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Abstract. The challenge of the Rescue Simulation League is to learn
an optimal response for a team of robots that has to mitigate the ef-
fects of a natural disaster. To operate optimally, several problems have
to be jointly solved, such as task allocation, path planning, and team
formation. Solve these difficult problems can be quite overwhelming for
newcomer teams. We create a workshop that demonstrates how these
problems can be approached using standard artificial intelligence and ma-
chine learning algorithms available in MathWorks® Statistics and Ma-
chine Learning Toolbox™. We demonstrate how to use this toolbox (1) to
analyze and model disaster scenario data for developing more elaborated
rescue decision-making algorithms, and (2) to incorporate state-of-the-
art machine learning algorithms into RoboCup Rescue competition code
using the MATLAB® Engine API for Java.

1 Introduction

Urban Search and Rescue (USAR) scenarios offer a great potential to inspire and
drive research in multi-agent and multi-robot systems. Since the circumstances
during real USAR missions are extraordinarily challenging [1], benchmarks based
on them, such as the RoboCup Rescue competitions, are ideal for assessing the
capabilities of intelligent robots. The goal of the RoboCup Rescue competitions
is to compare the performance of different algorithms for coordinating and con-
trolling teams of either robots or agents performing disaster mitigation.

The rescue agent simulation competition aims to simulate large scale natural
disasters, such as earthquakes, and explore new ways of autonomous coordina-
tion of heterogeneous rescue teams under adverse conditions. This competition
was first demonstrated during RoboCup 2000 [2] and was later launched as
an official competition in 2001. The teams participating in the agent simula-
tion competition have their background mainly from artificial intelligence and
robotics research.

The competition is based on a complex simulation platform representing a
city after an earthquake (Figure 1). In the competition, fire brigade, police force
and ambulance team agents extinguish fires, unblock roads, and rescue victims
trapped inside collapsed buildings, respectively. The team scoring is based on
the number of victims rescued and the number of remaining buildings with



Fig. 1. Impressions of the paths for the agents inside the central sector of Kobe city [3].

various levels of fire damage. The urban areas considered in this competition
typically contain up to 5000 buildings and teams of fire brigades, police forces
and ambulance teams may not consist of more than 50 agents. There may be up
to 1000 civilians that need to be rescued.

The complexity of this rescue scenario imposes several challenges to the de-
velopment of different aspects of multi-agent systems like task allocation with
uncertainty, coalition formation, cooperation, distributed control, and commu-
nication. Artificial intelligence, and in particular machine learning methods are
very well suited to cope with some of these challenges. For instance, fire brigades
can optimize their decisions by estimating buildings’ danger of fire ignition (dis-
crete state — classification) and ambulance teams can optimize their rescue oper-
ations by predicting more accurately the chance of potential victims to survive
(continues state — regression).

This workshop aims to instruct the participants:

1. how to use MATLAB® and add-on packages such as the Statistics and Ma-
chine Learning Toolbox™ to analyze and model disaster scenario data using
both interactive design tools (GUIs) and by writing MATLAB® code. This
analysis will provide support to the development of more data-driven and
elaborate rescue decision-making algorithms (see Section 2).

2. how state-of-the-art machine learning algorithms can be directly incorpo-
rated into their competition software framework using the MATLAB® En-
gine API for Java (see Section 3).

2 Interactive approach

MATLAB®, Statistics and Machine Learning Toolbox™, and other add-ons can
be used in interactive mode in different situations.



2.1 Unsupervised methods

These tools can be used to analyze and model disaster scenario data with un-
supervised machine learning methods. Clustering algorithms are interesting for
rescue simulation teams to partition the map into sectors and evenly distribute
the search and rescue workload among agents [4,5]. Available clustering algo-
rithms in MATLAB®* include k-means [6], k-medoids [7], hierarchical cluster-
ing [8], Gaussian mixture models [9], and hidden Markov models [10]. Figure 2
shows the partitioning of the buildings in the Paris map using k-means clustering
algorithm based on buildings location.
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Fig. 2. k-means Clustering of building locations with MATLAB®.

