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ABSTRACT

The rapid increase in sensors on manned and unmanned military platforms has led to a significant rise in
image data (e.g., visible, infrared, sonar, radar), enabling extensive scene analysis. Thorough and real-time
understanding of these scenes requires automated image analysis tools, for e.g. object detection, traversability
analysis, and threat classification. However, the development of artificial intelligence (AI) models for automated
scene understanding is constrained by limited access to relevant military training data due to its restricted nature,
high acquisition costs, and evolving threat signatures. Several studies highlight the potential of synthetic data as
an alternative to measured training data, for example by utilizing physics-based modeling of scenes and objects
of interest.

Recent advances in generative AI (GenAI), particularly in diffusion-based models, offer opportunities to
synthesize data with variations beyond what was previously possible, improving performance in various non-
military image analysis tasks. Despite this, the lack of military-relevant data used for GenAI model development
suggests that non-specialized models may produce military scenes with limited quality and variation. In this
review, we explore the opportunities of state-of-the-art GenAI methods for creating high-quality training data for
military AI systems. We identify three key strategies: (1) full-image generation by fine-tuning with application-
specific data; (2) inpainting, where objects of interest can be placed in existing image data; and (3) image-to-
image translation which is used to augment image conditions or translate between image modalities. Visual
results of each of these methods are promising. Some studies have already shown benefits of these data synthesis
methods as data augmentation to improve downstream AI models. Further research shall determine the value
for operationalization in a wide set of use-cases.

Keywords: Generative AI; Data synthesis; Deep learning; Situational awareness; Scene understanding; Object
detection

1. INTRODUCTION

The modern battlefield is increasingly characterized by its transparency, a phenomenon driven by the rapid
proliferation of sensors. These sensors, which encompass surveillance, intelligence, and reconnaissance (ISR)
systems, as well as military platforms, both manned and unmanned, have led to a substantial increase in the
volume of image data. This surge in data requires automated processing and analysis techniques to effectively
utilize the information gathered. Typical image data encompasses visible-light (RGB) and infrared (IR) imagery.
However, one can also consider other image data modalities, such as Synthetic Aperture Radar (SAR) and
Synthetic Aperture Sonar (SAS). All of these types of data must be processed into relevant information to
achieve a thorough and real-time understanding of the scenes, necessitating the use of automated image analysis
tools. These tools include object detection,1,2 traversability analysis,3,4 and threat classification,5,6 and are
referred to as downstream tasks.
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The development of artificial intelligence (AI) models for automated scene understanding is constrained by
limited access to relevant military training data due to its restricted nature, high acquisition costs, and evolving
threat signatures. Several studies highlight the potential of synthetic data as an alternative to measured training
data. A typical strategy involves utilizing 3D-based simulations of scenes and objects of interest, followed by the
acquisition of various viewpoints by modeling the relevant sensor. This can be achieved using publicly available
simulation software for the generation of RGB data.7–10 Similar work is also done to simulate IR-imagery,11

where thermal properties can be modeled explicitly.12 The studies demonstrate that adding synthetic data as
training data improves performance on downstream tasks, particularly when the number of real samples is low.
For other applications, especially non-RGB, custom-designed simulation software is required.13,14 Although the
results of AI models developed with simulated data are promising, they come at the cost of long simulator
development times, depend on the quality and detail of the 3D models used,15 and the amount of variability
available in the simulations.7 Adaptability to new settings is possible, but requires extensions to the simulator,
which can be costly and time-consuming.

Recent advances in generative AI (GenAI) offer opportunities to synthesize image data with variations beyond
what was previously possible. Some of the published results look realistic and include a wide range of variation
in composition and style.16,17 Not only do the images look visually impressive, they have been used to extend
training data for improving performance in various non-military image analysis tasks. For example, Azizi et
al. (2023)18 achieved state-of-the-art image classification performance for the ImageNet benchmark dataset by
adding a large amount of images synthesized with GenAI. In a similar fashion, Du et al. (2023)19 generated
photorealistic outliers to supplement ImageNet training data to successfully adapt classification to out-of-domain
datasets.

Similarly, GenAI is likely to enable the synthesis of training data for AI applications in the military domain.
For example, by creating a large set of images with military vehicles. However, off-the-shelf GenAI models lack
knowledge of the military domain, since they are not trained with many relevant training examples. To create
image data relevant for military applications, extra steps are often needed. These may include fine-tuning models
on domain-specific examples or synthesizing only parts of the image, such as the background or specific objects,
thereby reducing the need for extensive military knowledge. In this review, we explore the opportunities of
state-of-the-art GenAI methods to create high-quality training data for military AI systems, mainly focusing on
RGB and IR image data.

1.1 Related surveys and study contribution

GenAI methods for image synthesis have been widely studied in recent years, with extensive surveys thoroughly
analyzing their development and applications across various domains, including medical imaging, entertainment
or art.20 However, studies that consider their potential for military AI are lacking.

Several studies have provided comprehensive overviews of generative models for image synthesis, but typically
focus on only one class of generative models, such as Generative Adversarial Network (GAN)-based approaches.
For example, Wang et al. (2020)21 presented a state-of-the-art review on various GAN-based image synthesis
tasks, while Alotaibi (2020)22 focused specifically on GANs for image-to-image translation, covering both super-
vised and unsupervised approaches. Expanding on these, Shamsolmoali et al. (2021)23 reviewed GANs across
multiple synthesis tasks, including image-to-image translation and text-to-image generation. Alhabeeb et al.
(2024)24 provide an overview of text-to-image generation using GANs.

More recent surveys focus on diffusion-based methods, such as Zhan et al. (2024),25 who examine the role of
diffusion models for seven conditional image synthesis tasks, including text-to-image, image editing, and visual
signals (such as a sketch) to image translation. Zhang et al. (2024)26 provide a comprehensive review on
diffusion-based text-to-image models.

Baraheem et al. (2023)27 provide a broad and structured review on image synthesis techniques, considering
several model types (GANs, Variational Autoencoders (VAE), diffusion models) and input modalities. However,
this survey, like the others, focuses on image synthesis as a standalone task and does not consider the use of
synthetic images to train AI models. Other surveys, such as by Alzubaidi et al. (2023),28 do consider generative
AI as a tool for data augmentation. This survey is however a broader review of deep learning strategies to
address data scarcity, not specifically focused on image synthesis.



In this review, we aim to bridge this gap by:

1. Providing a broad perspective that covers multiple image synthesis models: GANs, VAEs, diffusion, and
hybrid models;

2. Examining not only the synthesis techniques but also how they could be used to support training of
AI-models;

3. Analyzing the potential of the methods for military applications, where the available real-world data is
limited.

This review provides a comprehensive overview of GenAI methods for image synthesis, with a particular focus
on their potential for AI model training in military applications. The paper is organized as follows: in Section
2, we start with an introduction to the three most widely used generative models, GANs, VAEs, and diffusion
models, establishing a technical foundation for understanding their role in image synthesis. Next, in Section 3,
the review categorizes image synthesis tasks into three main groups: 1) full image generation, 2) in-painting,
3) image-to-image translation. For each category, we examine relevant research papers, including studies that
explicitly evaluate their models for AI training (data augmentation) but also those that treat image synthesis as a
standalone task. To illustrate the potential of these methods, from each category, we include a practical example
where we generate synthetic images for military-related use cases. We conclude with an overall discussion in
Section 4, where we describe where the greatest potential lies for military AI applications and the key challenges
that must be addressed.

