
Adapting the mapping difficulty
for the automatic generation of rescue challenges

Olaf Zwennes
Center for Advanced Gaming and Simulation, Universiteit Utrecht, Princetonplein 5, Utrecht, The Netherlands

Astrid Weiss
ICT&S Center, University of Salzburg, Sigmund-Haffner-Gasse 18, 5020 Salzburg, Austria

Arnoud Visser
Intelligent Systems Laboratory Amsterdam, Universiteit van Amsterdam, Science Park 904, Amsterdam, The Netherlands

Abstract—This paper focuses on the method and implementa-
tion of a map generator for the USARSim environment, which is
capable of generating indoor environments. The generator adapts
to a difficulty measure, which signifies how difficult the generated
map should be, when mapped by a robot. Both the method of the
procedural generation process as well as the knowledge on the
difficulty measure are explained, followed by the implementation
of the generator. Multiple maps with various difficulties are
generated and mapping runs are simulated by experienced robot
operators. Then the difficulty is assessed by these operators and
compared to the difficulty level of the maps. The rules of the
generator turn out to be able to influence the difficulty of the
maps, but due to the complexities of ’difficulty’ it is difficult to
do this consistently.

I. INTRODUCTION

For many a roboticist, the ultimate thrill is to have your
programmed robot successfully fulfilling a task in front of your
eyes. But before a real life robot is capable of impressive feats
like mapping out rooms and finding its way around a campus,
a lot of testing has to be performed. It is not uncommon for
this testing to be performed in a simulated environment, in
order to make testing reproducible and making analysis of
the experiments more accurate. In order to best simulate the
sensor input of a real-world robot, sophisticated video-game
engines are used to simulate the environments and the robot
itself. A popular software package used for these kinds of
robot simulations is the USARSim package [1], build on the
Unreal Engine 3TM game engine.

USARSim offers various environments with its default
package. Users of USARSim can use the game engine’s tools
to create arbitrarily many and diverse indoor maps to offer
a representative collection of maps to test the algorithms
for simultaneous mapping and localization of the robot. The
experiments in a simulated environment are usually used to
test an algorithm in as many situations as possible, in order to
prove the performance of the algorithm in general. While an
algorithm may be written for a specific type of environment,
like indoor maps, it always needs to be tested on a wide
variety of maps in order to confirm that the algorithm performs
well on an arbitrary environment of that type. It would be
beneficial if the variety of maps could be controlled with a
single parameter; in this paper this parameter is the mapping
difficulty.

Procedural generation is a technique from the game de-
veloper community which can be used to generate diverse
maps of various types in a game engine. The process has
already been used to generate both outdoor and indoor maps,
as well as assets, like vegetation in outdoor maps or complete
rooms in indoor maps, to fill those maps with a rich variety
of objects [2], [3], [4]. Procedural generation is the use of a
set of rules, usually with one or more randomized factors,
to generate graphical assets, like the examples mentioned
before. In procedural generation, there is a balance between
randomizing parameters of the generation algorithm and hav-
ing these parameters set by strict rules that encode knowledge
about the type of asset to be generated. Indoor environments
procedurally generated for use in USARSim could possibly
have implicitly a variable difficulty for robot mapping tasks.
The influence of the different rules of the generation algorithm
with respect to mapping difficulty should be identified, in
order to ensure that the difficulty of a generated map become
explicit; i.e. could be controlled. The central question of this
paper is: Can the rules used in an algorithm for generating
indoor environments be used to make the generator adaptive
to a difficulty measure for a robot mapping task? This means
the algorithm will have to be able to generate indoor maps
that reflect a user-set difficulty, where an increase in difficulty
results in an indoor environment that is harder to map for
the simulated robot. This will a require knowledge on the
difficulties of mapping an environment, as well as procedural
generation techniques. In this paper an initial attempt is made
to incorporate this knowledge in a set of rules.

In the next section, related work is discussed and compared
to this research. Following the related work is a section
on the method and application of the adaptive indoor map
generator, explaining the choices made in the application. The
next section discusses how the experiments with the generator
are performed and the results of these experiments are given
afterwards. Finally, a conclusion is drawn from those results
and the research as a whole is evaluated in a discussion section.