2.2 Supervised methods

Analysis of the disaster scenario using supervised machine learning methods
can be applied to learn associations between observable variables and hidden
variables (part of a causal model of the world). Estimates of the value of variables
of a world model could be done with discrete states (classification) or continuous
states (regression). An example of a classification that would be of interest to
optimize the decision of fire brigades is the classification of buildings based on the
danger of fire ignition. A useful usage of regression for the ambulances would

4 https://www.mathworks.com/products/statistics/features.html



be to predict the chance victims have to survive based on an estimate of the
remaining health points (HP) at the end of the scenario simulation.

Statistics and Machine Learning Toolbox™ has several algorithms for classi-
fication and regression®. One can choose for classification between methods like
boosted decision trees, naive Bayes classifiers, K-nearest neighbors or support
vector machines. Figure 3 shows the K-nearest neighbors (KNN) classification
used to predict if a civilian would be dead, in a critical state, injured or in a
stable state at the end of the scenario simulation. This classification predicts
correctly 78.9% of the civilians’ state. However, notice that most of the wrong
detections (i.e., sum of the numbers in the red cells) are above the diagonal
green cells meaning that this trained classifier predicts a civilian in a less severe
state than the civilian really will be. For instance, there are 9 cases in which the
civilian will die and the classifier predicted it as injured.
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Fig. 3. Classification Learner MATLAB® app showing predictions of the injury class
of the civilians at the end of the scenario using Weighted K-Nearest Neighbors.

In Statistics and Machine Learning Toolbox™, data can be preprocessed with
dimensionality reduction methods like principal component analysis and singular
value decomposition, followed by linear or non-linear regression methods. The
results can be visualized with ensembles like random forests, boosted and bagged
regression trees. To learn those ensembles several optimization algorithms like
AdaBoost and TotalBoost are available. Figure 4 shows an example of an en-
semble fit into a bagged tree model with the estimate of the remaining health
points (HP) at the end of the simulation scenario with a root mean square er-
ror (RMSE) between the predicted and true amount of HP equals 1167.5 (and
normalized RMSE equals 0.1228).

® https://www.mathworks.com/discovery/supervised-learning.html
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Fig. 4. Regression Learner MATLAB® app showing predictions of the chance to sur-
vive (remaining HP) of civilians buried in the devastated city.

2.3 Path planning

If an agent wants to move to a specific location to perform a task, a path plan to
that location has to be defined. Two possible approaches to tackle this problem
are (1) to use the path planning algorithms from the MATLAB® graph and
network algorithms® or (2) to use the graph-routines from Peter Corke’s Robotics
Toolbox, which is part of his textbook [11].

First, however, all the roads of a city map needs to be converted to a graph
in MATLAB® format. The nodes of the graph are identified by the roads ID and
they also store the actual (x,y) location of the road to facilitate the visualization
of the results (see Fig. 5). The Java code to generate such a MATLAB® graph
can be called during the precompute phase of the competition, and its pseudo-
code is:

For (Entity next: this.worldInfo.getEntities() ) {
loc = this.worldInfo.getLocation(next.getID ());
matlab.eval (?G=addnode (G, table (next.getID (),loc.first (),loc.second ());”);

For (Entity next: this.worldInfo.getEntities () )
Collection areaNeighbours = next.getNeighbours ();

for (entityID neighbour : areaNeigbours) {
matlab.eval (?"G=addedge (G, find (next.getID ()), find (neighbour.getID ());”);
¥

matlab.eval (”save ('graph.mat',G);”);

Once created, the graph in MATLAB® can be queried, for instance to get
the shortest path between two nodes. This can be done by calling a MATLAB®
script which contains the function short_path = getPath(from,targets), which
not only loads the graph G, calls the MATLAB® method [TR,D]=shortestpathtree