2. MODELS

2.1 VAE

Kingma and Welling introduced the VAE in 2013.29 A VAE consists of an encoder-decoder architecture: the
encoder maps input images x to a latent distribution parametrized by mean µ and variance σ2, improving upon
regular Autoencoders, which directly map to a single point in the latent space. Consecutively, a latent variable
z is sampled from the learned distribution and is mapped back to the original data space, producing an image
x̃. During training, the loss consists of two components: the reconstruction loss, which ensures that the image
x̃ generated by the decoder closely resembles the input image x, and the Kullback-Leibler (KL) divergence loss,
which regularizes the latent space so that it allows for meaningful samples. This ensures that the learned latent
space is continuous, allowing smooth interpolation between data points.20 After training the VAE, instead of
first encoding an image and then decoding it, we can directly sample latent variables from the prior distribution,
i.e. the sampled z is passed through the decoder to generate synthetic images. VAEs have been applied for
various image synthesis tasks, for instance to generate faces, medical images, or satellite imagery. Baraheem et
al. (2023)27 published an overview of VAE-based methods for text-to-image generation in 2023.

2.2 GAN

The GAN was initially proposed by Goodfellow et al. in 2014.30 Since then, GANs have been widely used
for numerous image processing tasks.20–22,24,28,31 The model consists of a generator G and a discriminator D.
The generator attempts to create realistic images x̃ from a random noise distribution pz from which we can
sample a latent variable z. The discriminator acts as a binary classifier, trying to distinguish generated images
x̃ from real images x. D and G are alternately updated, where D is being trained to maximize the probability of
correctly classifying real and generated images, while G is trained to ”fool” the discriminator D so that images
are incorrectly classified. Both the generator and the discriminator can be any type of network.22 After training,
to generate images, a random noise vector z is sampled from the noise distribution pz and passed by G to generate
a realistic image x̃, i.e. the synthetic image.

Examples of applying GANs to improve military datasets are scarce, but do exist. McCloskey et al. (2023)32

use different GAN variants to augment training data for an ISR-object detector. Wang et al. (2024)33 propose a
data augmentation method for conditional inpainting of multiple object classes in IR images of a naval setting.
Koo et al. (2024)34 developed a generator that produces synthetic sonar images, used to augment training data
for an underwater classification model. In the review by Zhang et al. (2023),35 GAN-based methods to generate
Synthetic Aperture Radar (SAR) and/or inverse-SAR imagery are described.



2.3 Diffusion

The most recent developments in the field of image synthesis have taken place using Diffusion models, obtaining
an improved image realism in comparison with GANs.24,36 Diffusion models consist of two phases: forward and
backward diffusion. In the forward phase, Gaussian noise is added to the input image x step by step. After
T steps, the image is nearly indistinguishable from pure Gaussian noise. In the backward phase, the diffusion
process is reversed, where the noise is iteratively removed so that the original input image is recovered. During
training, the model has to predict the noise η at time step t. As loss, the predicted noise is compared to the true
noise. After training, a random noise vector can be sampled and by applying the learned reverse process from T
to 0 to this noise vector, finally a synthetic image x0 is generated. Diffusion models can be applied for a variety
of image synthesis tasks, including full image generation, inpainting and image-to-image translation.24,36,37

3. METHODS FOR IMAGE SYNTHESIS WITH GENAI

GenAI can be used in various ways for creating synthetic image data. In this chapter, we review specific methods,
providing an overview of the current playing field, and focus on methods that we consider to have most potential
at this point in time. Methods are grouped into three main strategies. The first one is full-image generation,
where the goal is to synthesize a full image, e.g. by finetuning a diffusion model with some domain-specific
examples. The next strategy is inpainting, where parts of an image are filled in, for example to place objects
in existing images that represent the environment of interest. The final set of methods is about image-to-image
translation. Here, the main goals are to translate either the appearance of the image (e.g. change weather
conditions), or the modality (e.g. translate RGB tot IR data).

An overview of our mapping of methods is provided in Fig. 1. Each GenAI strategy is subdivided into some
subcategories with some examples of key papers on this topic. In the next sections, we dive into the different
strategies. For most papers, we only explore the opportunities of synthesizing image data. Whenever available
however, we add some context on how the results can be used to augment training data and improve downstream
AI model development.

3.1 Full-image generation

Recent advances in diffusion models have established them as the state-of-the-art for high-quality image genera-
tion. Well-known diffusion models, such as Stable Diffusion38 and Imagen,39 are trained on large-scale general-
purpose data sets such as LAION-2B and LAION-5B,40,41 which contain approximately 2 to 5 billion image-text
pairs collected from the web. Although this allows them to generate photorealistic images across a wide range
of domains, they lack specific knowledge in the military domain. This knowledge gap means that out-of-the-box
models are likely to be insufficient for military applications. However, fine-tuning techniques can be used to adapt
the models. Furthermore, the image synthesis can be controlled by specifying the prompts and incorporating
guidance methods.

The rest of this section is thus structured as follows: first, we introduce the major base diffusion models,
followed by an overview of fine-tuning methods. Next, prompting strategies to guide the image generation are
described. Finally, we discuss additional guidance techniques, such as ControlNet42 and other conditioning
mechanisms, to further enhance control over the generated images.

3.1.1 Base models

To reduce computational costs, modern diffusion models rely on compressed latent spaces rather than performing
the diffusion process directly in pixel space. Instead of generating images at full resolution, diffusion models first
encode images into a lower-dimensional latent space, where the generative process is performed before decoding
the results back into high-resolution images. This is typically achieved using VAEs (Section 2.1), or Vector
Quantized GANs (VQGAN).43

VAEs encode images into a continuous latent space, enabling smooth transformations but sometimes in-
troducing blurriness, while VQ-GANs quantize images into discrete tokens, preserving sharpness and structure
but occasionally causing visual artifacts due to reconstruction limitations. Both of these approaches signifi-
cantly reduce computational requirements, making training and inference more efficient. A downside, however,



Figure 1: Overview of GenAI methods for synthesizing image data.

of incorporating these sub-models, is that the final image quality depends on the effectiveness of the VAE or
VQ-GAN for encoding and decoding. Most modern latent diffusion models, including Stable Diffusion (SD),
use VAEs rather than VQ-GANs due to their better adaptability for text-to-image generation and fine-tuning
flexibility.44 In the next paragraphs, we describe the key base diffusion models, their architectures, and their
specific advantages for image synthesis.