II. RELATED WORK

Related and relevant work can be found in both the field
of game development and the field of robotics. In the field
of game development, there is little work in the procedural
generation of indoor environments. An interior layout is the



application of Tutenel et al. in rule-based layout solving
[4]. Their rule-based system defines classes consisting of a
particular type of object and rules associated with these classes
which determine their placement in an interior layout. Our
approach works with rooms, which allows to generate larger
worlds, but with less resolution. In addition, in this article the
rules are extended to encode the abstract notion of a difficulty
measure for each entity. The rule-based system of Tutenel et
al. is also fairly rigid, solving the rules to one best solution.
By including random numbers, a more diverse set of interiors
can be generated. This approach is used in this report.

Having an environment, like a program or a game, adapt to a
difficulty measure, has been researched in a variety of contexts.
Carro, Breda, Castillo and Bajuelos presented a framework
for creating adaptive educational games [5]. The framework
requires a set of parameters, one of which is a difficulty of each
game. A game of a specific difficulty (among other features) is
then considered, given the progress of the student/player. The
system thus uses annotation and rules to adapt an educational
game to the skill level of the player. In the context of game
entertainment, a system for procedurally generating levels for
platform games has been proposed by Compton and Mateas
[6]. The difficulty of such a platform level is calculated by
determining the timing and the spatial window required for
successfully landing a jump from one platform to the next.
So contrary to the previously noted research, in this case a
simulation of the player’s behavior is used to calculate the
difficulty, rather than annotations and a rule-based system. A
rule-based system is used in this report, instead of simulation
as a method to calculate difficulty, because the freedom of
movement of a robot is too large to reliably calculate the
difficulty of a map using simulations alone.

While there has not been any research in adapting virtual
environments to a simulated robot’s skill at tasks like map-
ping, there have been reports noting the specific difficulties
particular algorithms have when mapping environments. The
book by Thrun, Burgard and Fox notes four important mapping
problems [7]. The first problem is size, which means the
larger an environment is, compared to the range of the robot’s
sensors, the more difficult the mapping task becomes. This
problem is relevant to this report, because a map generator
can vary the size of elements of the map (or the entire map)
in order to vary the difficulty of that map. The second problem
is noise in sensors, because when noise increases, localization
and recognition becomes harder and thus mapping becomes
harder. USARSim could be easily configured to vary the noise
level of its sensors [8], but this is only relevant for the world
generation when a dependence of sensor measurements on
surface characteristics [9] is included. The third problem is
perceptual ambiguity. When different places in an environment
look a lot alike, it is more difficult for a robot to distinguish
between these places. This problem can be used by the map
generator, by creating ambiguity inside a map; it will generate
a more difficult map. The last problem Thrun et. al. note is
cycles in the environment, where a robot can come back to
the same location using a different path. The odometry errors

accumulate when a robot moves through a cycle, which results
in mapping inaccuracy. This last problem is also relevant to the
indoor environment generator, because cycles can be generated
or prevented in order to increase or decrease map difficulty.

III. WORLD GENERATION

USARSim includes several tools to make certain tasks
required for robot simulation easier. One of those is the so
called World Generator1, which is a simple map creator; an
interactive tool where users can drag pre-made rooms and
hallway pieces to a grid of arbitrary size and then export the
created map to a format that can be converted to a 3D environ-
ment for use in USARSim. The tool also includes a procedure
to automatically generate a map using simple generation rules.
For instance, the hallways are laid out using a Manhattan-like
grid with a constant distance between hallways. This automatic
procedure is expanded in this report to adapt to a difficulty that
the user sets when generating a new map.

Fig. 1: A standard map generated by the World Generator tool.

There are three main rules in the existing World Generator,
which encode the geometric properties of the environment.
The first is the layout of the hallways in the map, where
horizontal and vertical hallways are placed a specific distance
apart, which span the entire width and height of the map
respectively. In Figure 1 this hallway layout is clearly visible.
The light-green colored grid positions are hallway pieces and
the light-blue colored boxes are pre-made rooms inserted into
the map with the triangle in the center determining their
orientation. The white grid positions are empty (solid wall) and
not accessible by the robot. The pseudo-code of the hallway
rule is given in Algorithm 1.

