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1. The Robot Arm application at UvA 
 
In the robot arm application we deal with three agents that are heterogeneous in their 
representation of information. Therefore they cannot directly exchange information. 
Using the AIM data modeling mechanism we approach to solve this problem through the 
integration of the AIM schema's of three agents. 
 
Three agents are active: a high level robot controller (HLI)[Meij91], a vision system 
(SCILIMAGE or SCILAIM)[Kate90] and a CAD system. They are the intelligent 
systems of the Archon architecture as indicated in figure 1. Sophisticated robot 
controllers monitor the operations of a robot. If a contingency occurs, the controller 
needs information about the situation, before plans can be made to recover. A good 
example of such valuable information is the identity of unexpected objects that are found 
in the working area. As soon as the identity of those objects is known, decisions how to 
proceed can be made. To acquire the identity of an object, the HLI has to direct a camera 
to the proper position, get a description of the object from Scilimage and compare it with 
the information produced by a solid modeling CAD system. This process is called 
"sensor operation Identify Object" 
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Figure 1: The Archon architecture for the Robot Arm Application 
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The main problem is that the two descriptions of the object provided by the CAD system 
and the vision system are different, both in semantics and representation of the world. We 
can generate procedures inside the sensor operation to filter out the information that one 
needs for the matching algorithm. However, this approach has several disadvantages:  
 
• the algorithm becomes quite complicated because it has to take care of the details of the 

particular representations. 
• the code of the sensor operation has to be changed for every change in the data-structure 

of the other agents. 
• the algorithm is only applicable for those two agents. The use of an other CAD system 

or vision system will force the user to rewrite her/his code. 
 
In the document UvA/Archon/TN-0013/1-93 an analysis was made on how the 
ARCHON layer, using the AIM module, could make the entire task easier for the sensor 
operation. The aim was to convert the data-structures in the import schemas of the HLI 
agent, which are the same as the export schema's of the other agents, to an integrated 
schema of the HLI agent.  
 
The former report showed that such a strategy does not work and included the following 
reason: the CAD system knows only about undirected edges, while the matching 
algorithm requires directed edges. For every undirected edge their exist two directed 
edges. At present, the schema derivation operations of AIM do not support the creation 
of virtual objects. Consequently, it is not possible to define a transformation that doubles 
the number of 'edge objects' and creates for each undirected edge (in the CAD database) 
two directed edges (in the HLI database). 
 
The suggestion in UvA/Archon/TN-0013/1-93 was to find a common representation that 
is suited for the matching process, but does not double the number of edges with respect 
to the other databases. In this report we have taken an slightly different approach, namely 
we will define a schema for the CAD-agent with directed edges. This approach works 
better for the implementation. Here only the CAD-database must be modified, while in 
the previously suggested approach the Scilimage-database and the algorithm had to be 
altered. This process is indicated as the module "conversion", between the Archon layer 
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and the CAD-system in figure 1. As soon as the AIM system supports the creation of 
'virtual' objects, we can return to the original CAD-database. 
 
In chapter two a description is given of the objects that are available in the databases of 
the CAD and the vision system. The third chapter will give a short overview of the 
matching algorithm, to indicate which information is relevant for the sensor operation 
"Identify Object". In chapter four a description will be given of the data inside the CAD 
and vision databases, inclusive the needed modification for the data-structure of the CAD 
system. Furthermore those schemas are related to the data structure of the database of the 
robot controller. With those relations specified, we can facilitate the communication 
between the HCI and the other agents via the Archon Layer. 
 