Stable Diffusion 1.5 Following OpenAI’s success with DALL-E, which was based on a discrete VAE,17 SD
was introduced. SD emerged from the Latent Diffusion Model (LDM) framework,38 combining a U-Net-based
CNN architecture with transformer cross-attention blocks at each layer. One of the major impacts of SD1.5 was
due to its open-source nature. The open release of the model’s weights led to widespread adoption in artistic
communities, and contributed to the development of finetuning tools for the base model. This adaptability makes
it a good candidate for customization, including for military applications. However, one limitation of the model
is its training and output resolution of 512 × 512 pixels, which does not preserve finer details as well as more
modern models with a larger output size. Additionally, a Contrastive Language-Image Pretraining (CLIP)-based
encoder45 is used, which is restricted to a using relatively short prompt length. For more details on the CLIP
encoder used in SD, refer to Section 3.1.3.

SDXL Released in 2023, Stable Diffusion XL (SDXL)44 significantly improved upon SD1.5, enhancing image
quality, resolution, and detail preservation. SDXL leverages a three times larger U-Net, a two-stage synthesis
pipeline in latent space, and an improved VAE for higher fidelity decoding. In addition, a larger CLIP model



is used for text encoding, enabling better text-image alignment. The training procedure was improved with
multi-aspect ratio learning and a cropping mechanism, allowing the model to generalize across diverse image
dimensions and to retain finer details. Furthermore, the model is able to synthesize images up to 1024 × 1024
pixels, making it more suitable for detailed scene synthesis.

PixArt-Alpha PixArt-Alpha introduced Diffusion Transformers (DiTs)46 as a replacement for the U-Net
architecture found in SD1.5 and SDXL. The authors demonstrated that Vision Transformers (ViTs) can be
effectively adapted for image generation when scaling both model parameters and training dataset size is feasible.
Despite this shift in network architecture, PixArt-Alpha retains SD’s VAE to decode from the latent space
back into pixel space. In this way, compatibility is ensured with existing fine-tuning methods like LoRA and
DreamBooth (Section 3.1.2). This allows for experimentation with the DiT architecture while leveraging the
existing SD ecosystem. Additionally, PixArt-Alpha integrates the Vision-Language Model (VLM) LLaVA47 to
generate synthetic captions for training images, enhancing text-to-image alignment during training.

FLUX.1-dev FLUX.1-dev16 is a new diffusion model developed by the original authors of VQ-GAN,43 LDM,
and Stable Diffusion.38 Black Forest Lab, the company behind its development, has positioned it as a commercial
alternative to SD. While no formal research paper accompanied its release, a blog post hints at its architecture,
notably the use of Rectified Flow Transformers (RFTs).48 While DiTs, used in PixArt-Alpha, rely on complex,
multi-step diffusion processes, RFTs connect data and noise in a more direct trajectory, simplifying the gener-
ation process. This approach reduces sampling steps, leading to faster generation times and improved image
quality. Additionally, FLUX.1-dev includes native support for LoRA fine-tuning (Section 3.1.2, making it highly
adaptable to a new subject or style in the military domain.

SANA SANA is a highly efficient diffusion model designed to generate high-resolution images up to 4096×4096,
developed by NVIDIA and MIT researchers.49 It integrates linear attention instead of self-attention for faster
inference, and the small decoder-only Large Language Model (LLM) Gemma-2 as a text encoder, to enhance
text-to-image alignment. In addition, an improved solver (Flow-DPM-Solver) reduces the number of sampling
steps, making inference up to 100× faster than FLUX and 40× for SDXL.

3.1.2 Fine-tuning methods

In less than six months after the release of SD,38 several methodologies were introduced to adapt text-to-image
models to new subjects, styles, or datasets. Fine-tuning techniques allow models to incorporate domain-specific
knowledge without requiring full retraining. In this section, we explore four major fine-tuning methods: Textual
Inversion,50 IP-Adapter,51 DreamBooth,52 and LoRA.53

Textual Inversion50 learns a compact textual embedding from only a few reference images, allowing the model
to reproduce the learned concept via prompting without modifying its weights. While computationally efficient,
this method lacks structural control, making it less effective for precise scene modifications needed in military
applications.

IP-Adapter51 introduces a lightweight image-conditioned adapter module that allows a diffusion model to
incorporate reference images into its generation process. Unlike Textual Inversion, which operates through
text embeddings, IP-Adapter injects reference image features into the model’s conditioning process. While this
enables style and structural adaptation, it does not alter the model’s weights,

DreamBooth52 fine-tunes a model using a small dataset and a unique abstract identified (e.g. ”[V ]”) repre-
senting the object or style. This method maintains the object’s key visual characteristics and allows for synthesis
of the object on new backgrounds. For instance, if fine-tuned on images of a CV90 armored vehicle, the model
could generate realistic CV90 images in different landscapes and conditions. However, DreamBooth fine-tunes
all model weights, producing a new model that matches the original in storage size, which makes it impractical
for fine-tuning on a large variety of military vehicles or environmental conditions.

LoRA (Low-Rank Adaptation)53 was initially developed for LLM fine-tuning, but has since then been adapted
for diffusion models. Instead of modifying the entire model, LoRA injects small, trainable low-rank matrices



into specific layers (typically the attention layers), while keeping the original weights frozen. This drastically
reduces the computational cost to adapt to a new object as well as the storage requirements, making LoRA
ideal for military applications that require rapid, efficient adaptation. Another major advantage of LoRA is its
ability to combine multiple fine-tuned adaptations. A single model can be merged with several LoRAs, allowing
for separate tuning of content (e.g. specific military vehicle types) and style (e.g. weather conditions, pseudo-
thermal imagery, sensor noise). However, in prelimimary work, we found that performance can degrade when
too many LoRAs are merged. In Fig. 2, we show some visual results of FLUX models finetuned with LoRA.

Figure 2: Visual examples of images generated with FLUX.1-dev finetuned with LoRA on an in-house dataset.
Left and center images are created with a model fine-tuned on a set of RGB photos of military vehicles. Right
example is a result from a model fine-tuned on long wave infrared images.

Among these methods, LoRA stands out as the most practical for military applications, particularly for
modern DiT-based models, due to its efficiency, flexibility, and ability to combine multiple fine-tuned adaptations.
While DreamBooth provides high-fidelity subject learning, the large storage size required makes it less scalable
for diverse military datasets. IP-Adapter and Textual Inversion offer lighter-weight alternatives, but their limited
structural control reduces their suitability for complex scene adaptation.

3.1.3 Prompting

A key component of diffusion models is their text encoder, which maps prompts into a shared latent space to
align text and images. The prompt is the main input for the different families of text-to-image diffusion models
and thus directly influences the generated output. Two common approaches to synthetically generate prompts
are via a constrained random generator, and via the use of VLMs and LLMs.