S https://www.mathworks.com/help/matlab/graph-and-network-algorithms.html



Fig. 5. The small Test map of the RoboCup Rescue agent competition, in MATLAB®
as topological (left) and metrical graph (right).

and sorts the resulting paths TR based on the distance D. It is possible to specify
in MATLAB® the algorithm to use (Breadth-first or Dijkstra). It is also possi-
ble to use A*, this algorithm is available in Peter Corke’s robotics toolbox [11].
The MATLAB® code of this algorithm is open source and well documented.
This makes it possible to modify the A* algorithm to Dijkstra’s algorithm (by
removing the heuristics) or breadth-first (by not sorting the frontier on distance
so far). The only thing needed is a script to translate from MATLAB® native
graph-format to Peter Corke’s Pgraph-format. For smaller competition maps
like Kobe this can be done in 13 seconds (measurement with a computer with a
Core i7-8550U processor), for larger competition maps like Paris 22 seconds are
needed for this conversion (see Fig. 6). This is fast enough for the precompute
phase of the competition.
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Fig. 6. The RoboCup Rescue agent competition maps of Kobe (left) and Paris (right)
in Peter Corke’s Pgraph-format.



An advantage of this approach compared to the path-planning methods typ-
ically applied by the RoboCup Rescue teams is that each agent can load this a
priori map and modify the edges based on the blockades observed and/or com-
municated. This information can even be updated when police force agents clear
part of the road.

2.4 ROS interface

When an agent has reached a building, it has to enter this building. This chal-
lenge is part of the Virtual Robot competition [12]. The MATLAB®, Robotics
System Toolbox makes it possible to directly control robots and realistic simula-
tion via the Robotics Operating System (ROS) interface, as demonstrated in the
Future of RoboCup Rescue workshop [13] and the more recent RoboCup@Home
Education workshop”.

Inside the Virtual Robot competition one of the hard challenges is to detect
buried victims from the camera images. In the workshop victim detection could
be demonstrated with the MATLAB® deep learning capabilities, a combination
of the Neural Network Toolbox, Parallel Computing Toolbox, GPU Coder, and
Computer Vision System Toolbox. Note that MATLAB® can run models de-
ployed to a GPU faster than TensorFlow or Caffe, which is highly desirable for

robotic applications®.

3 ADF integration

In addition to benefit of the MATLAB® models and algorithms using the inter-
active design tools, these models and algorithms can also be integrated with the
Agent Development Framework (ADF) [14]. ADF is an agent architecture whose
use is mandatory to all teams in the rescue agent simulation competition. This
agent architecture is composed of several, highly specialized modules responsible
for different data processing and decision-making tasks, such as clustering, path
planning and task allocation. In the workshop we demonstrate how to integrate
the k-means clustering into the initialization of the execution phase and how am-
bulance teams can use the results of a trained classifier to decide which victim
has a chance of surviving the rescue operation.

Currently, teams need to implement their own custom algorithms to solve res-
cue tasks including the development of standard artificial intelligence algorithms
from scratch, such as k-means clustering or shortest-path planning. MATLAB®,
however, provides more efficient, diverse and robust implementations of these
standard algorithms that teams may benefit of in order to prioritize other as-
pects or challenges in the rescue scenario.

Although efficient and robust in isolation, the time constraint imposed on
the rescue agents demand a more elaborate assessment of the efficiency of the

" http://www.robocupathomeedu.org/learn
8 https://blogs.mathworks.com/deep-learning/2017/10/06/
deep-learning-with-matlab-r2017b/
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Fig. 7. Performance of the k-means implementation in Java and in MATLAB®.