2. The objects 
 
The Robot Arm Applications consists of a High Level robot controller, communicating 
with two other agents about the identity of certain objects. The sort of objects that one 
can expect are completely different in distinct environments. In this case we have 
assumed that the HLI is controlling an assembly robot, that is given the task to produce a 
product. As prototype of such an industrial product we have selected a benchmark that 
the Cranfield Institute of Technology has developed. This benchmark is specifically 
designed to verify the abilities of assembly robots. It contains several mechanical parts, 
in a large range of size and weight, which require a set of robot motions and accuracy's 
characteristic for the assembly of small mechanical assemblies. Seventeen parts have to 
be put on each other in a certain order, to yield a sort of pendulum. These parts are: 
 • two side plates 
 • four spacer pegs 
 • a large spacing piece 
 • a shaft 
 • a lever 
 • eight locking pins 
 
The parts are initially presented on an assembly pallet which also contains an assembly 
support structure. Figure 2.1a shows the parts in their initial position on the base plate. 
The assembly is started with putting one of the side plates on the assembly support. Then 
any of the parts in between the side plates can be assembled, followed by the second side 
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plate. Some constraints on the assembly sequence are that the spacing piece has to be 
located over two spacing pegs that need to be available first. Also the lever must be 
assembled after the shaft has been put in place. The final assembly is depicted in figure 
2.1b. 
 

   
Figure 2.1a and b: The Cranfield benchmark parts before and after the assembly. 
 
If we assume that halfway the assembly for some reason the spacing piece is moved from 
its original place, for instance by a shock. From the perspective of the camera the 
situation looks as in figure 2.2a. A sophisticated robot controller is able to detect that 
there is an obstacle on the way. Further assembly is not possible as long as the obstacle is 
not removed. At this time it is important to know what sort of object is in the way. Is it a 
piece of dirt, which may be omitted? Or is it a valuable part of the pendulum, which is 
needed anyway. This is the moment that the diagnosis system of the HLI activates the 
sensor operation "Identify Object". 
 
To fulfil such sensor operation certain abilities are necessary. A vision system is needed 
that can process the image (fig. 2.2a) to a set of nodes and edges, as indicated in figure 
2.2b. As you can see one of the side plate and the spacing piece are visible in the graph, 
one on top of the each other. Furthermore, lots of errors and inaccuracies are present. We 
will see that are matching routine will have difficulties with this complicated figure. 
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figure 2.2a and b: picture of the assembly support structure before and after image processing. 
 
A matching routine will have to compare the set of edges and nodes in the image graph 
with the models that are available in the CAD-system. Examples of those 3D-objects are 
given in figure 2.3a and b. 
  

   
figure 2.3a and: 3D-model of a side plate and a spacing piece. 
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3. The matching algorithm 
 
The basic idea behind the algorithm is quite simple. First, it puts up a hypothesis about a 
one-to-one-mapping between the directed edges of the object graph and the image graph. 
Then the algorithm compares adjacent edges in the graph to check to which amount that 
hypothesis is acceptable; the result is a number that expresses the probability of the 
correctness of the mapping. Then other hypotheses are tested. The mapping with the 
highest probability is returned as output. 
 

  
figure 3a: an example of a (correct) hypothesis, the bold edges represent the two 

respective edges in the image (left) and the CAD-object (right) which will be 
checked in equivalence in topology and geometry. 

 
First, the geometrical data of the original edges is compared. Then the topological 
equivalence is checked by calculating the geometrical equivalence a certain set of 
adjacent edges. The way that the adjacent edges are scanned is the core of the algorithm. 
This scanning occurs in two steps. The first step is that the two faces of which the two 
original directed edges are a border are cycled simultaneously. These faces are called the 
primary faces, surrounded by the primary chains. (fig 3b).  
 

  
 figure 3b: The primary faces have been matched 
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Thereafter, all faces adjacent directly to the primary faces are cycled. Those faces are 
called the secondary faces. (fig 3c and d). 
 

  
 figure 3c: The first pair of secondary faces have been matched 
 

  
 figure 3d: The second pair of secondary faces have been matched 
 
For the CAD-object there are still unmatched secondary faces left, but those faces are not 
visible in the image. This means that no other secondary chains can be matched, and that 
the algorithm has concluded the calculation of the probability of this hypothesis. It can 
continue with the testing of another hypothesis.  
 