A constrained random generator constructs prompts using a predefined set of attributes or keywords, that
are structured to form a coherent sentence. Attributes may include the points of view, objects (or identifiers
for fine-tuned models, see Section 3.1.2, DreamBooth), backgrounds, times of day, and weather conditions.
Each attribute is assigned a task-specific vocabulary. The prompt generator randomly selects a value from this
vocabulary for each attribute, which can be used directly at runtime, or pre-generated as part of a “prompts
bank”.

An alternative approach to prompt generation is the use of VLMs and LLMs, which can automatically
generate or refine prompts based on textual or visual inputs. VLMs can analyze existing images and generate
captions or descriptions of details.47 Unlike constrained random generators, VLMs are steerable via system
prompts, allowing users to define how images should be described. In the military domain, this ability could
be particularly useful for specialized imagery, such as IR-images. By instructing a VLM to reason about how
different materials radiate or reflect heat, it can generate structured descriptions of object appearances in shades
of gray.

Finally, random prompt generators can be combined with VLM-generated captions or LLM refinements to
enhance diversity. For example, a random generator may produce a generic prompt (e.g., “A military vehicle



in a desert environment”), which a VLM then enriches with contextual details (e.g., “The armored vehicle is
kicking up sand, with heat distortion visible in the background”). An LLM can further refine or merge prompts
from multiple images, creating more varied and realistic synthetic training data.

As mentioned in Section 3.1.1, models like SD1.5 rely on CLIP-based encoders,45 which are restricted to 77
tokens (or ∼ 50-60 words), with an effective length of only ∼ 20 tokens - likely constrained by the alt-text dataset
used for its training.54 This restriction results in CLIP-based models performing best with short, keyword-driven
prompts over detailed natural language description. To address this, newer architectures replace or extend CLIP
with LLMs to allow longer, richer, and more nuanced prompts. For example, FLUX-1.dev16 incorporates a T5-
XXL encoder-decoder, while SANA49 utilizes a Gemma-2-2B decoder-only model for improved text encoding,
increasing the supported prompt length to several hundred or even over 1,000 tokens, depending on the model
configuration.

3.1.4 Guidance beyond text prompts

Diffusion models can be guided beyond simple text prompts through various techniques that influence the
generative process. The most straightforward is the previously described text-to-image approach, where the
model generates an image purely from a textual input prompt. The output quality is highly dependent on the
quality of the prompt, requiring prompts that align closely with the model’s pretraining or fine-tuning data.

A second option is using image-to-image, where an input image along with a prompt is used to generate a
new image. Instead of starting from pure random noise, the model adds noise to the original image and gradually
refines it, allowing to steer the output of the model to a different region of the latent space.

More structured forms of guidance have also been proposed. One such method is classifier guidance,55

where an external classifier is trained to predict class labels on noisy images. During sampling, the gradient of
this classifier’s output is used to steer the diffusion model’s denoising trajectory toward a desired class. While
effective, this method requires a separate classifier trained on noisy data and can sometimes lead to overconfident
or less diverse outputs. To address this, classifier-free guidance56 removes the need for an external model by
training the diffusion model to handle both conditional (with prompts) and unconditional (with empty prompts)
cases. At inference, the model’s own conditional and unconditional outputs are combined to guide generation,
striking a balance between sample quality and diversity. This technique has become the standard for modern
text-to-image models, including SD (Section 3.1.1), due to its simplicity and strong performance.

Finally, ControlNet enables additional conditioning42 on structured signals beyond text or class labels. While
alternative approaches exist, such as the semantic layout-guided method described by Wang et al. (2022),57

ControlNet is particularly notable for its general-purpose design, modularity, and flexibility across diverse control
types. It supports various structural priors such as depth maps, Canny edge maps, and segmentation masks,
which can be extracted from arbitrary images. These signals act as structural constraints, helping to preserve
object shape or enforce specific scene layouts. For instance, depth and edge maps help maintain object structures,
while segmentation masks allow explicit control over object placement and composition in the generated output.
A visual example of this capability is provided in Fig. 3, where a depth map is employed to guide an SDXL
model (finetuned with LoRA) via ControlNet.

While structured guidance methods such as ControlNet and image-to-image condition allow for controlled
scene adaptation, another approach to generate various environmental conditions is through prompt engineering
in closed-source models like MidJourney. Rothmeier et al. (2024)58 use MidJourney to generate adverse weather
images and show that fine-tuning their automotive object detector on this generated data improves detection
performance. However, unlike SD, FLUX-1.dev, and SANA, MidJourney does not support direct fine-tuning,
making it less suitable for generation of military-specific datasets.

3.1.5 Non-EO image synthesis

Given that the majority of base models for full-image generation are foundation models trained on extensive RGB
datasets, it is anticipated that the predominant advancements will occur within this modality. Nevertheless, as
can be seen in Fig. 2, finetuning a base model with non-RGB data can be used to synthesize pseudo-thermal
infrared images. Synthesizing non-EO images (e.g. SAR/SAS) with this method might be more challenging
since the appearance is very different. A recent survey by Huang et al. (2025)59 shows the poor performance



Figure 3: Example of the guidance that can be added to the Diffusion process, by combining a reference map
with ControlNet. The center image represents a depth map of the photo on the left. The depth map is used to
guide a SDXL model (finetuned with LoRA on RGB photos of military vehicles) to generate an image with a
pose that is very similar to the photo on the left.

of out-of-the-box diffusion models for synthesizing SAR data, but also describes alternatives. For example,
Song et al. (2022)60 proposed an adversarial autoencoder to generate SAR images with aspect angular diversity
to improve performance on a moving and stationary target recognition dataset. Similarly, Ju et al. (2024)61

used a cascaded GAN (CGAN) to gradually improve the quality of the generated SAR ship images, increasing
detection performance of SAR ship targets. We also identified advances of synthesizing data with GenAI for
sonar imagery. For example, Koo et al. (2024)34 leverage a CycleGAN to synthesize underwater sonar images
to improve training of a target classifier, while Zhang et al. (2024)62 managed to train a diffusion-based model
to generate side-scan sonar images.

3.2 Inpainting

One disadvantage of full-image generation is the need for domain knowledge on all aspects of the image, including
the foreground, background, and style. An alternative is to use inpainting, where only parts of the image are
filled in. For example, by including an extra object of interest at a masked location, or by including some mission-
specific clutter. Since less context is needed for inpainting, out-of-the-box models might require no finetuning,
or less finetuning than full-image generation models.

This section covers two inpainting methods: text-based inpainting, which uses textual descriptions to guide
the restoration process, and reference image-based inpainting, which leverages additional images to fill in gaps.
We conclude this section with a brief discussion of outpainting, a technique for generating backgrounds.

3.2.1 Text-based inpainting

As described in Section 3.1, text-to-image models enable generation of multiple image samples from text prompts.
Text-to-image inpainting models offer precise control over pose and location using masks, which is important
for augmenting object detection datasets. By creatively optimizing prompts, engineers can produce diverse and
practical data without the need for additional real images.