MATLAB® algorithms integrated to the ADF. We have assessed the perfor-
mance of the k-means clustering algorithm implemented in the Sample ADF
using pure Java and in MATLAB®. Figure 7 shows that the MATLAB® k-
means clustering algorithm executes in less time than the Java implementation.
There was significant difference on the execution average time for the MATLAB®
(6,095.87+1,178.51 ms) and the Java (8,783.36+1, 188.22 ms) implementations;
t(164) = 14.63, p < 0.05. Hence, we can conclude that using MATLAB® k-means
clustering reduces the effort and maintenance, and increases the performance of
the agent teams.

The integration of MATLAB® models into the ADF is based on the MATLAB®
API for Java®®, which enables Java programs via MatlabEngine class to inter-
act with MATLAB® synchronously (startMatlab method) or asynchronously
(startMatlabAsync method). In addition to start MATLAB®, there is also a
possibility to connect synchronously (connectMatlab method) or asynchronously
(connectMatlabAsync method) to an existing shared instance. To share a MATLAB®
instance, enter the command matlab.engine.shareEngine in the MATLAB®
command window. Once connected, then it is possible to evaluate a MATLAB®
function with arguments (feval and fevalAsync member functions) or evalu-
ate a MATLAB® expression as a string (eval and evalAsync member func-
tions). Additionally, it is possible to interact with the MATLAB® workspace
by getting (getVariable and getVariableAsync member functions) or setting
(setVariable and setVariableAsync member functions) variables. Once fin-
ished the interaction with MATLAB®, disconnect from the current MATLAB®
session using disconnect, quit, or close member functions.

The k-means clustering can be integrated into the ADF and executed in
the precompute phase or execution phase. In the workshop, we show how to
integrate the k-means clustering algorithm in the agents’ initialization stage of
the execution phase.

The pseudo-code of such integration is shown below.

9 https://www.mathworks.com/help/matlab/matlab-engine-api-for-java.html



// Prepare data for Matlab k—means clustering
double [|[] mlInput = new double[this.entities.size ()][2];
for ( StandardEntity entity : this.entities ) {
Pair<Integer , Integer> location = this.worldInfo.getLocation( entity );

mlInput[i][0] = location. first ();
mllnput[i][1] = location.second ();
i+4;

}

// Run k—means clustering

Object [] mlOutput = ml.feval( 2, "kmeans”, (Object) mllnput, this.clusterSize
DISTANCE, this.distanceMetric,
MAXITER, this.maxIter );

double [] mlIndex = (double[]) mlOutput [0];

double [][] mlCenter = (double[][]) mlOutput[1];

Once connected to MATLAB®, the data needs to be prepared for clustering
(i.e., the x and y entity location). Next, the MATLAB® function kmeans is eval-
uated using the feval method function with several parameters: the dimension
of the k-means output (set: 2), the number of clusters (default: 10), the distance
metric (default: cityblock), and the maximum number of interaction (default:
100). Once executed, the feval returns an object array with the indices (i.e.,
position 0) and the centers (i.e., position 1) that are casted to their respective
data types. Finally, the engine is closed and the indices and the centers can be
used to assign agents to specific partitions of the map.

This integration of the clustering algorithm requires only a single call per
agent to the MATLAB® engine as its results are stored and used in the re-
minder of the simulation run. Path planning algorithms, however, are affected
by changes in the environment and they may require reprocessing to account for
these changes. Because of this characteristic, the MATLAB® path planning algo-
rithm is called every time the agent has to calculate a path during the execution
phase of the simulation run, even though the first execution can be performed
during the precompute phase. Please see Section 2.3 to further details about the
path planning.

Ambulance teams can also benefit of MATLAB® to optimize their rescue op-
erations by predicting more accurately the chance of potential victims to survive.
First, however, it is necessary to train a classifier with data collected from ear-
lier runs. This training is performed using the Classification Learner MATLAB®
app described in Section 2.2.