The second rule places randomly the rooms in the empty
space between the hallways, as illustrate in Algorithm 2. The
World Generator contains a library of rooms (currently 20)
with different sizes (ranging from 1x1 to 6x6). The function
fits(room) checks if the empty space between the hallways is
large enough for the randomly selected room.

The third and last rule places the doorways to the rooms,
as indicated in Algorithm 3.

These decidedly simple rules encode all geometric proper-
ties of the generated map, with the exception of the content of
the rooms, which is pre-made by human designers. Together,

1http://usarsim.sourceforge.net/wiki/index.php/World Generator



Algorithm 1: The Hallway rule
Input: horizontalSpacing; verticalSpacing
Data: The map M with gridcells {ri, cj}
forall j do

if modulo(j, horizontalSpacing) == 0 then
∀iMi,j = hallwayP iece

end
end
forall i do

if modulo(i, verticalSpacing) == 0 then
∀jMi,j = hallwayP iece

end
end

Algorithm 2: The Room rule
Input: roomList
Data: The map M with gridcells {ri, cj}
forall i, j do

if {ri, cj} == ∅ then
repeat

{ri, cj} = room ∈random roomList
until fits(room) ;

end
end

these rules generate the entire environment, but they do not
create very varied maps, as variation is only achieved at two
locations (by choosing rooms at random and randomly placing
doorways).

IV. ADAPTIVE WORLD GENERATION

As previously mentioned, the generator is an adaptation of
an existing tool for USARSim, as described in the previous
section. This tool is written in Java and provides a valuable
base for the generator to be built upon. Firstly, the World
Generator dictates a grid structure that the generator can build
its map on. More importantly, the tool includes processes to
convert the grid map to a plain text file that can be converted
to a proper 3D environment file, usable by USARSim. The
tool also already includes a variety of pre-made rooms that

Algorithm 3: The Doorway rule
Input: doorwayPercentage
Data: The map M with gridcells {ri, cj}
forall rooms ∈ M do

forall sides ∈ room do
if random() < doorwayPercentage then

remove a doorway-sized part in the middle of
the side

end
end

end

can be placed in the map by the generator. Finally, the World
Generator already has a simple map generator, whose rules
can be expanded to build an adaptive map generator.

To create the adaptive generator, five adaptations to the
existing generator have been made. The user is required to
set the difficulty to a value between 0 and 10.

The first of the adaptations is a variable distance between
hallways. The distance between hallways was set to an ar-
bitrary value in the unmodified World Generator tool. The
adaptation consists of increasing the distance between hall-
ways in both directions (independently), when the difficulty
increases. This adaptation is illustrated in Figure 2 with
the lowest and highest difficulty, respectively. The distance
between hallways hs is calculated independently for horizontal
and vertical spacing (the Input of Algorithm 1) using the
following equation:

hs = (0.06× d + 0.2)× s + r × 0.1× s (1)

The hallway spacing hs is a function of the user-defined
difficulty d(range: 0-10), the size of the map s (either the
height or width of the map in grid units). Variation in maps
of the same difficulty is accomplished by including a random
number r, which is a number drawn from a standard Gaussian
distribution. The hallway spacing hs is kept within a range of
3 to s, to ensure there is enough space between hallways for
the generator to place rooms and there are always at least two
hallways per direction.

(a) lowest difficulty (d = 1), where
the distance between hallways is
small.

(b) highest difficulty (d = 9), where
the distance between hallways is
large.

Fig. 2: A grid-view of maps with varying hallway layouts.

The next adaptation changes the random room placement
of the unchanged World Generator tool. In order to adapt
the map to a difficulty level, the rooms inside the map also
need to be of a difficulty corresponding to that level. The
adaptation consists of annotating the rooms that can be placed
inside the environment, with their own difficulty. The rooms
are assessed, ideally by an expert in the field of robot mapping,
and given a difficulty value d(room) in the same range (0-10)
as the difficulty values d the user sets for generated maps.
A list of difficulties set to each room can be found in the
appendix of [10]. The probability of a room to be placed on the
map depends on how well the room’s difficulty matches with
the map’s difficulty. This correspondence is calculated with



as the inverse squared error (ISE(room)) of the difference
d − d(room) between the requested map difficulty d and
the estimated difficulty d(room) of the selected room. The
equations that calculate this probability are as follows:

ISE(room) =
1

(d− d(room))2 + 1
(2)

is calculated for each room, where d(room) is the difficulty
annotation of room. The probability of selecting this room is
calculated by normalizing the inverse squared error:

P (room) =
ISE(room)∑rooms

r ISE(room)
(3)

The +1 in equation 2 prevents a possible division by zero.
The Room rule (Algorithm 2) is now adapted, in the sense
that each room has a chance of P (room) of being placed in
that space. Using probabilities ensures that maps of the same
difficulty are still varied, because all rooms have at least some
probability of being placed. This method also ensures that on
average, the difficulty of the rooms inside an environment is
the same as the difficulty of the environment, as set by the
user.

The third adaptation is a variable doorway probability. The
unmodified World Generator tool already places doorways on
the sides of rooms according to a probability and this prob-
ability is made adaptive to the difficulty level. The reasoning
behind this adaptation is that having more doorways to a room
on average, results in more small-scale cycles, where the robot
can enter and exit the same room through different doorways.
This can result in the same room being mapped from different
directions and the two views of the room being misaligned
on the map. So, a lower doorway probability Pdoorway is
assigned to a map with a lower difficulty level, according to
this equation:

Pdoorway =
d

16
+ 0.375 (4)

This equation ensures that the probability of placing door-
ways is never 0, because that would make every room inac-
cessible.

The last adaptation adds a new rule to the generation
process, as opposed to changing the existing rules to become
adaptive. This rule is designed to prevent cycles in a generated
map. A cycle in a hallway can result in a misaligned hallway
on the robot’s map. The robot builds up an odometry error
when moving through the cycle, that is insignificant at a local
level, but when the robot completes the cycle the odometry
error is large enough that the cycle is misaligned and the
map reflects that error [7]. The new rule blocks off hori-
zontal hallways at specific positions, so the hallways do not
form cycles anymore. This rule is applied with a probability
PPreventCycles of:

PPreventCycles = 1− d

10
(5)

At low difficulties, there is a high probability of cycles
being blocked off, and that probability drops linearly with
increasing difficulty. The pseudo-code of the rule itself is given
in Algorithm 4.

Algorithm 4: The PreventCycles rule
Input: horizontalSpacing; verticalSpacing
Data: The map M with gridcells {ri, cj}
forall j do

forall i do
if modulo(i, verticalSpacing) == 0 and
modulo(j, horizontalSpacing) == 0 then

Remove hallwayP iece
end
Place random hallwayP iece

end
end

This rule is inspired by the Hallway rule (Algorithm 1) but
instead of placing hallway pieces, it removes them to block of
the horizontal hallways. In order to ensure that the entire map
is still accessible, one hallway piece is placed back per column.
Figure 3 shows the effect of this rule (note the white grid
positions), when compared to Figure 2a for instance. When
this rule is applied it is no longer possible to move in a cycle
around the map, when moving through hallways. However,
because rooms can have multiple doorways, moving through
a room can still result in a cycle. But since the doorway
probability is lower at the difficulties that this rule is likely to
be applied, it is less likely for rooms to have multiple doorways
that connect different hallways together.

Fig. 3: A grid-view of a generated map with ’cycle prevention’.

Together, all the above adaptations of the World Generator
tool result in a map generator that adapts to a difficulty that
the user sets, without requiring further user intervention. It
generates diverse maps with clear differences in geometry be-
tween different difficulties. Figure 4 shows just how different
a map of a low difficulty is compared to one with a high
difficulty, with a clear difference in room complexity, as well
as in general layout.

V. EXPERIMENTS
Ideally, the difficulty of the generated environments is

evaluated by having a quantitative measure of the quality of



(a) map generated with a low difficulty (d = 1). (b) map generated with a high difficulty (d = 9).

Fig. 4: An eagle-eye view of generated maps with different difficulty settings.

a robot’s map, after performing a run through the generated
environment. Then, the quality of a map decreases as the
difficulty increases, if the generator correctly adapts to the
difficulty measure. However, determining the quality of a map,
even in a simulated environment where the ground truth of
the environment is known, is an open research issue [11].
And since this issue is beyond the scope of this research, a
qualitative assessment of the performance of the map generator
is performed.

