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Abstract. Road markings play a crucial role in road safety by guiding
traffic and ensuring visibility. As markings deteriorate over time, their
effectiveness diminishes, necessitating timely maintenance. This paper
studies two methods to classify road-marking damage from recorded im-
ages, in accordance with the Dutch CROW guidelines. The first is a
model based approach, which first uses a regression model to estimate
the marking damage, and then applies the thresholds in the CROW
guidelines to classify the damage class. In contrast, a data-driven ap-
proach is used, classifying directly the damage class with a YOLOv8
classifier. The data-driven approach achieves an F1-score of 0.97 for the
binary-classification task and 0.75 for the multiclass classification task.
Compared to other international studies, this is a competitive result.
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1 Introduction

As cities grow and mobility increases, the pressure on public infrastructure and
the need for efficient maintenance strategies intensifies [1]. Road markings, which
include painted lines, symbols, and patterns on the road surface, play a key role
in managing road safety. These markings help warn road users and ensure smooth
traffic flow [17]. However, they degrade over time and currently rely on manual
inspections that are time-consuming, costly, and often inconsistent [18].

Fig. 1: CROW guidelines per severity category (classes A, B, C and D) [7].
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Therefore, Velotech3, in collaboration with Amsterdam University of Applied
Sciences, has developed a Smart Bikes project that uses artificial intelligence (AI)
to automate the inspection of urban infrastructure. By equipping bikes with edge
AI, a technology that processes data locally on the device, the system captures
and analyzes road condition data in real-time. This reduces latency, minimizes
dependence on external servers and aligns with municipal privacy standards, as
sensitive visual data never leaves the bike [10]. This integrated approach allows
municipalities to efficiently assess the condition of road markings and prioritize
repairs.

In the Netherlands, such maintenance decisions are guided by CROW guide-
lines, which serve as the national standard for evaluating road infrastructure.
These guidelines categorize road markings into four classes, from A to D, based
on the damage severity [7]. Class A represents road markings in excellent con-
dition, while class D indicates markings in poor condition that require repair
(see Fig. 1). To automate this classification process, this research uses both a
model-based and a data-driven approach. For the model-based approach, only
binary results that indicate whether a road marking is damaged (class B, C or
D) or undamaged (class A) are presented, whereas for the data-driven method,
both binary and multiclass results are included.

2 Related Research

Datasets focused on road marking damage are scarce. A study of Iparraguirre
et al. [4] combined two datasets from Japan and Spain. They added 971 new
labeled images for Spanish roads. They performed binary classification with three
different convolutional neural networks. Their best result used EfficientDet v1 D0
[13], and achieved an F1-score of 0.93, which was a large improvement compared
to the previous result on the Japanese dataset (F1-score of 0.72) [9]. This study
reports comparible results for the binary classification (see Sec. 4.2).

To estimate the level of damage, annotated data of the severity of the damage
is needed. This information was available in a dataset from the USA. Recent
work of Antariska et al. used a data-driven approach based on YOLOv8 [2]. This
method was trained on 865 images collected along New Jersey State routes. The
dataset concentrated on a subset of road markings used in this study, namely
the center line. Instead of four damage classes, three damage classes were used
(good, moderate, poor). This system achieved a macro-averaged precision of 0.51,
considerably lower than the results reported in this study (see Sec. 4.2). Partly
this can be contributed to the smaller dataset (they only annotated 865 images
from the 15.536 available images). Their study was also limited by the resolution
of the images collected along the New Jersey routes. The road markings cover
only part of the image, so you have to zoom in at the road marking and make
(implicit or explicit) an estimate of the damage ratio. In that case high-resolution
images, as provided by the ZED-X stereo camera used in this study, can make
the difference.
3 https://velotech.ai/
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3 Method

Estimation of the road-marking damage is performed in this study in two differ-
ent ways; first by a regression method which estimates the amount of damaged
paint followed by a decision-model based on the thresholds in the CROW guide-
lines. Second, because the regression model tends to overpredict damage severity
(see Sec. 4.1), this method is compared with a fully data-driven approach.

3.1 Dataset

The data that was used in this study was collected by Velotech with a ZED-X
stereo camera that was developed by Stereolabs4. The camera was mounted on
both bicycles and cars to simulate real-world mobile inspection scenarios [8].
Data acquisition took place in two distinct urban environments in the Nether-
lands: Geertruidenberg, a small municipality characterized by relatively calm
residential streets, and Amsterdam Oud-Zuid, a densely populated urban district
with a high volume of traffic, varied infrastructure, and complex road markings.
This geographical variation introduces diversity in lighting conditions, road sur-
face materials, marking styles, and levels of wear, and ensures that the dataset
reflects a broad range of real-world conditions that are relevant to road marking
assessment (see Fig. 2). The dataset is private but may be made available by
Velotech upon reasonable request.