We have trained a classifier using the data from rescued victims collected
from several simulation executions of the Paris map using a simple rescue team.
The data collected was the time (sTime), the distance to the nearest refuge
(sDist), the HP of the victim (sHP) and the damage (sDamage) at the start of
the rescue operation and the HP of the victims (eHP) at the end of the rescue
operation. We categorized this data depending on the final HP (eHP) according
to the ranges: 0 Dead, 1 — 3000 Critical, 3001 — 7000 Injured, and 7001 —
10000 Stable using the MATLAB® script.

// TData is the training data
hp_bins = [0 1 3000 7000 10000];

bin_-names = {’Dead’, ’Critical’, ’Injured’, ’Stable’};
TData. hp_class = discretize (TData.eHP, hp_bins, ’categorical’, bin_names);



Once finished, the trained classifier code (targetSelectorModel) is exported
using the Export Model - Export Compact Model feature and validated against
a separate set of validation data with the MATLAB® script below.

// VData is the validation data
predictions = targetSelectorModel.predictFcn (VData);

numCorrect = nnz(predictions == VData. hp_class );
validationAccuracy = numCorrect/size (VData,1);
fprintf(’Validation accuracy: %.2f%%\n’, validationAccuracy * 100);
The training and validation steps compose an iterative process whose cycle
should be repeated until the validation accuracy is satisfactory. Once this is
achieved, the exported model can be saved as a file (targetSelectorModel .mat)
for future use and a MATLAB® script function created.

function predictions = selectTargets (time,dist ,hp,damage)
persistent targetSelectorModel
if isempty (targetSelectorModel)
load targetSelectorModel targetSelectorModel
end

predictors = table (time, dist ,hp,damage, .
>VariableNames ’,{ ’sTime’, sDist >, ’sHP’ , >sDamage’});

predictions = int32(targetSelectorModel.predictFcn (predictors));
end
This function can then be called inside the calc method of the HumanDetector
class for the ambulance team agents using the following code snippet.

// rescueTarget is an object containing wvictim ’s information

if ( MatlabEngine.findMatlab ().length > 0 ) {
MatlabEngine ml = MatlabEngine.connectMatlab ();
int sTime = rescueTarget.sTime;
int sDist = rescueTarget.sDist;
int sHP = rescueTarget .sHP;
int sDamage = rescueTarget.sDamage;

int value = ml.feval( 7selectTargets”, sTime, sDist, sHP, sDamage );

ml. close ();
}

This code executes the MATLAB® script function selectTargets using data
about a specific victim and returns a prediction about the state of the victim at
the end of the rescue operation coded as 0 Dead, 1 Critical, 2 Injured, and
3 Stable. The ambulance team can then combine this information with several
other information about other victims to determine which victim it is worth
rescuing. Possible policies to use this classification includes classify all known
victims, discard the predicted dead, and

1. select randomly among them
2. select the closest one
3. select the closest one that is predicted Critical

Notice that we use MatlabEngine.findMatlab() and MatlabEngine.connectMatlab ()
methods instead of MatlabEngine.startMatlab(). This requires that a MATLAB®
session is running and shared to the code to work. To share a MATLAB® ses-
sion, open MATLAB®, enter the command matlab.engine.shareEngine in its
command window, and leave it open during the execution of the simulation.



4 Conclusion

By giving a workshop to the RoboCup teams on how to separate machine learn-
ing algorithms from the actual code to control the agents / robots, teams can
concentrate on the learning aspect. The algorithms implemented in the workshop
are examples of common challenges in this competition, but the approach should
extend to any algorithm available/developed in MATLAB®. This approach can
be extended to, for instance, deep learning, state machines, and graph node re-
fining algorithms. This approach can give a boost to the scientific level of the
RoboCup Rescue Simulation League as

1. Teams may focus more on the development of more high-level algorithms to
solve rescue challenges and

2. MATLAB® will provide a performance benchmark against which teams can
show their improvements.

The workshop, available online!?, could also attract more teams to the com-
petition, increasing both the level and impact for this socially significant domain.
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