While initial text-based inpainting relied heavily on GANs, such approaches remain relevant, particularly
in structured or constrained augmentation tasks. For instance, Wang et al. (2024)33 introduce DOCI-GAN, a
detection-oriented conditional inpainting GAN that generates synthetic IR object images from bounding box
annotations, treating inpainting as a mask-to-image translation task. Modern inpainting techniques are largely
driven by diffusion models, especially those built on the SD framework38 (Section 3.1.1), which iteratively refine
images to produce high-quality, realistic outputs. These methods generally start with a pretrained foundation
model and fine-tune it to be conditioned by both text prompts and image masks.

In 2021, Nichol et al.63 showed that text-to-image models are capable of using inpainting to realistically
create diverse images, focusing on the difference between guided diffusion and classifier-free guidance, showing



the superiority of the latter. More recently, Fanelli et al. (2025)64 leveraged advancements in multi-modal LLMs
to develop a dataset featuring multi-mask and paired prompts. This dataset serves as input for fine-tuning SD
models specifically for multi-mask inpainting tasks, further improving image synthesis by integrating detailed
text-driven context into the inpainting process.

Although the advances in the field are promising, data augmentation for military AI using these models
remains challenging. Often, the models have been trained on datasets with limited military vehicles and realistic
data such as low-resolution targets and adverse weather conditions (rain, fog). Fine-tuning models like these
requires generating relevant prompts, which may also lack precision within the military domain, as LLMs struggle
with details of lesser-known military vehicle types.

3.2.2 Reference image-based inpainting

(a) The dotted red line outlines the area for inpaint-
ing, while the continuous red rectangle highlights the
reference image used as input.

(b) The AnyDoor model fills in the masked area with a
military vehicle, however, it does not retain the vehicle
features perfectly.

Figure 4: A qualitative example of zero-shot performance by AnyDoor on out-of-domain image data.

Reference image-based inpainting presents a promising approach, particularly suited to the military domain,
where the complexity and specificity of objects such as military vehicles demand precise representation. Unlike
text-based inpainting, which relies on descriptive prompts that often fall short of capturing the nuanced details
of such vehicles, reference image-based inpainting uses an image as the foreground object. This could enable
several critical tasks: accurately capturing the shape and texture of the object to maintain its identity, generating
a transformed view of the object (e.g. changes in pose, size, and illumination), and altering the surrounding
area to ensure a realistic integration of the object into the scene, such as adding appropriate shadows or track
marks. The integrity of the inpainted images is crucial, as inaccuracies such as hallucinated features or incorrect
elements could significantly impair the performance of downstream object detection models trained on these
augmented images. Comparable needs for realism and control exist in other sensitive domains, such as medicine,
where both image-based and text-based inpainting have already been successfully applied to enhance dataset
diversity. Liu et al. (2025)65 demonstrate the effectiveness of reference image-based inpainting by using real
tumor images to guide a diffusion model in generating synthetic image-mask pairs, improving training data for
tumor segmentation models. Pérez-Garćıa et al. (2024)66 apply text-conditioned inpainting to chest X-rays to
add or remove pathological features. This approach enables the creation of controlled dataset shifts to stress-test
biomedical vision models, revealing biases and failure modes before deployment.

One of the first works using diffusion models for inpainting, Paint by Example (PbE) by Yang et at. (2022),67

adapts a pre-trained SD text-to-image model by replacing the CLIP text encoder45 (Section 3.1.3) with a CLIP
image encoder. Key enhancements include a content bottleneck, which limits the amount of detail extracted
from the reference image, preventing simple copying and ensuring essential content guides the inpainting. Aug-
mentation techniques diversify features and mask shapes, while classifier-free sampling refines the output to
align with the reference image’s style and class. The pre-trained SD model is fine-tuned on the OpenImages
dataset. While PbE successfully blends the reference image into its background, it struggles to maintain the
precise features of the reference object, often producing an object of the same class and color but not the ex-



act features. This limitation is significant for applications requiring precise object recognition, such as military
vehicle identification.

Building upon the PbE framework, Kim et al. (2023)68 introduce the use of sketches in addition to reference
images for image inpainting, which enhances user control over the editing process. This approach incorporates
a sketch of the masked region into the diffusion process. The model is fine-tuned on a cartoon dataset, demon-
strating that the addition of sketch lines can significantly help in maintaining the distinct characteristics of the
reference image, suggesting a potentially valuable modification for tasks requiring precise identity preservation
in data augmentation.

In concurrent work titled Paste, Inpaint and Harmonize via Denoising (PhD)69 (2023), the authors introduce
a novel image editing framework that significantly modifies the process used in previous methods like PbE. PhD
employs a two-step process: initially, it uses an off-the-shelf segmentation model to extract and paste the subject
from a reference image directly into a background scene. Subsequently, it utilizes a diffusion model, conditioned
using a ControlNet-style42 encoder that encodes the pasted image and a text prompt, to regenerate the original
image. This approach maintains the pretrained diffusion model in a frozen state, allowing for faster training times
and leveraging the model’s robust synthesis capabilities without retraining. Notably, PhD appears to maintain
object identity more effectively than PbE, which could be especially beneficial for applications requiring high
fidelity in object representation. However, the use of a frozen core model might limit adaptability to highly
specialized domains such as military imagery.

The AnyDoor framework,70 also proposed in 2023, introduces multiple advancements in reference image-
based inpainting, significantly improving identity preservation and customization. Unlike prior methods that
rely on augmenting masks and reference images during training, AnyDoor leverages video data to extract re-
alistic variations in pose, lighting, and perspective by sampling and transferring objects between video frames.
This approach results in more diverse and realistic object transformations. Key innovations include using a seg-
mentation model to remove background from reference images, enhancing object focus, and replacing the CLIP
image encoder with the more robust DINOv271 encoder to generate object identity vectors. To compensate
for the low-resolution output (16× 16) of DINOv2, AnyDoor integrates high-frequency information (e.g., edges
and patterns) through a ControlNet-style module,42 ensuring the model captures fine-grained details essential
for identity preservation. This makes it a promising tool for applications that require accurate and consistent
object representation, especially in scenarios that require detailed fidelity. An example of the out-of-the-box
performance of AnyDoor for inpainting a military relevant object is shown Fig. 4. Although AnyDoor excels in
identity preservation, this example also demonstrates that handling out-of-domain data still presents challenges.

3.2.3 Background synthesis

A topic related to inpainting is background synthesis, where the goal is generate relevant background images.
Prior to using GenAI, one strategy for using realistic backgrounds in simulation was the use of High Dynamic
Range Imaging (HDRI) backgrounds, as demonstrated by Eker et al. (2023).7 However, this method is limited in
background variation and does not account for potential inconsistencies in appearance between foreground and
background. Recent work has explored diffusion models for generating more diverse and adaptable backgrounds.