To get a representative assessment of the generated maps,
several USARSim operators with different experience levels
were asked to run simulations on maps generated with varying
difficulty levels. Maps were generated with five difficulties
(1, 3, 5, 7 and 9), with two different maps per difficulty, for
a total of ten maps. The participating operators were asked
to run simulations on three maps with different difficulties.
They were then asked for detailed feedback on how difficult
they perceived each environment to be, when mapping the
environment. They were also asked more specifically what el-
ements in the environment made the mapping either difficult or
easy. The operators were free to use the operating environment
and settings of their choice, as well as choosing how many
robots they used to map the environments. One reason for not
specifying a simulation configuration is that the focus is on the
environment and the map’s specifics can be assessed regardless
of the exact simulation configuration. Another reason is that
the assessment of the difficulty can vary between operators,
so operators are compared to themselves by comparing their
feedback on the different maps they evaluated.

If the participants in the experiments rate the maps in the
same order of difficulty as the difficulty levels at which they
were generated, then the map generator encodes at least some
element in the maps that gets more difficult to map as the diffi-
culty rating of the environments themselves increases. If on top
of the rating, the operators also note the effects of the adaptable
rules to be the cause of the difference in difficulty, then the
rules can be considered to correctly adapt to the difficulty
measure. If the participants find no distinguishable difference
in difficulty between the maps, then the map generator is not

capable of adapting to a difficulty measure. If the operators’
ratings are in reverse order compared to the supposed map
difficulties, then an adaptable rule can be reversed to show
the behavior at the opposite end of the difficulty scale, in
order to make the map’s difficulty properly scale. This does
however require that the rule that caused the incorrect behavior
is identified by the operators.

VI. RESULTS

Six operators provided feedback on one or three of the ten
generated maps each, with experience levels ranging from
no experience as an operator to experience as an operator
at multiple RoboCup competitions. All operators used the
same type of robot for mapping the simulated environments,
namely the P3AT robot present in the USARSim package.
The P3AT simulated robot is modeled after the real-world
Pioneer 3-AT four-wheeled robot, with a laser range scanner
for mapping purposes and a camera for operator convenience
(so the operator can navigate using the camera image instead
of the map). All operators used the same control software [12],
with a direct connection to USARSim (without the Wireless
Simulation Server in between). Some operators choose to map
the environments using one robot, while others navigated two
robots simultaneously through the environment. There was a
20 minute timer for the simulation, but the operators never
reached this limit, instead reaching a natural ending when
either the robot(s) got stuck or the robot(s) ran out of battery
power.

The first of the results is the overall difficulty rating that
each operator assigned to each environment they mapped. The
actual maps they made can be found in [10]. These difficulty
ratings have been plotted both using absolute and relative
values, in Figure 5. The absolute graph plots the difficulty with
which the maps were generated against the average difficulty
that the operators assigned to those maps. For the relative
graph, only the feedback of operators that finished runs on
three maps were processed. The three maps that each operator
evaluated were ordered based on the difficulty that they were
generated with and then they were given a value of 1, 2 or 3



based on the order of the difficulty ratings that the operator
assigned to these maps. Then the average value of each of the
three relative difficulties was plotted.

(a) Absolute difficulty level against
difficulty rating.

(b) Relative difficulty level against
difficulty rating.

Fig. 5: Graphs of the absolute and relative difficulty ratings,
against the difficulty level the maps were generated with.

While the difficulty rating is a quantitative value and as a
result can be plotted in graphs, it should be noted that the
sample size is small (14 samples spread over 5 difficulty lev-
els) and the plots offer no guarantee of statistical significance.
They do however give some indication of the performance of
the map generator.

The red line in both graphs shows the best possible result,
where the difficulty that the operators assigned to the maps
equals the difficulty level the maps were generated with
exactly. The blue line is the actual result, which in the absolute
graph shows that the lowest and highest difficulty levels are
not rated as such by the operators.