To increase the speed of the algorithm, against a small price in reliability, there is a 
possibility to reduce the number of hypotheses that are checked. Not all hypotheses are 
equally probable. A hypothesis with the longest image edge and the shortest object edge 
is much less likely to be successful than one between edges of equal relative length. The 
same holds for other geometrical attributes like curvature and angles. Statistics can be 
used to sort out the edges on basis of a geometrical cost-function. This ordered set can be 
used to select a subset of all possible hypothesis, which is likely to contain good 
candidate hypothesis. 
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We can summarise the algorithm as follows: 
 

• Create the start sets. 
• For every pair of directed edges in these sets, 
calculate the probability that they match. 
• Cycle the primary chains, updating the score, and 
assigning matches between the edges until one of 
the chains is either exhausted or rounded. 

• For every matched pair of the primary chains, 
calculate the score of the adjacent secondary 
chains 
• Cycle the secondary chains, updating the score, 
and assigning matches between the edges until one 
of the chains is either exhausted or rounded. 

• Output the score and id's of the pair that had the 
highest probability. 

 
In this way the topology of the graph's are used to guide  the matching process. After 
matching edges X and Y, the algorithm continues with 'some' neighbour of X and 'some' 
neighbour of Y. Geometry is only used to qualify the probability of the mapping, 
although the topology also contributes to that number. This approach can be justified 
with the fact that the measurements of geometric features on images are not very reliable. 
Under projection, angles and length can be reduced or blow up to a very high extent. 
Guidance on such an unreliable information makes an algorithm unstable. But still the 
geometry is necessary in the qualification. Without geometrical data the algorithm 
couldn't see the difference between a cube and a rectangular box, because the topological 
description of both objects is the same.  
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The scoring is calculated in the following way: 
 

• The probability of a hypothesis is the mean of the 
scores of the primary and secondary chains: 

 

Hypothesis_ probability =
chain_ score

i=1

N _chains∑
N _chains

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
 

where N_chains is the number of visible and matched 
chains of the abstract graphs. 
• The score of a chain is the mean of scores of the 
edges-pairs, multiplied with a penalty (set on 0.5) 
if the chains are of different length: 

 

chain_ score =
pair_ score

i =1

N _ pairs∑
N _ pairs

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ⋅ penalty

 
where N_pairs is the number of edges of the 
shortest chain. 
• The score of a edge_pair depends on the amount of 
length equality, corrected for scaling, the 
amount of angle-with-successor equality and the 
amount of curvature equality. 

 

length_eq = 1 −
abs get_ length e1( )− get_ length(e2( )
max get_length e1( ),get_ length e2( )( )

⎛ 

⎝ ⎜ 
⎞ 

⎠ 
⎟ 
 

  

 curvature_ eq = 1 − XOR get_ curvature(e1),get_ curvature(e2)( )( ) 
  

 

angle_eq = 1 −
abs get_angle e1( )− get_ angle(e2( )

max get_angle e1( ),get_angle e2( )( )+180°( )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
 

  
The score is zero if one of the edges is curved 
and the other not, otherwise it is the mean of 
the length equality and the angle equality: 

 

 
pair_ score = curvature_eq ⋅ length_eq + angle_eq( )

2
⎛ 
⎝ ⎜ ⎞ 

⎠ 
⎟ 
 

  

 
In the implementation the probabilities will be given as a percentage from 0 to 100%. 
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The algorithm works good for images of single objects. Although the different parts of 
the pendulum are sometimes quite alike (the large spacing piece resembles the 'foot' of 
the side plate for instance), the algorithm selects always the right object. The probability 
of the occurrence of selected CAD-model in the image is at least 10% higher than the 
probabilities of the other objects. The correctness of the algorithm reduces significantly if 
more several connected objects are visible on the image. For the matching algorithm the 
face of an other object can be interpreted as the side or secondary face of the original 
object. The geometrical equivalence between the faces of different objects is low, so the 
probability of occurrence of any object is indicated as very low by the algorithm. 
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4. Data-schemas 
 
In this chapter we will model the stored data in the different agents for distributed Agent 
Information Manager (AIM)[UvA/TN11/7-92][Afsar93]. Distributed AIM is a federated, 
object-oriented database management system designed and implemented primarily to 
support the industrial automation application environments, where there is a network of 
cooperating agents. 
 