(a) Arrow marking, not damaged

(b) Line marking, slightly damaged

(c) Block marking, moderately damaged

(d) Block marking, severely damaged

Fig. 2: Examples Velotech recordings and the individual marking selected for
classification.

The combined recordings from Geertruidenberg and Amsterdam Oud-Zuid
resulted in a dataset consisting of 15.745 high-resolution images of road mark-
ings. The images were each accompanied by annotations that were stored in
a structured JSON file. Each entry described an individual road marking and
included a polygon delineating its shape, a bounding box, a manually assigned
4 https://www.stereolabs.com/
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CROW severity class (A, B, C, or D), and a ‘superclass’ indicating the broader
category of the road marking (e.g., line, arrow, or zebra crossing). Polygon
and bounding box annotations were automatically generated using a YOLOv8
segmentation model developed by Velotech [12]. This segmentation model was
trained on a smaller dataset, containing 6.648 annotated road markings, recorded
in Amsterdam, Haarlem, Tilburg and Diemen. After removing images with miss-
ing severity or polygon annotations, the final dataset used in this study contained
15.723 annotated road markings.

The majority of markings fall into severity classes A (#5.002) and B (#6.572),
while fewer instances are observed in classes C (#1.907) and D (#2.242). The
dataset is strongly dominated by the line category (#13.720), with considerably
fewer examples of other types such as giveawayrow (#807), block (#368), ze-
brawalking (#314), and smaller categories such as arrow (#63) and stopping
(#48) marking. Those markings were manually annotated by multiple individu-
als. Velotech has implemented quality control measures to get consistent anno-
tations between the annotators.

Because the distribution is imbalanced, care had to be taken for the data-
driven approach to ensure that this imbalance did not affect the training process.
For this reason, the dataset was divided into training (70%), test (15%), and
validation (15%) subsets using stratified splitting.

3.2 Regression Method

The regression method starts with a high-resolution image recorded by Velotech.
Velotech has an accurate YOLOv8-detection model (98% pixel accuracy) [12]
which localizes road markings and generates a polygon and bounding box around
the road marking. The polygon is used here to get a binary mask. The polygon
is not intended to be tight around the road marking, so part of the road surface
is visible at the edges. To prevent that these edges contribute to estimation of
the amount of damaged paint, an erosion algorithm with a kernel of 7 × 7 is
applied to be able to concentrate on the core of the road marking (see Fig. 3).

An estimate of the color of the road surface (in grayscale) surrounding the
road marker is also important, because when the road marking is damaged the
road surface shines through. Yet, the color of the road surface is not always the
same, nor the lighting conditions, so an outlier mask (see Fig. 3e) can be used
to estimate the color of the road surface near the road marking.

To distinguish between intact and damaged areas within the marking a dy-
namic threshold is applied, based on Otsu’s method [11]. Otsu’s method used
the histogram of the image to define two clusters of bright and dark pixels as
classes and maximizes the between-class variance to find the optimal threshold.
By calculating the proportion of dark/damaged pixels inside the eroded mask
the damage ratio can be calculated, which can directly be mapped to the CROW
guidelines.
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(a) Velotech recording

(b) Mask from detection

(c) Zoom in on mask

(d) Erosion on mask

(e) Outlier mask

Fig. 3: Preprocessing method

3.3 Data-Driven Method

The road markings are already detected and localized in the images with a
YOLOv8-based detector [12], so it is logical to see how well a YOLOv8-based
classification would work on this problem. You Only Look Once (YOLO) is a real-
time object detection algorithm known for its speed and accuracy in identifying
and classifying visual elements within images [14]. YOLOv8 is an algorithm that
is slightly easier to fine-tune on new types of objects than YOLOv9 [16]. An al-
ternative would be the most recent YOLOv12 [15], although the attention model
relies on FlashAttention for optimal speed. FlashAttention is only supported on
relatively modern GPU architectures and is less suitable for edge-computing.