Maps that were generated with a difficulty of 1 are rated
6 on average, which is significantly higher and it is even
higher than the difficulty rating for maps with difficulty 3.
An experienced operator that has participated in multiple
competitions, notes that the dead ends created by the cycle
prevention rule result in mapping difficulties, as written in
his feedback form: ”The dead ends at the corners made the
mapping difficult...” and ”Only one central crossing, which
forces you to repeatedly come back at the same location...”.
Another operator with experience at a single competition,
notes the lack of doorways in rooms as a difficulty when
mapping an environment generated with difficulty 1: ”No
doors found: need to leave through the door I entered.”, is his
response to the question which rooms were difficult to map.
Turning, especially in a small space, is a time-consuming and
difficult job for a robot operator and it results in an odometry
error building up, says another operator.

On the other end of the spectrum, the maps that were
generated with a high difficulty (9) were not rated as being
very difficult by the operators, as those maps got an average
rating of 6. One operator with no experience notes in his
feedback form that the many doorways to each room, as well
as the long hallways, results in an easy to map environment:
”Long straight corridors and square rooms with openings on
several sides made it easier to map.”. The probability for
many doorways per room is significantly higher at higher
difficulties, because a rule lowers the amount of doorways at

low difficulty to avoid cycles in the environment. The hallways
are also not cut off at higher difficulties, because the rule that
prevents cycles has a very small chance at activating at higher
difficulties. The same operator did also note that the objects
inside rooms were a primary cause of difficulty in the map
and rooms with obstructing objects have a higher probability
of being placed on a map with a higher difficulty, due to
their higher difficulty annotation (for instance the office-type
rooms).

Between the extreme difficulties however, the ratings by the
operators matched the desired difficulty levels to a reasonable
degree, as seen in Figure 5a. This is backed up by the feedback
given by the operators, who consistently noted the contents of
the rooms as a reason for the maps to be either easy or difficult
to map. One operator with experience in a single competition
notes that a map with difficulty level 7 is difficult specifically
because of the contents of the rooms: ”Although a general
overview of the map is easily found by following the corridors,
exploring the rooms turned out to be exceedingly difficult.”.
This comment also shows that hallways were a predictable
element in the environments and following those gave a very
good idea of the overall layout of the entire map, which was
also noted by other operators. The same operator also notes
that on an easier environment (with difficulty level 3), the
rooms are the reason for being easier to map: ”Relatively large
rooms with little furniture are very easy to navigate.”. This
comment also shows that besides the contents, the size of the
room is also a factor in its difficulty, as larger rooms are noted
to be easier to map, likely because the robot can more easily
navigate a larger room.

VII. CONCLUSION

In this paper, the challenge was to adapt an indoor map
generator of USARSim environments to generate maps accord-
ing to a user-defined difficulty level, and the generator should
generate maps that were roughly that difficult to map for a
(simulated) robot. The focus was on the following research
question: Can the rules used in an algorithm for generating
indoor environments be used to make the generator adaptive
to a difficulty measure for a robot mapping task? The adaptive
map generator was implemented by adding five simple addi-
tions to an existing generator, to make the generated maps
different, based on the difficulty level. The adaptive rules
resulted in significant differences to the layout of the maps
of different difficulty levels. However, operators that mapped
the generated environments found that the hallways were a
predictable structure in most of the generated maps. And while
it is usual that hallways have a clear pattern, even in real-world
indoor locations, the generator could only generate one type
of hallway layout, despite adapting that layout by scaling it
based on the difficulty level. This predictable structure resulted
in the maps being noticeably easier to map by operators, which
likely counteracted the effects of the other rules to make the
maps more difficult (when the difficulty level was high).

There were two specific adaptive rules, namely cycle pre-
vention and doorway probability, which were designed to



(a) d = 1 (b) d = 3 (c) d = 7

Fig. 6: Explorations performed by two different operators for three levels of mapping difficulty d, using two robots.

prevent cycles in the environment at low difficulties. And while
they did succeed in that respect, they had the unforeseen effect
of making the map more difficult, by creating dead ends and
rooms with few doorways that required extensive maneuvering
by the robot operator to back out of. So while these rules
did prevent cycles and the potential mapping errors associated
with them, they introduced a navigation difficulty that had a
negative effect on the map. This shows that the rules encoded
the abstract notion of difficulty very naively; not taking into
account the complexity of difficulty and the many ways it can
manifest itself.