Distributed AIM defines an information access/sharing mechanism that is based on a 
global data model, the 3DIS model, to represent the information of each agent and a 
global language, the 3DIS/ISL query/update language, defined on top of the data model 
to support database interactions among agents. Using the global data model, agents' 
heterogeneous 'schemas' are made homogeneous. However, the homogeneity of schema 
representation does not address the semantic interrelationships (loose or tight integration) 
that may exist among the data and knowledge of different agents. These interrelationships 
are established systematically and incrementally through a set of derivation/integration 
operations defined for distributed schema management of AIM. Clearly, the query 
language and its capabilities play a major role in the specification of schema integration 
among the agents. 
 
Every agent is represented by several schemas. The local schema is the schema that 
models the data stored locally. The various import schemas model the information that is 
accessible from other databases. An export schema models some information that this 
database wishes to make accessible to other databases. Usually, an agent defines several 
export schemas.  The integrated schema presents a coherent view on all accessible local 
and remote information. The integrated schema can be interpreted as one user's global 
classification of objects that are classified differently by the schemas in other databases. 
 
In this chapter, the schemas that define objects in the CAD-system, Scilimage and HLI 
are presented. Which information from the vision- and CAD-agents is relevant for the 
HLI-agent is analysed, and made available for distribution by the definition of import and 
export schemas. For the CAD-system we will show the original data-structure, and the 
data-structure after the modification from undirected edges to directed edges. 
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4.1 The CAD data-structure 
 
There are four basic methods to describe objects: wireframes, polygonal schemes, 
sculptured surfaces and solid modeling [Requ80]. Wireframes and solid modeling are in 
widespread use, although wireframes are often considered old-fashioned, since they do 
not fully describe an object. A wireframe representation can be interpreted in various 
ways, as shown in figure 4.1.1. 
 

  
 figure 4.1.1: Ambiguity in the wireframe representation 
 
Solid modeling has a much more profound theoretical basis. It does not suffer from 
ambiguity. The two most important ones are constructed solid geometry (CSG) and 
boundary representation (B-rep). 
 
With CSG, every object is represented as a composition of primitive objects like 
cylinders, cones, and cubes. Representing an object thus means specifying what primitive 
object is composed of, the dimensions of the primitive objects, their spatial relation, and 
the way they should be composed: union, difference, or intersection. 
 
In the boundary representation an object is described by specifying its outer shell which 
is given by the faces it is composed of. The faces can be curved to allow exact modeling 
of round objects. In turn, every face can be described by its 'border', which is given by the 
edges, pieces of straight or curved line; every straight edge can be represented by stating 
start end and vertex. 
 
In our application we have chosen the Modified Winged-Edge representation (MWE), 
which is of the B-rep type. It is described in [Weil85].  
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As you can see in figure 4.1.2 the object is specified by an outer shell, which is an set of 
faces that form the boundary of the object. Every instance of the type SHELL_3D also 
contains a pointer to the list of edges of those faces: the wireframe. Every frame is 
limited by a chain of edges. No information is stored about adjacent faces in the 
FACE_3D, this data is stored inside the EDGE_3D type. Only the pointers to previous 
and next faces in the list are stored, to support an two-directional list. An undirected edge 
is the boundary between two faces, a fact stored in the PAIR_OF_FACES membership. 
The line itself is bound between two nodes. Because the edge is undirected, no indication 
can be made which is the start or end-node. The only statement that can be made that if 
one of adjacent faces is cycled in clockwise direction, one speak of an start- and end-
node, about an clockwise successor (cwe), and the angle with that successor (cwe_angle), 
etc. All this information has to be stored for both faces (or for both halfedges). To 
facilitate an consequent choice of first and the last of an pair, the selection is guided by 
the flags in the memberships CWEHALF and CCWEHALF. 
 
