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Abstract— With the progress made in active exploration,
the robots of the Joint Rescue Forces are capable of making
deliberative decisions about the frontiers to be explored. The
robots select the frontiers having maximum information gain.
The robots incorporate the positions of their team mates into
their decisions, to optimize the gain for the team as a whole.
Active exploration is based on a shared occupancy map, which
is generated online. The images of the omnidirectional camera
can be used to generate bird-eye view maps and to visually
estimate free space around the robot.

INTRODUCTION

The RoboCup Rescue competitions provide benchmarks
for evaluating robot platforms’ usability in disaster mit-
igation. Research groups should demonstrate their ability
to deploy a team of robots that explore a devastated area
and locate victims. The Virtual Robots competition, part of
the Rescue Simulation League, is a platform to experiment
with multi-robot algorithms for robot systems with advanced
sensory and mobility capabilities [1].

This year, shared interest in the application of machine
learning techniques to multi-robot settings has led to a joint
effort between the laboratories of Oxford and Amsterdam.

I. TEAM MEMBERS

UsarCommander was originally developed by Bayu
Slamet and all other contributions have been built into his
framework.

Arnoud Visser
supervision [2], exploration & navigation
algorithms [3], communication protocol [?]

Bayu Slamet
user interface, real time visualization [4], several
scan matching algorithms, manifold-SLAM [5],
[6], communication protocol [?], exploration
behaviors [3]

Max Pfingsthorn
off-line rendering, several scan matching

algorithms, manifold-SLAM, navigation behaviors
[5], [6]

Tijn Schmits
image processing, victim detection [4], sensor
development [7], [8], user interface, communication
protocol

Xingrui-Ji et al.
occupancy grid map interpretation, beyond
frontier exploration [9]

Aksel Ethembabaoglu
image processing, active target tracking [10]

Steven Roebert
map attribution, omnidirectonial camera usage
[11], [12]

Gideon Maillette de Buy Wenniger
image interpretation, learning to visually recognize
free space

Julian de Hoog
user interface, semi-autonomy, multi-robot
exploration algorithms, communication roles [13],
[1]

II. SCAN MATCHING

The possibilities for active exploration are heavily depen-
dent on a correct estimation of a map of the environment.
Many advanced techniques that aim to detect and correct
error accumulation have been put forward by SLAM re-
searchers. Although these SLAM techniques have proven
very effective in achieving their objective, they are usually
only effective once errors have already accumulated. With
a robust scan matching algorithm the localization error is
minimal, and the effort to detect and correct errors can be
reduced to a minimum (see e.g. [14]).

Slamet and Pfingsthorn [5] performed an extensive sur-
vey of the performance of three scan matching algorithms
in different environments. The survey demonstrated strong
performance indoors, but less reliable results outdoors. Out-
door environments can contain large free spaces, where
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only sparsely obstacles are detected. Consequently, the scan
matching algorithms were extensively tested in 2007 for
outdoor environments and it was demonstrated that the ro-
bustness of the scan matching algorithms could be improved
by matching against accumulated scans. With a storage
technique like quad trees this accumulation can be done
without losing the accuracy of the measurements.

One of the experiments was performed in the outdoor area
of the 2006 Virtual Robot competition, which we call ‘The
Park’ (see Fig. 1) . The experiment involved use of two
implementations of the ICP algorithm [15]; IDC [16] and
WSM [17]. The point-correlation procedures of the original
implementations were replaced with a nearest neighbor-
search in a quad tree. No additional modifications were made
to the internal workings of these scan matchers, so we refer
the interested reader to prior research [6], [5] and the original
papers for further details. The experiments investigated the
improvements that can be gained from using quad trees
for both algorithms. The visualizations were created with
the standard occupancy rendering techniques from [6]. All
presented results are strictly based on scan matching.

Fig. 1. The outdoor area called ’The Park’ of the 2006 competition world

For the experiment, an area of approximately 80 by 40
meters was used, with the robot starting in the bottom-
right corner and traversing the park in a clockwise direction.
The robot’s path is shaded with gray for clarity and should
describe a single closed loop from tip to tail. Both original
scan matchers accumulate significant error; IDC ‘overshoots’
the end of the loop and WSM leaves a gap of several meters.
Using the accumulated scans in the q-tree both IDC and
WSM close the loop implicitly. Over the whole dataset the
average correlation distance reduces from 9.83 mm to 4.83
mm for IDC and from 10.20 mm to 5.62 mm for WSM.

III. LOCALIZATION AND MAPPING

The mapping algorithm of the Joint Rescue Forces is
based on the manifold approach [14]. Globally, the manifold
relies on a graph structure that grows with the amount of
explored area. Nodes are added to the graph to represent local

properties of newly explored areas. Links represent navigable
paths from one node to the next.