Pichler and Hueber (2024)72 use a diffusion model (SD) to create full images as backgrounds, to combine
with drone-captured vehicle footage, creating a large dataset for vehicle detection. However, their approach
directly overlays objects on the background without any harmonization techniques, potentially leading to visual
inconsistencies. Li et al. (2024)73 consider background synthesis as an outpainting task, the inverse of inpainting,
where SD is used to generate everything outside a selected mask using a basic prompt: “generate a clean
background.” A small improvement in object detection performance was reported for the PASCAL VOC dataset
when training data is enhanced with these out-painted images. Lee et al. (2023)74 apply SD outpainting for
military object detection in panoramic smart glasses. They demonstrate that outpainting panoramic backgrounds
leads to a 2.5× improvement in detection accuracy over standard cropping and concatenation techniques.

3.3 Image-to-image translation

While full-image generation and inpainting provide methods to synthesize training data from scratch or modify
incomplete images, image-to-image translation offers a way to transform existing images into new domains. Two



Figure 5: An overview of the models found in literature that focus specifically on RGB-IR domain translation
tasks or data augmentation for enhanced performance in downstream AI-tasks on IR imagery.

primary use-cases for image-to-image translation in military applications include environmental and weather
adaptations (e.g. day to night, clear to foggy conditions, desert to forest) or modality translations. RGB
and IR image data are both important for military scene understanding, yet most available training datasets
are RGB-heavy, with limited IR data. Image-to-image translation can be used to convert RGB images into
IR representations, expanding synthetic IR training data for tasks such as object detection, classification, and
tracking. In our literature scan, we identified a relatively large number of image-to-image translation studies
that developed models specifically focused at RGB-to-IR domain translation or data augmentation for enhanced
performance in downstream AI-tasks on IR imagery. In addition to the taxonomy in Fig. 1, we therefore present
an overview of these IR-focused models in Fig. 5. While translation between other domains is also feasible,
there are fewer examples available in the literature. Nonetheless, we present several instances at the end of this
section.

Image-to-image translation methods are typically categorized as either paired or unpaired, based on whether
they use aligned image pairs for training. Paired methods ensure precise transformations but require one-to-one
correspondences, while unpaired methods learn cross-domain mappings without direct supervision.

3.3.1 Paired methods

The pix2pix framework, proposed in 2017,75 is a widely used approach for supervised image-to-image translation
based on conditional GANs (cGANs). Pix2pix requires paired training data, where each input image has a
corresponding target image. Although it produces high-quality translations, its reliance on paired data limits its
flexibility for military applications. Multiple papers use image-to-image models such as the pix2pix framework75

(or unpaired models such as CycleGAN,76 which we will describe in more detail later) to translate RGB images
directly to the IR spectrum, extending the models to be more specialized for IR-translation.

ThermalGAN77 is such a paired image-to-image model, specifically designed for RGB-to-IR transformations,
primarily for cross-modality person re-identification of people in IR imagery. The model learns to generate
realistic thermal representations of RGB images, by incorporating thermal feature descriptors that capture both
the fore- and background characteristics.

More recent papers incorporate diffusion models for RGB-to-IR translation. Mao et al. (2024) introduce the
Physics-Informed-Diffusion (PID)78 model, which integrates physical constraints into a diffusion-based frame-
work to improve IR image fidelity. Unlike previously described generative models, which often treat IR images
as a stylistic variation of RGB, PID ensures physical accuracy by applying a TeV decomposition, where T (Tem-
perature), e (emissivity), and V (Thermal Texture) are estimated to model how objects emit and absorb thermal
radiation. This physics-informed approach allows the diffusion model to generate realistic IR images that match
real-world thermal data better. PID outperforms GAN-based models such as ThermalGAN.77

Although the previously discussed studies demonstrate the potential of generative models for RGB-to-IR
translation, most rely on datasets with large, easily distinguishable objects, that do not accurately represent
military scenarios.

A dataset more representative of military use-case is an UAV dataset titled Aerial Visible-to-Infrared Image
Dataset (AVIID) by Han et al. (2023),79 which provides paired IR and RGB images captured from drones. In
their paper, they evaluate both paired and unpaired image-to-image translation methods. Their findings indicate
that paired methods, such as pix2pix,75 generally outperform unpaired methods like CycleGAN.76



Although pix2pix was already introduced in 2017, GAN-based methods remain highly relevant for image-to-
image translation tasks. More recent advancements continue to refine their capabilities. For example, in a recent
study by Parmar et al. (2024),80 the authors propose pix2pix-Turbo, which is aimed at paired tasks such as
sketch-to-image translation. Their model combines single-step diffusion (SD-Turbo,81 and see Section 3.1.1 for
more details on the original SD) with GAN learning objectives, to perform efficient image-to-image translation.
Instead of the traditional iterative denoising process in diffusion models (Section 2.3), SD-Turbo compresses the
process into a single step, significantly reducing inference time while still leveraging the internal knowledge of the
pre-trained diffusion model and thus generating high-quality outputs. LoRA is employed to adapt the original
network to new controls and domains, which is described in more detail in Section 3.1.2.53

3.3.2 Unpaired methods

While paired image-to-image translation methods are well-suited for precise domain adaptation tasks, their
reliance on aligned datasets limits their applicability. The next section describes unpaired techniques, highlighting
their flexibility for environmental and weather adaptation as well as modality translation. First, we introduce
general-purpose base unpaired methods, then introduce several GAN-based methods focused on RGB-to-IR
modality translation. Next, we highlight methods that optimize directly for downstream performance. Finally,
we describe methods that integrate diffusion models.

Base models AI models often show a decreased performance in adverse weather conditions or other scenarios
they were not specifically trained on.82–84 While this has been widely explored in the automotive sector, military
applications similarly require robustness to changing conditions. Unpaired image-to-image translation has been
explored as a solution. One of the most well-known methods is CycleGAN,76 which learns bidirectional mappings
between two domains using two generators and two discriminators. It employs a cycle-consistency loss to ensure
that an image translated to the target domain and back retains its original structure. Rothmeier et al. (2021)82

applied CycleGAN to generate synthetic fog, snow, and rain from clear-weather images. Their study compared
CycleGAN against other architectures (e.g., pix2pix,75 UNIT,85 and MUNIT86), showing that while CycleGAN
produced strong results, it struggled with output consistency and controllability.

To address diversity in outputs, Multimodal UNsupervised Image-to-Image Translation (MUNIT)-framework86

was proposed as a VAE-GAN hybrid that decomposes images into a domain-invariant content space and a domain-
specific style space. This disentanglement allows multiple outputs to be generated by combining content from
the input with different sampled styles. The authors evaluated MUNIT on a variety of tasks, including seasonal
translation and edge-to-photo synthesis. In military contexts, this architecture could facilitate the generation of
diverse IR outputs from a single RGB input while preserving spatial structure.

While CycleGAN and MUNIT focus on domain translation, StyleGAN87 represents a shift toward attribute-
controlled synthesis. It introduces a style-based generator architecture that enables highly controllable and
realistic image synthesis. Unlike traditional GANs, where the latent vector z is directly fed into the generator
(see Section 2.2), StyleGAN first maps z into an intermediate latent space W . This disentanglement step makes
it easier to control specific image attributes, allowing attribute-aware image manipulation in W -space. Once
trained, a latent vector z can be sampled, mapped to the W -space, and modified to control factors like pose,
texture, and lighting. This architecture has been used by Zhang et al. (2022)88 to create 3D-aware images by
manipulating the latent space to generate different viewpoints.