The approach of this report was to convert all the databases in such a way, that edges 
were represented in a directed fashion. In this way no virtual objects had to be created. 
The database schema showed on the right side was the result of this research. The 
representation is still a boundary representation: the object is defined by the shell of faces 
that surrounds it. The difference is that the faces are defined by chains of halfedges, 
instead of undirected edges. Every undirected EDGE_3D has an pointer to its 
counterpart. Start and end node, clockwise and counter clockwise successor, all this 
information is now uniquely determined. The price we have to pay from this design is 
that the length and curvature, features that must be the same for both halfedges by 
definition, are stored twice. This cost some memory space and requires some truth 
maintenance routines. The advantage of this approach is the much simpler structure, 
which allows shorter and faster queries on all information concerning the relation 
between the directed edge and the other edges of its face. 
 
With the modified schema, we are able to define an export schema (fig. 4.1.5), which the 
HLI-agent can use to build an integrated schema. This schema is explained in chapter 
4.3. 
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define_schema LOC used_schema 
 
  type PAIR_OF_INTS 
    first_int: INTEGERS 
    last_int: INTEGERS 
 
  type PAIR_OF_REALS 
    first_real: REALS 
    last_real: REALS 
 
  type NODE_3D 
    node_name: STRINGS 
    x: REALS 
    y: REALS 
    z: REALS 
 
  type PAIR_OF_NODES 
    first_node: NODE_3D 
    last_node: NODE_3D 
 
  type EDGE_3D 
    edge_name: STRINGS 
    chrono_succ: EDGE_3D 
    nodes: PAIR_OF_NODES 
    cwe: PAIR_OF_EDGES 
    ccwe: PAIR_OF_EDGES 
    cwehalf: PAIR_OF_INTS 
    ccwehalf: PAIR_OF_INTS 
    cw_angle: PAIR_OF_REALS 
    ccw_angle: PAIR_OF_REALS 
    faces: PAIR_OF_FACES 
    curvature: REALS 
 
  type  PAIR_OF_EDGES 
    first_edge: EDGE_3D 
    last_edge: EDGE_3D 
 
  type FACE_3D 
    face_name: STRINGS 
    next_face: FACE_3D 
    prev_face: FACE_3D 
    edge_list: EDGE_3D 
 
  type PAIR_OF_FACES 
    first_face: FACE_3D 
    last_face: FACE_3D 
 
  type SHELL_3D 
    shell_name: STRINGS 
    face_list: FACE_3D 
    chronologic_edge_list: 
                       EDGE_3D 
 
end_schema LOC 

define_schema LOC used_schema 
 
  type NODE_3D 
    node_name: STRINGS 
    x: REALS 
    y: REALS 
    z: REALS 
 
  type EDGE_3D 
    edge_name: STRINGS 
    start_node: NODE_3D 
    end_node: NODE_3D 
    chrono_succ: EDGE_3D 
    otherhalf: EDGE_3D 
    cwe: EDGE_3D 
    ccwe: EDGE_3D 
    cw_angle: REALS 
    ccw_angle: REALS 
    curvature: REALS 
    length: REALS 
    face: FACE_3D 
 
  type FACE_3D 
    face_name: STRINGS 
    next_face: FACE_3D 
    prev_face: FACE_3D 
    edge_list: EDGE_3D 
 
  type SHELL_3D 
    shell_name: STRINGS 
    face_list: FACE_3D 
    chronologic_edge_list: 
EDGE_3D 
 
end_schema LOC 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1.4a and b The original and modified database schema of the CAD-
agent. 
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derive_schema EXP2 from_schema  LOC 
 