Two models were trained with YOLOv8; one for a binary (damaged/un-
damaged) classification task and one for a multiclass (A/B/C/D) classification
task. The models were initialized with pre-trained weights and trained on road-
marking images. These images were obtained by cropping the original images
to the bounding boxes of the road markings. Training was conducted for 100
epochs with an input image resolution of 640×640 pixels, a batch size of 32,
and 8 data-loader workers. Early stopping was applied with a patience of 10
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epochs to prevent overfitting. Only the default data-augmentation settings from
YOLOv8 were used.

To evaluate the learning behavior and generalization capability of both mod-
els during training, the progression of the training and validation loss was mon-
itored. The trained YOLOv8 models were both evaluated on the 15% validation
set, consisting of 2.359 previously unseen road marking instances, each labeled
with one of the four CROW-defined severity classes (A-D). Fig. 4 shows the
loss curves for the binary classification model, and Fig. 5 presents those for the
multiclass model.

Fig. 4: Training and validation loss functions for the YOLOv8 binary (damaged
and undamaged) model classification model. Training loss (left) and validation
loss (right) curves over 32 training epochs.

Fig. 5: Training and validation loss functions for the YOLOv8 multiclass (classes
A, B, C and D) model. Training loss (left) and validation loss (right) curves over
30 training epochs

For both models, the training loss steadily decreases, demonstrating that
the model is effectively learning to minimize the error on the training dataset.
Simultaneously, the validation loss shows a similar downward trend and closely
tracks the training loss, indicating that the model generalizes well to unseen data.
The absence of any increase or divergence in validation loss gives confidence that
overfitting did not occur (yet).
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4 Results

Both the regression as well as the data-driven method were studied extensively,
including multiclass classification with the regression method and analysis of the
model performance per road marking type. For more details, see the theses [5,6].

4.1 Regression Results

When the regression method described in Sec. 3.2 is applied to a binary classi-
fication task, distinguishing between undamaged (class A) and damaged (class
B,C,D) markings, the precision for the undamaged class (0.90) and the recall
of the damaged class (0.99) are quite good. So, from the 2.356 instances in the
testset (one instance is removed in this testset because of a missing polygon
annotation), 99% of the damaged markings were correctly identified and when
a road marking was predicted to be undamaged, it is highly likely to be correct.

Table 1: Binary Classification with Dynamic Thresholding (test set)
Class Precision Recall F1-score Instances

Undamaged (class A) 0.90 0.26 0.40 749
Damaged (class B/C/D) 0.74 0.99 0.85 1607

Macro-average 0.82 0.62 0.62 2356
Accuracy — — 0.75 2356

Yet, as can be seen from Table 1, the model tends to over-detect damage
and frequently misclassifies undamaged markings as damaged. The undamaged
recall is only 0.26 and the precision on damaged markings is only 0.74, lead-
ing to a macro-average F1-score of 0.62. This makes this model only useful as
pre-filtering tool to reduce the volume of markings requiring manual inspection
within the maintenance workflow of Velotech. Since these binary-classification
results are not promising enough for multiclass classification, they are not fur-
ther discussed in this study. Nevertheless, preliminary multiclass-classification
results are available [5].

4.2 Data-Driven Results

The data-driven approach described in Sec. 3.3 improves these results both for
the undamaged recall and the precision on recognizing damaged markings (Ta-
ble 2). Although there is still a slight bias towards flagging damage, the false
negatives are so low that it approaches the operational goal of Velotech.
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Table 2: Binary Classification with YOLOv8 (test set)
Class Precision Recall F1-score Instances

Undamaged (class A) 0.98 0.95 0.96 749
Damaged (class B/C/D) 0.97 0.99 0.98 1608

Macro-average 0.97 0.97 0.97 2357
Accuracy — — 0.97 2357

Based on these preliminary numbers, it becomes interesting to look at the
multiclass results, if the data-driven approach makes the distinction between
slightly damaged, moderately damaged, severely damaged (CROW classes B/C/D).

Table 3: Multiclass Classification with YOLOv8 (test set)
Class Precision Recall F1-score Instances

A 0.95 0.95 0.95 749
B 0.85 0.89 0.87 986
C 0.54 0.40 0.46 288
D 0.70 0.76 0.72 334

Macro-average 0.76 0.75 0.75 2357
Accuracy — — 0.83 2357

The results for road markings in good condition or only slightly deteriorated
(class A/B) are good, as can be seen in Table 3. In contrast, the performance is
notably lower for moderately or severely damaged road markings (class C/D).