The mapping algorithm is not dependent on information
about the movement of the robot for the creation of links.
In practice the displacement as reported by the inertial
navigation sensor serves as an initial estimate for scan
matching. Thereafter, displacement is estimated by compar-
ing the current laser scan with laser scans recorded shortly
before, stored in nearby nodes of the graph. As soon as the
displacement becomes so large that the confidence in the
match between the current scan and the previous scan drops,
a new node is created to store the scan and a new link is
created that corresponds to the displacement. A new part of
the map is learned.

As long as the confidence is high enough, the information
on the map is sufficient and no further learning is necessary.
The map is just used to get an accurate estimate of the cur-
rent location. The localization algorithm maintains a single
hypothesis about where the robot currently is and does an
iterative search around that location when new measurement
data arrives. For each point the correspondence between the
current measurement data and the previous measurement
data is calculated. The point with the best correspondence
is selected as the center of a new iterative search, until
the search converges. Important here is the measure for
the correspondence. For the Joint Rescue Forces, several
scan matching algorithms are available (as introduced in
the previous section) which can be used as correspondence
measure.

The graph structure means that it is possible to maintain
multiple disconnected maps. In the context of SLAM for
multiple robots, this makes it possible to communicate the
graphs and to have one disconnected map for each robot.
Additionally, it is possible to start a new disconnected map
when a robot loses track of its location, for example after
falling down stairs.

The graph structure of the manifold can be easily con-
verted into occupancy grids with standard rendering tech-
niques, as demonstrated in Fig. 2 and [6].

IV. MULTI-ROBOT EXPLORATION

The approach of the UvA Rescue Team in previous years
[18], [4] was to passively acquire the information to be stored
in the map while the robot or operator was wandering around
pursuing other objectives, like finding victims. This year
however the focus will be on active exploration: to explicitly
plan the next exploration action a which will increase the
knowledge about the world the most. In this paradigm victim
finding becomes the side-effect of efficient exploration.

A key aspect of this year’s approach is that the information
gain for areas of the environment not yet visited by the robot
can be estimated with long-range laser range measurements.
It is possible to generate two occupancy grids simultaneously
[?]: one based on the maximum sensing range rmax of
the range sensing device and another one based on a more
conservative safety distance rsafe. Typical values for rmax
and rsafe are 20 meters and 3 meters respectively.
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(a) original IDC (b) Q-IDC

(c) original WSM (d) Q-WSM

Fig. 2. Comparison of scan matching algorithms for a drive through a park, with poor odometry and sparse range scans.

The result is that the safe region determined by rsafe is a
subset of the open area. Frontiers can then be extracted on the
boundaries of the safe region where the robot can enter free
space, and the area beyond each frontier (i.e. its associated
information gain) can be estimated directly from the current
map by calculating the amount of free space detected beyond
it. For each frontier it is also straightforward to calculate how
hard it is to reach (i.e. its associated movement cost) using
a path planner.

Knowing both (i) the information gain and (ii) the move-
ment cost for each frontier allows for active exploration. As
discussed in [3], active exploration of the robots can be easily
tuned by adjusting the balance between these two values.
Shifting the balance in favor of information gain has the
effect that robots explore mainly the corridors, while shifting
the balance towards movement costs has the effect that the
robots enter the rooms along the corridors.

V. OMNIDIRECTIONAL VISION

Camera images can be used to automatically detect vic-
tims, independent from the Victim sensor provided by US-
ARsim, as indicated in [4]. This independent information
can be used to increase the robustness of the detection.
This year the OmniCam sensor1 is introduced in USARsim
[7]. An omnidirectional catadioptric camera has some great
advantages over conventional cameras, one of them being the
fact that visual landmarks (such as victims) remain in the

1The OmniCam package is available at http://student.science.
uva.nl/˜tschmits/USARSimOmniCam/

field of view much longer than with a conventional camera.
This characteristic can be exploited during the competition.

(a) Omnidirectional view of DM-
spqrSoccer2006 250.utx

(b) Omnidirectional view of DM-
compWorldDay1 250.utx

Fig. 3. Images taken in the USARSim environment.

Omnidirectional pictures can be transformed to a Birds-
Eye view. The correspondence between a pixel in the om-
nidirectional image pomni = (xomni, yomni) and a pixel in
the Birds-Eye view image pbe = (xbe, ybe) is defined by the
following equations

θ = arccos
z√

x2
be + y2

be + z2
, φ = arctan

ybe
xbe

(1)

ρ =
h

1 + cos θ
(2)

xomni = ρ sin θ cos φ, yomni = ρ sin θ sinφ (3)

where h is the radius of the circle describing the 90 degree
incidence angle on the omnidirectional camera effective



4

viewpoint. The variable z is defined by the distance between
the effective viewpoint and the projection plane in pixels
[19].