  type EDGE_3D 
    edge_name: STRINGS 
    chrono_succ: EDGE_3D 
    otherhalf: EDGE_3D 
    cwe: EDGE_3D 
    cw_angle: REALS 
    curvature: REALS 
    length: REALS 
 
  type SHELL_3D 
    chronologic_edge_list: 
                       EDGE_3D 
    shell_name: STRINGS 
 
derivation_specification 
 
  EDGE_3D = EDGE_3D@LOC 
    edge_name = edge_name@LOC 
    chrono_succ = chrono_succ@LOC 
    otherhalf = otherhalf@LOC 
    cwe = cwe@LOC 
    cw_angle = cw_angle@LOC 
    curvature = curvature@LOC 
    length = length@LOC 
 
  SHELL_3D = SHELL_3D@LOC 
    chronologic_edge_list = 
chronologic_edge_list@LOC 
end_schema EXP2 

Figure 4.1.5 The exported database schema of the CAD-agent. 
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4.2 The Scilimage data-structure 
 
The vision system Scilimage is an interactive image processing environment. In this 
environment the image is taken by a digital camera. On the image, some edge-detection 
techniques are applied to get the vertices and segments of the objects. Special care has to 
be taken on the lighting conditions, because every shadow will result in to additional 
edges. The segments are stored as directed edges, so one can speak of start and end nodes 
(fig 4.2.1). The angles are given with the clockwise and counter clockwise neighbours 
(CW_SUCC_ANGLE, CW_PRED_ANGLE). 'Straight ahead' is defined as 0�, 'straight 
corner to the left' as -90�. Only a part of this information, relevant for the matching 
algorithm is exported (fig 4.2.2) 
 

define_schema LOC used_schema 
 
  type NODE_2D 
    node_2d_name: STRINGS 
    x: REALS 
    y: REALS 
 
  type EDGE_2D 
    edge_2d_name: STRINGS 
    start_node: NODE_2D 
    end_node: NODE_2D 
    chrono_succ: EDGE_2D 
    otherhalf: EDGE_2D 
    cw_succ: EDGE_2D 
    cw_pred: EDGE_2D 
    cw_succ_angle: REALS 
    cw_pred_angle: REALS 
    curvature: REALS 
    length: REALS 
    at_border: STRINGS 
    used: STRINGS 
 
  type GRAPH_2D 
    image_name: STRINGS 
    chronologic_head: EDGE_2D 
    chronologic_tail: EDGE_2D 
 
end_schema LOC 

Figure 4.2.1 The  internal database schema of the SCILIMAGE-agent. 
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derive_schema EXP1 from_schema  LOC 
 
  type EDGE_2D 
    edge_2d_name: STRINGS 
    chrono_succ: EDGE_2D 
    otherhalf: EDGE_2D 
    cw_succ: EDGE_2D 
    cw_succ_angle: REALS 
    curvature: REALS 
    length: REALS 
    at_border: STRINGS 
 
  type GRAPH_2D 
    chronologic_head: EDGE_2D 
 
derivation_specification 
 
  EDGE_2D = EDGE_2D@LOC 
    edge_2d_name = edge_2d_name@LOC 
    chrono_succ = chrono_succ@LOC 
    otherhalf = otherhalf@LOC 
    cw_succ = cw_succ@LOC 
    cw_succ_angle = cw_succ_angle@LOC 
    curvature = curvature@LOC 
    length = length@LOC 
    at_border = at_border@LOC 
 
  GRAPH_2D = GRAPH_2D@LOC 
    chronologic_head = chronologic_head@LOC 
 
end_schema EXP1 

Figure 4.2.2 The exported database schema of the SCILIMAGE-agent. 
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4.3 The HLI data-structure 
 
In the abstract graph is constructed by set of points (representing the directed EDGES in 
the image and the CAD-model), and the relations between those points. There are two 
types of relations: the relations with the other points of the chain that defines a face, and 
the relation with the directed EDGE that represents the same boundary, but traversed in 
opposite direction. The first relation is stored as an pointer to the next POINT of the 
chain: arc_I. The second relation is stored as an pointer to the POINT representing the 
otherhalf of the EDGE. This relation is undirected, so care have to taken that the arc_II-
relation of both POINT's are set simultaneously, pointing to each other, in an atomic 
transaction. 
 