GAN-based RGB-to-IR translation The base models introduced above provide flexible frameworks for
general-purpose domain translation. However, many military imaging applications require translating between
fundamentally different modalities, most notably from RGB-to-IR, which presents additional challenges, such as
structural preservation. To address this, a range of GAN-based methods have been developed specifically for
this translation. InfraGAN89 was designed to generate both RGB and IR images from a given input. It focuses
on preserving the structural consistency between modalities using a structural similarity loss function, ensuring
that objects retain their original shape and features when converted between RGB and IR.

Building on similar goals, ClawGAN90 extends the CycleGAN framework76 by specifically targeting the
preservation of structural details in facial image translation between RGB and IR domains. The model introduces



claw-connections for improved feature retention. These are a structural enhancement to the generator network,
designed to preserve fine-grained features by combining activations across multiple encoder and decoder layers.
While the model supports both RGB-to-IR and IR-to-RGB translations, its primary focus is on IR-to-RGB
conversion, aiming to improve facial recognition in low-light conditions where IR imagery is commonly used.

AerialIRGAN91 introduces an unpaired translation framework that integrates a lightweight CNN with se-
mantic segmentation information from the Segment Anything model (SAM),92 which helps to preserve object
boundaries. The model employs a structural appearance consistency loss, to enforce structural similarity with the
RGB image while ensuring IR-specific appearance characteristics. Compared to traditional GAN-based meth-
ods (CycleGAN,76 UNIT,85 MUNIT86) and more recent diffusion-based models (BBDM,93 CycleGAN-Turbo80),
AerialIRGAN achieves superior realism on two aerial datasets, including AVIID. However, its evaluation is limited
to perceptual metrics to measure the generated image quality, without assessing downstream task performance.
Zhan et al. (2024)94 do extend this (for both CycleGAN85 and pix2pix75) by also incorporating an object detec-
tion task on a subset of AVIID, moving beyond only comparing the realism of the generated IR images. Their
results demonstrate that assessing task performance (e.g., object detection accuracy) provides a more meaningful
evaluation of synthetic IR images compared to image-quality metrics alone. The next methods are explicitly
designed with this goal in mind: optimizing for downstream performance.

Downstream task optimization While previous approaches like InfraGAN and ClawGAN aim to translate
RGB-to-IR through deep GAN architectures, these methods can introduce visual artifacts or struggle with
structure preservation. In contrast, Meta-Learning Style Transfer (MLST)95 proposes an alternative approach,
by optimizing combinations of simple, interpretable filters for the RGB-to-IR task. MLST uses a meta-learning
framework, based upon Faster Augment,96 to learn the best filter compositions that maximize downstream object
detection performance. This paper shows that their combined approach outperforms earlier data-driven methods
such as InfraGAN89 and ThermalGAN.77 However, MLST has not yet been compared to more recent methods
such as CycleGAN-Turbo,80 which also aim to improve structure preservation through hybrid GAN–diffusion
architectures.

The work described in the previous paragraphs focuses on RGB-to-IR translation. Medeiros et al. (2024)97

reverse the problem, and instead focus on learning IR-to-RGB translation. They propose Modality Translator
(ModTr), a method that learns a U-Net-based transformation to convert IR images into a RGB-like represen-
tation, allowing pre-trained RGB object detectors to process IR data without needing to retrain them. The
advantage here is that instead of optimizing for human-perceptible realism, ModTr is directly optimized for
the downstream object detection task, improving performance over full IR fine-tuning. While the method does
require labeled IR annotations, it eliminates the need for paired RGB-IR data, making it a practical approach
for military applications.

Diffusion-based methods While GANs have dominated unpaired translation, recent work has explored dif-
fusion models for this task. While diffusion models have shown remarkable progress in full-image generation and
paired image-to-image translation, they have limitations in unpaired image-to-image translation tasks due to the
Gaussian prior assumption. In standard diffusion models, image generation begins with a sample from a standard
Gaussian distribution, which is iteratively denoised into a target image (Section 2.3). This process relies on the
assumption that the data distribution can be smoothly mapped from Gaussian noise, which works well for paired
settings with aligned source-target relationships. However, in unpaired image-to-image translation, where source
and target domains differ structurally and lack pixel-wise correspondence, this Gaussian prior assumption limits
the model’s ability to learn meaningful cross-domain mappings. To overcome this, Kim et al. (2024)98 propose
using Schrödinger Bridge, which learns an stochastic differential equations to translate between two arbitrary
distributions. Their method, called Unpaired image-to-image translation via Neural Schrodinger Bridge (UNSB),
was used to solve various unpaired translation tasks. Vo et al. (2024)99 combined UNSB with Grounded-SAM92

to first distinguish between object and background regions, and then translate from RGB-to-IR. Their results
show that using only ∼2000 RGB & IR (unpaired) images, it is possible to achieve an acceptable IR ship clas-
sification performance. In addition, by using the synthetic IR images, the authors show that ship classification
accuracy task can be improved in comparison with models trained only on real TIR images.



Mayr et al. (2024)100 propose an diffusion-based approach (TIR-ControlNet) to enhance segmentation per-
formance on IR images. Their method retrains ControlNet on 1500 real IR images from the FMB Dataset,101

conditioning the diffusion process on the segmentation maps. Using this retrained model, they generate over
120,000 diverse synthetic IR images by applying different random seeds to the same segmentation maps. The
authors demonstrate that training a SegFormer segmentation model on these synthetic images achieves a perfor-
mance near to models trained on real data, outperforming previous GAN-based approaches. Their results show
that with limited real samples and diffusion-based synthesis, they can effectively narrow the synthetic-to-real
gap.

In the previously mentioned study by Parmar et al. (2024), which introduced the paired method pix2pix-
Turbo, the authors also propose CycleGAN-Turbo.80 CycleGAN-Turbo is compared to other unpaired state-of-
the-art methods, both GAN-based such as a regular CycleGAN,76 Contrastive Unpaired Translation (CUT),102

Instructpix2pix,103 and diffusion-based such as Stochastic Differential Editing (SDEdit),104 Plug-and-Play,105

pix2pix-zero,106 CycleDiffusion,107 and Diffusion-Based Image Bridging (DDIB).108 While CycleGAN-Turbo
outperforms CycleDiffusion and DDIB in terms of speed and efficiency, they achieve a comparable performance
in terms of realism and domain adaptation. In Fig. 6 we show some visual examples of a CycleGAN-Turbo
model fine-tuned for a RGB-to-IR translation task of military vehicle data.