Fig. 6: Confusion matrix of overall severity classification on the test set. The
confusion matrix displays the number of predicted labels versus ground truth
labels across the four CROW severity classes. The diagonal cells represent correct
predictions.
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Most errors originate from class C. As can be seen from the confusion matrix
in Fig. 6, where road markings annotated as ‘moderately damaged‘ are predicted
in 32% of the cases as ‘slightly damaged‘, 40% of the cases as ‘moderately dam-
aged‘ and in 27% of the cases as ‘severely damaged‘. The boundaries between
class B/C (20% damaged surface) and between class C/D (30% damaged sur-
face) seem to be hard to estimate. Human annotators also have difficulty making
this distinction, as can be seen in Sec. 5.1.

Classes C and D have the fewest instances in the dataset, which could poten-
tially lead to class imbalance effects favoring classes A and B. However, classes
C and D are roughly the same size, yet the model performs much better on
class D than on class C. This indicates that the number of examples for class
C was sufficient, and the relatively low performance for class C is therefore not
solely due to a lack of training data, but rather due to the inherent difficulty in
distinguishing this class from its neighbors.

5 Discussion

5.1 Damage Severity

The manual annotations of the severity classes were outsourced by Velotech and
carried out by multiple individuals. Velotech has implemented quality control
measures to get consistent annotations between the annotators. Still, differenti-
ating between severity levels B (≤ 20% damage), C (≤ 30% damage) and D (>
30% damage) requires annotators to estimate the proportion of damaged surface
area by eye, which is a task prone to individual interpretation and variability.

Fig. 7: Examples in which the model provides a reasonable damage ratio other
than the severity classification from the manual annotations.
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Consequently, even experienced annotators may produce inconsistent or in-
accurate labels, particularly when the extent of damage is near the boundary
between two severity classes. In cases where the model correctly detects damage
to a road marking, the damage ratio given by the regression model appears to
provide a more objective and consistent assessment of damage severity compared
to manual evaluations of the severity class (see Fig. 7).

The regression model does not consistently detect damage correctly. Espe-
cially damage class C was hard to classify, as shown in Section 4.2. Two common
failure cases can be easily demonstrated here with two examples. The first failure
case is due to partial shadows. Because the algorithm depends on brightness, a
sharp shadow can be easily judged to be a damaged area (see Fig. 8).

Fig. 8: Example of a road marking partially covered by shadow. The marking
is labeled as class A (undamaged) in the ground truth, but the model predicts
it as class C due to the presence of a partial shadow cast by a streetlight. The
reduced brightness in the shadowed region is incorrectly interpreted by the model
as surface damage.

Another common failure case originates from complex road marking shapes.
For some road marking symbols it is difficult to clearly define the inside and
outside regions. When the mask is just a square bounding box, a lot of the
road surface is still visible, which could result in unrealistic high damage ratio
estimates (see Fig. 9).

Fig. 9: Examples of highly imprecise polygon annotations that resemble bounding
boxes rather than accurate segmentations, shown for the bicycle symbol.

Yet, with many borderline cases where class boundaries are open for inter-
pretation, it is hard to train a data-driven approach like YOLO on learning the
decision boundaries more precisely. Because the boundaries between the four
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categories are hard to distinguish, both for humans and data-driven approaches,
it could be interesting to try a fuzzy-logic based approach on this application,
as demonstrated in [3].

5.2 Information Leakage

Although care has been taken to prevent information leakage inside this study,
two sources of information leakage still remain. A first source of leakage is in the
pre-processing; some of the images used to train the segmentation model (the
ones recorded in Amsterdam), are also used to train the classification model.

A second source of information leakage is the stratified splitting of the dataset
in a train/test/validation set. Because images are recorded at different places
on the same road, a sample from the same road could be present in both the
train/test/validation set.

6 Conclusion

The model-based approach showed mixed results for different types of road-
markings. Simple road markings such as lines and blocks with clear boundaries
could be classified quite well, but for complex road markings such as bicycle
symbols, a pixel-wise segmentation might be required. In addition, this method
was sensitive to lighting conditions, such as the occurrence of partial shadows
on the road markings.

In contrast, the data-driven approach worked well under all circumstances,
although it suffered from class imbalance in the training dataset. It is a difficult
classification task because the thresholds defined by the the CROW guidelines
are quite strict, so the YOLOv8 classification could easily confuse the ‘moder-
ately damaged‘ class with the ‘slightly damaged‘ or ‘severely damaged‘ classes.
Human annotators also had difficulty making this distinction.

In conclusion, manual verification of the damage is still required. Automatic
classification could still benefit maintenance operations, by excluding clearly un-
damaged road markings and allowing them to give priority to severely damaged
road markings.
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