binary image feature extraction
will be applied.

2) Disparity estimation: In this paper disparity map is
estimated based on the motion of the platform:

Finding features can be done by applying the Shi-Tomasi
algorithm [9] on the first image. This algorithm has a decent
feature definition for the next (matching) stage where the
optical flow is determined.

Optical flow can be calculated by providing the found
features to the Lucas-Kanade pyramidal implementation in
order to find equivalent features in the next frame. Due to the
pyramidal implementation, the algorithm can find features with
any distance between them. This circumvents the assumption
that motion between frames is very small. This algorithm
results in a set of feature pairs. The average optical flow is
also computed to examine the average motion.

The fundamental matrix is the estimation of the con-
straints on the 3D motion of the camera based on the 2D
motion of the pixels in the image. The fundamental matrix
can be used to rectify the images. The fundamental matrix is
determined in combination with the RANSAC algorithm as
the optical flow algorithm can provide noisy data. RANSAC
filters out this noise and tries to find the best model for the
given set of features. This results in an optimal fundamental
matrix for the given features.

Rectification is warping one image from its image plane
towards another image plane. The fundamental matrix is
required for rectifying the images without calibration. The
algorithm used for this is Hartley’s algorithm, which attempts
to find homographs that map epipoles to infinity while mini-
mizing the computed disparities, resulting into rectified frames
of the original frames.

Stereo Matching can be performed when a common image
plane is found. After determining the fundamental matrix and
rectification of the original frames a fast pass stereo matching
algorithm [10] is applied to compute the disparity map. This
allows keeping the implementation real-time. This step results
into a disparity map indicating foreground object brighter
denoting greater motion and lesser distance.

Foreground objects can be found by applying a certain
threshold over the disparity map, which in this case is the line
on a certain height above the ground.

The result of this image is a binary image containing the
foreground objects that have passed the threshold. On this
binary image feature extraction will be applied.



C. Feature Extraction

The feature extraction method that is applied in this paper
is the probabilistic Hough transform. This method is computa-
tionally fast and deals with noise cause by the pre-processing
stage. In the case of this paper the probabilistic form of the
Hough transform [11] is used to extract lines from the image.
This form takes a only a subset of the found edges to extract
features. The algorithm results into a array of lines that satisfy
the criteria of the method.

D. Navigation

To determine the controls for the platform the found lines
examined. In this paper a simple algorithm is used that merges
lines that have a similar slope and a short distance between
them. The merging is done by taking the average of both
lines. This reduces the amount of lines found in the image by
the feature extraction method. Thereafter, the line that is the
longest and has most confidence is selected. This is measured
by calculating the length of the line and counting the amount
of lines this line represents. The weighted sum is taken to
determine the best line found in the image.

After finding the line in the image the platform is required
to navigate towards the line and follow it. This is the process
of monitoring and controlling the movement of the vehicle.
In order to navigate towards the line the trajectory has to be
calculated. The line is kept in the middle of the screen while
navigating over it, so that the line is not lost during navigation.
This gives the system the following tasks:

1) Move towards the line in the correct orientation
2) Navigate over the line while making adjustments to

keep it in the middle of the screen.

The line that is found gives coordinates (x1, y1) and
(x2, y2). The linear equation y = mx + b can be determined
from these coordinates. Given the formula of the line the
adjustment can be calculated, which results in an angle θ and
a translation x. However, flying towards the line can be done
in several ways. In this paper the platform first flies on top of
the line and then corrects its orientation parallel to the line.
When the platform is hovering in the correct orientation above
the line it will move forward, while correcting its orientation
accordingly to the line. If the platform moves too far from
the line the platform will do the above step again. This is the
control strategy for line-following navigation.

Furthermore, a region of interest is defined when the line is
found based on the movement of the platform and location of
the line. This is done to speed up the algorithm by decreasing
the data it processes.