Using the previous equations, the following images were
created. These resulting bird-eye view images portray a
perspectively correct top-down view of the environment from
directly above the robot.

(a) Bird-eye view transformation
of figure 3(a).

(b) Bird-eye transformation of fig-
ure 3(b).

Fig. 4. 500× 500 pixel bird-eye transformations of Figures 3.

Ideally, all landmarks and soccer goals in Figure 4(a)
would be depicted as if they were observed from far above
as would be the case with a vertical orthographic projection
of the environment. Unfortunately, orthographic projection
cannot be performed on images produced by cameras which
have a single effective viewpoint close to the ground. Per-
spective projection in combination with a relatively low
position of the camera results in a depiction of landmarks
and goals which is exceptionally stretched.

VI. VALIDATION ON REAL WORLD DATA

To ensure the validity of our scan matching approach
with data that suffers from real-world odometric errors and
sensor noise, our algorithm is tested on a wide variety
of datasets which are available thanks to the initiative of
Andrew Howard and Nicholas Roy2.

The occupancy grid maps illustrated in figure 5 were all
created with the standard occupancy rendering techniques
from [6]. All presented results are strictly based on scan
matching, the SLAM algorithm was purely incremental. The
occupancy grid maps can be compared with the original
results (see for instance [20], [21]).

The data is collected in indoor environments, with many
overlapping feature-rich, dense laser scans. For instance,
the ‘AP Hill’ dataset (Fig. 5a) was collected for the
DARPA/IPTO SDR project when four robots had to explore
an unknown building at Fort AP Hill. The dataset is difficult
because people were walking around the robots to check
their progress. The ‘CMU Newell Simon Hall’ (Fig. 5b)
is a relatively old and small. The difficulty in this dataset
are the straight corridors without many features. The ‘Intel
Campus, Oregon’ dataset (Fig. 5c) is collected by a P2DX
robot during a tour of the part of the Intel Lab in Hillsboro,
Oregon. The last dataset (Fig. 5d) is collected at our own

2The Robotics Data Set Repository (Radish) available on http://
radish.sourceforge.net

location, a small tour around a staircase with a Nomad robot
equiped with a Hokuyo laserscanner. These results illustrate
the general applicability of our approach and more generally
that developments in the Virtual Robot competition can be
directly applied to fielded robotic systems.

VII. CONCLUSION

This paper summarizes the approach of the Amsterdam
Oxford Joint Rescue Forces as developed during the research
of many enthousiastic students. At the Latin American
RoboCup Open 2008 our autononomous exploration algo-
rithm, as described in section IV, will be extensively tested
with our remote participation. Although it became already
clear at the RoboCup 2008 competition in Suzhou that it is
difficult to outperform teams of teleoperated robots, it should
be the goal of an Artificial Intellence researcher to take the
challenge and try.
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using manifold representations,” Proceedings of the IEEE, vol. 94,
no. 7, pp. 1360–1369, July 2006.

[15] S. Rusinkiewicz and M. Levoy, “Efficient variants of the ICP algo-
rithm,” in Third International Conference on 3D Digital Imaging and
Modeling (3DIM), Jun. 2001, pp. 145–153.

[16] F. Lu and E. Milios, “Robot Pose Estimation in Unknown Envi-
ronments by Matching 2D Range Scans,” Journal of Intelligent and
Robotic Systems, vol. 18, pp. 249–275, 1997.

[17] “Weighted line fitting algorithms for mobile robot map building and
efficient data representation,” 2003, pp. 1667–1674.

[18] M. Pfingsthorn et al., “UvA Rescue Team 2006; RoboCup Rescue
- Simulation League,” in Proceedings CD of the 10th RoboCup
International Symposium, 2006.

[19] S. K. Nayar, “Omnidirectional vision,” in Proc. of Eighth International
Symposium on Robotics Research ISRR’97, Y. Shirai and S. Hirose,
Eds. Springer-Verlag, 1998.

[20] D. Hähnel, D. Fox, W. Burgard, and S. Thrun, “A highly efficient fast-
slam algorithm for generating cyclic maps of large-scale environments
from raw laser range measurements,” in Proceedings of the Conference
on Intelligent Robots and Systems (IROS), 2003.

[21] T. Kollar and N. Roy, “Trajectory Optimization using Reinforcement
Learning for Map Exploration,” The International Journal of Robotics
Research, vol. 27, no. 2, pp. 175–196, 2008. [Online]. Available:
http://ijr.sagepub.com/cgi/content/abstract/27/2/175


