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1 introduction
The RoboCup Rescue Simulation League aims to develop agents and robots that
demonstrate intelligent behavior in a disaster response scenario [1]. The importance
of simulation is not only demonstrated at the RoboCup, but also at the DARPA
Robotics Challenge Field Trials, where the Virtual Robotics Challenge [2] was a
prequel.

Several overview articles were written on the coordination and task allocation
research performed with the RoboCup Rescue Agent simulator, the most influen-
tial [3]. The multi-agent strategy planning and team coordination problem was
approached with a variety of solution techniques, such as decentralized communi-
cating POMDPs [4] and distributed constraint optimization [5].

Coordination inside a robot team is already difficult if the map of the environ-
ment is known; it is even more difficult if the map is unknown and have to be
explored first [6]. The shared map to be generated by the robots during the Vir-
tual Robot competition [7] has a central role in the coordination of such large robot
teams. The shared map is where the distributed sensor information is collected and
registered, by each robot independently. The information has to be sent via often
unreliable communication links [8], so the robot has selected which information is
to be broadcasted (the robots have a need to know what could be of interest for its
teammates and the operator). The operator is human, but has to monitor such large
robot teams [9] that most of the decisions have to be made independently by the
robots. The operator can only give high-level commands (such as the areas to be
searched, routes to be followed, etc.) which not even guaranteed to reach the robots
(on time).

2 learning coordination policies
The theoretical background of planning inside the RoboCup Rescue Simulation
League is well described in [10], including problem descriptions from an objec-
tive and subjective perspective and including (approximate) solving approaches. In
this paper the coordination problem is for instance first described as decentralized
partially observable Markov decision process, which is interpreted as a series of
Bayesian games. In this Bayesian game each robot has some private information
(not communicated with the team). Two of solution approaches to the problem
were worked out in more detail, which both will be summarized here.

2.1 Lossless clustering of multi-agent beliefs

The first attempt to battle the size of the problem was to cluster set of observations
into joint types [11]. In this work the Dec-POMDP planning method is not ap-
proached with offline planning, where the planning and execution phase are strictly
separate. Instead, [11] applies an online planning approach, inspired by [12]. On-
line planning methods attempt to utilize the received runtime data to create and
update a belief about the true state of the environment. They interleave planning
and execution phase. Therefore the planning phase has to be performed quickly
enough to enable for a smooth execution. Each agent i uses its action-observation
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history (IAOH) to infer a belief about the true state of the environment, and this be-
lief is updated upon each individual action performed and individual observation
received. As the environment changes depending on the joint action a, each agent
has to deduce the individual action (and the resulting individual observation) of all
the other agents, relying on a common knowledge assumption. Although the on-
line planning algorithms employ coordination mechanisms, the beliefs of the agents
may be different nonetheless, which poses a threat to an effective coordination. Yet,
this situation closest resembles the situation in a rescue scenario.

The trick is to map a joint type to a set of joint action-observation histories
(JAOHs), which all lead to the decision to execute the same joint action a. This joint
type Θ specifies the type of private information each robot has. Each robot knows
its own type Θi with certainty but not those of other robots. For the other robots
it only knows a probability distribution P ∈ ∆(Θ) over the joint type space. When
a mechanism exists to ensure that each robot finds the same set of best-response
policies πt, then each robot will maintain the same joint-type space Θ for the team
as well as the same probability distribution P(Θ) over that joint-type space without
having to communicate. Each robot i matches its true history of observations and
actions, hti , to one of the types in its type space Θt

i and then selects an action to
execute based on its policy πt and type Θt

i .

2.2 Hierarchical decomposition of decision processes

The second attempt battles the size of the problem with a hierarchical decomposi-
tion [13]. Also here the problem is modeled with a Bayesian Game Approximation,
but only at a high conceptual level. On a lower conceptual level the problem is
modeled as a much simpler Markov Decision Process (MDP), due to the strict com-
putation limits.

The most important aspect of the agents’ micro-level behavior is the exploration.
Following the commonly employed practice among participating teams, the map is
partitioned using K-Means into a number of sectors prior to the beginning of the
simulation. Subsequently, agents get assigned to clusters based on their proximity
and such that all clusters have an equal number of assigned agents. Inside the
assigned cluster the agent starts to patrol and take (greedy) appropriate action when
encountered.

Yet, the coordination between agents takes place at macro level. The Bayesian
game is defined as a tuple < I,Θ,A,P(Θ),U >. The joint space Θ and the probability
distribution P(Θ) are already introduced in section 2.1. In addition, there is the set
of agents I and the joint actions A. Most design freedom for the Bayesian game is in
the utility function U. Several choices for the utility function U were tried inspired
by the utilities used by RoboCup Rescue competition [13].

The results of this approach were quite successful, with coordination on par with
state-of-the-art distributed constraint optimization [5], while having less memory
requirements. Yet, it also showed that selecting the right planning challenges is
important to see the difference of cooperation between the team mates. Some prob-
lems are just too hard and all approaches will fail. Some problems are too easy and
will be solved with each strategy. Only problems with the right amount of chal-
lenge should be used to evaluate the strength and weaknesses of algorithms. In the
RoboCup Rescue this is taken into account by incorporating the variance in team
performance into the score.

3 conclusion
This two examples show the power of an online-planning approach such as Bayesian
Game approximations. This way of modeling makes it possible to bridge the gap
to coordination problems encountered in benchmarks as the RoboCup Rescue, such
as distributed decision making based on incomplete information, with limits on the
information that can be exchanged, including time lag to distribute this information
over the team. Modeling that each robot has a certain amount of some private infor-
mation, next to a certain amount of common knowledge, is a natural assumption.
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