IV. EXPERIMENTS

This section investigates the experimental settings that
demonstrate the strength and weaknesses of both algorithms
clearly. The proposed experiments aid to answer the previously
determined research questions (see section I). The various
configurations, experiments and evaluation criteria will be
discussed in this section.

A. Platform

For this paper, the Ascending Technologies Pelican and
Parrot AR.Drone were both considered for the evaluation of
the vision-based algorithms. To evaluate the algorithms a stable
platform with on-board stabilization was required. The Pelican
has several advantages such as: on-board processing, modular
design and high payload. However, the system has no indoor
on-board stabilization and had technological difficulties with
the wireless connection. Therefore, the Parrot AR.Drone was
chosen for the experiments.

B. Optimal Camera Configuration

To perform vision-based line-following navigation the op-
timal camera configuration has to be determined. In the current
configuration of the AR.Drone it has a bottom and front
camera. For optimal line-following navigation the camera has
to point obliquely to the ground in front of the MAV. The
platform should look ahead so it can adjust its course on time.
Neither the bottom nor front camera provides this view as the
bottom camera has a small field of view and the front camera
looks too far ahead. This makes it impossible for the platform
to navigate over a line as the platform cannot adapt itself to
changes in time and some cases it is not even able to detect
the line. Therefore, the current configuration of the cameras is
not suitable for navigation.

Figure 3. Possible solutions to solve the camera configuration problem, the
mirror construction (left) and the modification of the AR.Drone (right)

The optimal solution for the camera configuration would
be the pan-tilt camera of the Pelican. The pan-tilt camera can
change the angle of the camera and therefore it is suitable
for flying at various altitudes. Since the experiments are only
indoors the platform only flies at low altitudes between 1-2
meters. Therefore, an angle of approximately 45◦ is considered
and tested in this paper. To change the angle, this paper
constructed and tested the following two solutions (see figure
3) to change the angle:

A mirror construction that changes the view of the front
camera. This construction can be placed on top of the front
camera. The mirror has an angle towards the ground, which
gives the camera the mirrored ahead view.

A modification of AR.Drone with respect to the position
of the front camera. Due to the fact that the AR.Drone is
made from Styrofoam its simple to modify the angle of the
front camera. By cutting away Styrofoam it is possible to set
the camera under a different angle.

C. Experiments

In order to investigate the strengths and weaknesses of
both vision algorithms this paper examined two type of ex-
periments. The experiments (see figure 4) challenge both the



algorithms. The following experiments examine the strengths
and weaknesses of both algorithms: In the first experiment the
weakness of the disparity estimation algorithm is challenged
by an orange line on the ground. In the second experiment
the edge detection algorithm is challenged by a hanging blue
colored line in the air above a blue background.

Figure 4. On the left the setup of experiment and on the right the setup of
experiment two

These experiments are challenges for both algorithms as
the motion detection algorithm finds the line on the basis of
distance. In contrast with the edge detection algorithm that
finds differences in brightness intensity. The strengths are also
illustrated by these two experiments. In experiment one there
is high contrast between the object and the background and in
experiment two there is difference in height of the object and
the background. These are possible situations where the two
algorithms can strengthen each others weaknesses.

D. Evaluation Criteria

To evaluate the edge and motion detection algorithms
criteria are set, to compare their performance. In this paper
the methods are evaluated based on the following two criteria:

• The number of lines detected in the images.

• The number of lines with the correct direction.

Both algorithms will be evaluated on the same recorded
datasets1 so both algorithms experience the same circum-
stances. The datasets are recorded, while flying the platform
manually in order to prevent inaccuracies caused by navigation
errors of the simple navigation method.

V. RESULTS AND DISCUSSION

In this section the results of the various experiments will
be presented and discussed.