In summary, unpaired image-to-image translation methods offer flexible solutions for generating synthetic
data in the absence of aligned datasets. While early GAN-based methods like CycleGAN and MUNIT laid
the groundwork for domain translation, more recent work has introduced models specifically adapted to RGB-
to-IR conversion, structural preservation, and task optimization. Lightweight techniques such as MLST and
purpose-driven models like ModTr demonstrate that performance on downstream tasks can be improved without
relying on visually perfect outputs. Meanwhile, diffusion-based approaches—including UNSB, TIR-ControlNet,
and CycleGAN-Turbo—show promise in combining realism, structural fidelity, and diversity. Ultimately, the
choice of method should be guided by the intended application, whether it prioritizes visual realism, structural
accuracy, or direct impact on downstream model performance.

3.3.3 Image-to-image translation for non-EO image data

Image-to-image translation techniques are also used in relation to SAR data. One key application is despeckling,
which is the removal of speckle noise, the dominant noise source in SAR imagery. Lattari et al. (2023)109

proposed CycleSAR based on CycleGAN and more recently Hu et al. (2024)110 introduced a diffusion-based
method, both leading to successful despeckling of SAR images. Another application is the translation of RGB-to-
SAR, since SAR images are more difficult to collect and more time-consuming to annotate. Shi et al. (2022)111

propose a GAN-based method to reduce the appearance discrepancy between the optical and SAR images and
showed superior SAR ship detection performance with unlabeled SAR images. Others have focused on the inverse
translation of SAR-to-RGB, for example to pseudo-color SAR images to improve interpretability. For example,
Shen et al. (2024)112 introduced baselines for SAR colorization and a translation method called cGAN4ColSAR,
based on the pix2pix method, specifically designed for the purpose of colorization. Similar to the work on RGB-
to-IR translation, Wang et al. (2024)113 used a method based on Schrödinger bridge network for SAR-to-RGB
image translation and report improved performance over CycleGAN.

Similarly for sonar image data, image-to-image translation techniques have been developed. Sung et al.
(2019)114 propose a method to translate actual sonar images to simulated-like images using a GAN. Liu et al.
(2019)115 use a CycleGAN for realistic image dataset generation for forward-looking sonar, based on camera
images. Moreover, Cheng et al. (2022)116 use RGB images as well as SAR images to generate underwater
side-scan sonar images.

4. DISCUSSION

GenAI offers numerous opportunities for synthesizing image data, and recent advances have demonstrated promis-
ing results. In this study, we reviewed the opportunities of generating image data for training AI for military
applications. We identified three key strategies: full-image generation, inpainting and image-to-image transla-
tion. Each strategy presents unique advantages that meet the requirements of different use-cases. A combination
of methods is likely required to obtain an optimal result, as can be observed in recent approaches.117



Figure 6: Translation of RGB-to-IR images using a CycleGAN-Turbo fine-tuned on an in-house dataset.

Diffusion models represent the current state-of-the-art in full-image generation of RGB data, particularly in
text-to-image generation, where training with large datasets yields models with impressive zero-shot performance
in generating photorealistic images across diverse domains. However, these models lack specific knowledge in
the military domain, making off-the-shelve models insufficient for high-quality full-image generation in military
applications. Fine-tuning techniques, such as LoRA,53 can adapt these models effectively with a relatively limited
number of examples. Additionally, optimizing prompts can enhance text-based guidance, while other guidance
techniques, such as ControlNet,42 can further refine image generation by utilizing reference images or depth
maps. One challenge of full-image generation is the lack of automatic annotations, e.g. of the object locations,
which typically come for free when data is simulated with traditional methods. For non-EO data, most GenAI
development focuses on the use of GAN models, although some diffusion-based methods have been proposed.

Diffusion-based inpainting methods produce highly realistic visual outputs, but off-the-shelf models often lack
domain-specific knowledge relevant to military contexts. Fine-tuning is likely required for inpainting military-
relevant objects, whereas for more generic additions such as vegetation or plastic covers used for concealment,
pretrained models may suffice. The primary motivation for using inpainting lies in the abundance of background
imagery from drone reconnaissance, general satellite data, and photos available on the internet, while images
with appropriate foreground objects are scarce. Inpainting enables the realistic reuse of foreground objects across
varied backgrounds. Because inpainting modifies only part of an image, it may require less training data compared
to full-image generation. Moreover, similar to ControlNet,42 inpainting approaches allow greater spatial control
over object placement. However, the extent to which inpainting can effectively reduce data requirements remains
an open question. Recent state-of-the-art models such as AnyDoor70 further expand inpainting capabilities by
enabling fine-tuning on video data, supporting more advanced harmonization and viewpoint variation based on
new masks and backgrounds.

Gen-AI based image-to-image translation techniques show strong potential for adapting images to different
environments, such as converting existing datasets to adverse weather conditions or modality transfers. In
particular, translation from RGB-to-IR is highly relevant for military applications, where IR data is often scarce
but RGB imagery is more readily available. Translating the variation in RGB datasets to IR could substantially
enhance the quality of IR training data. It should be noted here that there can be additional variation in the
target domain compared to the source domain, such as the relevance of thermal history, which is relevant for IR
images, but not visible in RGB images. Capturing this kind of physically meaningful information remains an



open challenge for future research. For translating images to other modalities, such as SAR, promising results
have been reported, though the number of studies in this area is still relatively limited. While GAN-based
methods like pix2pix75 and MUNIT86 are still considered state-of-the-art, combinations with diffusion models,
such as CycleGAN-Turbo,80 are emerging as promising alternatives. Ideally, the development of image-to-image
translation models would utilize paired data; however, due to its scarcity, most advancements are made using
unpaired data. A key limitation across current methods is generalization. Many image-to-image translation
models are trained on relatively small or homogeneous datasets, resulting in degraded performance when when a
model is applied to images with a different appearance. Addressing this issue is essential to make image-to-image
translation reliably applicable.

Despite the promising visual results of GenAI methods for creating image data, measuring the quality and
usefulness of this data for training AI models remains an open challenge. Although a wide range of image quality
metrics have been proposed, such as the Frechet Inception Distance (FID) and embedding-based measures,
these do not necessarily relate directly to downstream model performance. Even embedding-based metrics can
be misleading, as they often rely on CNN backbones trained on RGB data, which may not align with the
target domain, such as IR or SAR. For the scope of this review, we have not focused on this issue and do not
provide a comparison or evaluation of synthetic image quality assessment techniques. However, we emphasize
that establishing standardized and task-relevant evaluation protocols for the generated data is important for
future work. Another open question concerns the extent to which GenAI models can meaningfully contribute
to domains in which they have seen little or no training data. While prompt engineering can introduce useful
variation and even encode prior knowledge, further research is needed to understand how reliably these models
extrapolate beyond their training distribution.

GenAI methods carry the risk of hallucinations, which may reduce the performance of subsequently trained AI
models. However, the exact impact of these hallucinations is not yet known. Ultimately, the goal is to develop AI
methods that perform effectively on real-world data. Evaluating their applicability to military use-cases remains
an area for future investigation. If the limitations, as described above, are addressed, GenAI methods show great
promise to improve the effectiveness of AI for automated scene understanding in a military context.
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