The room placement based on the room difficulty annotation
did encode difficulty in a reliable way, as nearly all operators
noted that easily mapped rooms could be found in maps with
a low difficulty and harder to map rooms, mostly due to
obstacles and hazards like water, could be found in maps with
a high difficulty. However, the rooms were annotated with their
own difficulty level by someone with insight, which means the
annotations encode the knowledge that this person has about
mapping difficulties and the room placement rule simply uses
those annotations to place rooms with the correct difficulty in
the environment. The generator is not able to somehow derive
the difficulty of a room, based on the room’s characteristics,
but is simply handed the difficulty of each room and places
the room with the right difficulty in the map.

In conclusion, the simple adaptive rules are not capable of
reliably generating environments with a specific difficulty for
robot mapping, as the feedback of the operators proved by
not consistently assigning the highest difficulty rating to the
map with the highest difficulty level, for instance. The rules
do however significantly influence the difficulty of the map,
as the operators note differences in difficulty that they attest
to the effects of the rules.

Acknowledgement

We would also like to thank all the RoboCup Rescue
Simulation operators that participated in the experiments for
offering their expertise and sacrificing their time: Nick Dijk-
shoorn, Okke Formsma, Nguyen Nhu Hieu, Julian de Hoog,

Seváztian Soffia Otárola and Arnoud Visser.

REFERENCES

[1] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper, “Usarsim:
a robot simulator for research and education,” in Proceedings of the
IEEE Conference on Robotics and Automation (ICRA’07), 2007, pp.
1400–1405.

[2] Y. Parish and P. Müller, “Procedural modeling of cities,” in Proceedings
of the 28th annual conference on Computer graphics and interactive
techniques (SIGGRAPH ’01), 2001, pp. 301–308.

[3] O. Deussen, P. Hanrahan, B. Lintermann, R. Měch, M. Pharr, and
P. Prusinkiewicz, “Realistic modeling and rendering of plant ecosys-
tems,” in Proceedings of the 25th annual conference on Computer
graphics and interactive techniques (SIGGRAPH ’98), 1998, pp. 275–
286.

[4] T. Tutenel, R. Bidarra, R. Smelik, and K. de Kraker, “Rule-based
layout solving and its application to procedural interior generation,” in
Proceedings of the CASA Workshop on 3D Advanced Media In Gaming
And Simulation (3AMIGAS), 2009, pp. 15–24.

[5] R. Carro, A. Breda, G. Castillo, and A. Bajuelos, “A methodology
for developing adaptive educational-game environments,” in Adaptive
Hypermedia and Adaptive Web-Based Systems, ser. Lecture Notes in
Computer Science (LNCS). Springer-Verlag, 2006, vol. 2347, pp. 90–
99.

[6] K. Compton and M. Mateas, “Procedural level design for platform
games,” in Proceedings of the Artificial Intelligence and Interactive
Digital Entertainment International Conference (AIIDE’06), June 2006,
pp. 109–111.

[7] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). The MIT Press, September 2005.

[8] B. Balaguer, S. Carpin, and S. Balakirsky, “Towards quantitative com-
parisons of robot algorithms: Experiences with slam in simulation and
real world systems,” in Workshop on ”Performance Evaluation and
Benchmarking for Intelligent Robots and Systems” at IEEE/RSJ IROS’07
conference, 2007.

[9] O. Formsma, N. Dijkshoorn, S. van Noort, and A. Visser, “Realistic
simulation of laser range finder behavior in a smoky environment,” in
RoboCup 2010: Robot Soccer World Cup XIV, ser. Lecture Notes on
Artificial Intelligence (LNAI). Springer, March 2011, vol. 6556, pp.
336–349.

[10] O. Zwennes, “Adaptive indoor map generator for usarsim,” Bachelor’s
thesis, Universiteit van Amsterdam, June 2011.

[11] C. Walraven, “Using path planning to grade the quality of a mapper,”
Bachelor’s thesis, Universiteit van Amsterdam, June 2009.

[12] N. Dijkshoorn, H. Flynn, O. Formsma, S. van Noort, C. van Weelden,
C. Bastiaan, N. Out, O. Zwennes, S. Soffia Otárola, J. de Hoog,
S. Cameron, and A. Visser, “Amsterdam Oxford Joint Rescue Forces
- Team Description Paper - RoboCup 2011,” in Proc. CD of the 15th
RoboCup International Symposium, June 2011.