A. Camera Configuration

Before carrying out the experiments the optimal camera
configuration of the platform was determined. This is done
because the standard camera configuration is not suitable for
line-following navigation. The following two solutions were

1The datasets are publicly available.

constructed and tested in this paper:

Mirror Construction
The mirror construction was designed and made on the basis
of the field of view of the AR.Drone. The construction consists
of a tailor made mirror that is mounted to a 3-Dimensional
printed frame. The frame is placed on top of the AR.Drone as
shown in figure 3. This configuration resulted into distorted
images during flight and a not optimal angle towards the
ground. The distorted images were caused by the vibrations
of the platform during flight. The material of the frame is
constructed with a thermoplastic material called Acrylonitrile
Butadiene Styrene (ABS). The ABS material is flexible,
which causes the construction to vibrate rapidly. Furthermore,
the camera cannot be set to an angle of 45◦ without losing
part of the image as the field of view of the camera is too
large for this angle. Due to this the camera overlaps with
the bottom camera and a smaller area is covered by the camera.

Modification of AR.Drone
The modification to the AR.Drone was based on the field of
view of the AR.Drone. For the modification the Styrofoam of
the AR.Drone was cut away under an angle of 45◦. This gave
the AR.Drone the configuration as shown in figure 3. This
configuration resulted into clear images during flight and an
optimal angle towards the ground. The Styrofoam compensates
for the vibrations of the platform. Therefore, the platform
takes sharper images comparing to the mirror construction.
Additionally, by modifying the AR.Drone the camera can be
put at any angle. However, the modification cannot be undone,
which is a disadvantage.

B. Edge Detection

After determining the camera configuration, the edge de-
tection algorithm was tested on several images. The color filter
and the Canny edge detector in combination with a Gaussian
blur were applied over these images. The result of the color
filter and the Canny edge detector were combined in an image,
which was provided to the probabilistic Hough transform. This
resulted into an array of possible line segments. The best line
was determined and indicated on the image. In figure 5, typical
results can be seen of this algorithm.

These results look promising; however, the line is detected
simply as there are high intensity differences in the image.
The combination of the color filter seems to work well for
filtering out the noisy edges. Note that the probabilistic Hough
transform is performing well on the pre-processed images.

C. Disparity estimation

The motion detection algorithm was also tested before
being evaluated. The optical flow was calculated on the basis
of the features that were found by the method of Shi-Tomasi
[9]. From the corresponding points the fundamental matrix was
determined using RANSAC to discriminate the outliers. The
fundamental matrix served as input for Hartley’s algorithm
that rectified the images. These images were used to compute
the disparity map, which was thresholded to find the closest
foreground object. The resulting image served as input for
the probabilistic Hough transform, which extracts the lines



Figure 5. Respectively: Original Image, color Filter and Canny Edge Detector, Combined Image and the Probabilistic Hough Transform result.

from the provided images. The best line was determined and
indicated. In figure 6, a sample result of this algorithm is
shown.

The result of the motion detection algorithm looks reason-
able. Nevertheless, this was tested on an ideal situation where
the line is hanging close to the platform. It seems that the
algorithm sometimes is unable to detect the line due to the
lack of motion between the frames. This is in line with the
theory behind Monocular Stereo Vision, as then it is hard to
see any motion.

D. Experiment One

In experiment one the platform was acquired to fly
over an orange line on the ground. The edge and motion
detection were both evaluated on the same dataset. The vision
algorithms were evaluated on the amount of times a line
was detected and whether the detected line had the correct
direction. This gave the following results:

Edge Detection
Performance True False
Detected 528 (97.8%) 12 (2.2%)
Direction 503 (93.1%) 37 (6.9%)

Motion Detection
Performance True False
Detected 53 (9.8%) 487 (90.2%)
Direction 37 (6.9%) 503 (93.1%)

These results evidently show that this experiment is a
weakness of the Motion Detection algorithm. All the features
in the image move in the same motion, therefore, the algorithm
only detects background. This results in a disparity map
without any depth. On the other hand the performance of the
edge detection algorithm is satisfying. The results obviously
show the strength of edge detection and the weakness of
motion detection. Therefore, edge detection can strengthen
motion detection.

E. Experiment Two

In experiment two the platform was acquired to fly over
a hanging blue colored line with a blue background. The
edge and motion detection were both evaluated on the same
dataset. The vision algorithms were evaluated on the amount
of times a line was detected and whether the detected line
had the correct direction. This gave the following results:

Edge Detection
Performance True False
Detected 69 (29.0%) 169 (71.0%)
Direction 58 (24.4%) 180 (85.6%)

Motion Detection
Performance True False
Detected 96 (40.3%) 142 (59.7%)
Direction 87 (36.6%) 137 (63.4%)

These results show that motion detection is performing
better than edge detection. However, the motion detection
algorithm is not as robust as edge detection in experiment
one. This is because between some frames in the dataset
was not enough distance making the method unable to detect
motion in the image. This is causing the weak performance
of the algorithm as it was able to detect continuously the
line. Furthermore, the results show that low gradient intensity
differences are hardly detected by an edge detector. Due to
the fact the motion detection algorithm is able to detect the
line when there is enough motion it can strengthen edge
detection.

All in all, the above results show the weaknesses and strengths
of the edge and motion detection algorithms. Edge detection
is good at detecting differences in gradient intensity of the
image. On the other hand motion detection is good at detecting
foreground objects assuming that there are enough motions in
between the frames. The results show that combining the two
would strengthen others weaknesses. Therefore, fusing these
two algorithms is a suitable approach for the pre-processing
stage of a probabilistic Hough transform.

VI. CONCLUSION

In this paper a two stage approach is demonstrated, that
combines edge detection or disparity estimation with a prob-
abilistic Hough transform. Where edge detection finds sharp
brightness changes, disparity estimation finds the foreground
objects. The results of the experiments show the strengths and
weaknesses of both algorithms. The results also show that
there is no optimal vision-based approach. Therefore, fusing
algorithms will make vision-based methods more robust.

The optimal configuration of the camera for the line-
following task was determined in this paper. The front camera
was set to an angle of 45◦ by modifying the AR.Drone.
This was the best and most stable solution in order to solve
the camera configuration problem. A mirror construction was
also examined. However, this was unstable in the sense that
the mirror was vibrating during flights. Additionally, this
construction could not obtain the optimal angle.



Figure 6. Respectively: Left Image, Right Image and Optical Flow, Disparity Map, Disparity Map on Image and the Probabilistic Hough Transform result.

Two experiments where designed to show the strengths
and weaknesses of the edge and motion detectors. In the first
experiment, motion detection was challenged and in the second
experiment, edge detection. The results of the experiments
show that these algorithms strengthen each other’s weaknesses.

The performance and robustness of both vision-based al-
gorithms showed promising results and can be used for a
line-following task. However, when edge and motion detection
are combined this can lead to even more robust vision-based
algorithms.

Conclusively, this paper examined the strengths and weak-
nesses of two different kind of pre-processing techniques,
namely, edge and motion detection. From this examination
can be concluded that indeed edge and motion detectors can
strengthen each other. Therefore, this paper recommends a
combination of these two algorithms to autonomously follow
linear shaped structures in a landscape.

VII. FUTURE RESEARCH

For a MAV to be able to navigate autonomously in an
indoor or urban environment it is necessary to use a navigation
method as proposed in this paper. For navigation accurate
controls are required, which are provided by the visual system.
The controls provided by the visual system should be accurate
as it is not affordable to crash. The visual system of the
MAV can be more robust by combining the strengths of
these vision-based algorithms. Also other methods can aid the
robustness of vision-based algorithms: Probabilistic methods
such as the Kalman Filter [12] can aid keeping track of the
location of the line. A Kalman Filter is an algorithm, which
uses a series of measurements observed over time, containing
noise, produces estimates of unknown variables that tend to
be more precise than those that would be based on a single
measurement. The navigation method should be improved so it
can handle multiple lines. A smarter navigation module leads
to more intelligent applications. The vision-based algorithms
should be tested in a wide range of environments to determine
their robustness. The Iran Open flying robot competition is
an excellent opportunity to benchmark the edge detection
algorithm prior to the international competition.
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