The geometrical information is stored in slots curvature, length and cw_succ_angle of the 
POINT's. In contrast with the schemas of the other agents, were complementary 
information was stored in the co-ordinates of the nodes, this is only place were 
geometrical data is found. This feature makes it easy to change the geometry of an object, 
for instance by scaling. In the abstract graph representation, topology and geometry have 
been separated totally. 
 
The instances of this data structure, have a one-to-one relationship with the objects in the 
other agents. So instead of acquiring information about an object in the (export-)format 
of the other agents, followed by a conversion to the abstract graph format by sensor 
operation, direct access to the attributes of the abstract graph is possible via the definition 
of an integrated schema (fig 4.3). Conversions to the appropriate type- and map-names is 
defined with derivation primitives defined in AIM. This makes that the algorithm don't 
have to care about implementation details of other agents, but directly can query in the 
abstract-graph format, with the queries defined in UvA/Archon/TN-0013/1-93. 
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define_schema IMP1 same_as_export_schema EXP1 from SCILIMAGE 
 
  type EDGE_2D 
    edge_2d_name: STRINGS 
    chrono_succ: EDGE_2D 
    otherhalf: EDGE_2D 
    cw_succ: EDGE_2D 
    cw_succ_angle: REALS 
    curvature: REALS 
    length: REALS 
    at_border: STRINGS 
 
  type GRAPH_2 
    image_name: STRINGS 
    chronologic_edge_head: EDGE_2D 
 
end_schema IMP1 
 
define_schema IMP2 same_as_export_schema EXP2 from_agent CAD 
 
  type EDGE_3D 
    edge_name: STRINGS 
    chrono_succ: EDGE_3D 
    otherhalf: EDGE_3D 
    cwe: EDGE_3D 
    cw_angle: REALS 
    curvature: REALS 
    length: REALS 
 
  type SHELL_3D 
    chronologic_edge_list: EDGE_3D 
    shell_name: STRINGS 
 
end_schema IMP2 
Figure 4.3.1 The imported database schemas of the HLI-agent. 
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derive_schema INT from_schema IMP1,IMP2 
  type POINT 
    point_name: STRINGS 
    chrono_succ: POINT 
    arc_I: POINT 
    arc_II: POINT 
    succ_angle: REALS 
    curvature: REALS 
    length: REALS 
    at_border: STRINGS 
 
  derivation_specification 
  POINT = union(EDGE_2D@IMP1,EDGE_3D@IMP2) 
 
  point_name  = {edge_2d_name@IMP1,edge_name@IMP2} 
  chrono_succ = {chrono_succ@IMP1,chrono_succ@IMP2} 
  arc_I       = {cw_succ@IMP1,cwe@IMP2} 
  arc_II      = {otherhalf@IMP1,otherhalf@IMP2} 
  succ_angle  = {cw_succ_angle@IMP1,cw_angle@IMP2} 
  curvature   = {curvature@IMP1,curvature@IMP2} 
  length      = {length@IMP1,length@IMP2} 
  at_border   = at_border@IMP1 
 
  type ABSTRACT_GRAPH 
    chronologic_head: POINT 
    graph_name: STRINGS 
 
  derivation_specification 
  ABSTRACT_GRAPH = union(GRAPH_@D@IMP1,SHELL_3D@IMP2) 
 
    chronologic_head = {chronologic_edge_head@IMP1, 
                           chronologic_edge_list@IMP2)} 
    image_name = {image_name@IMP1,shell_name@IMP@} 
 
end_schema INT 
Figure 4.3.2 The database schema of the HLI-agent. 
 
5 Results 
 
The modification of the existing software to a version that makes use of the advantages of 
the AIM data modeling mechanism has leaded to a reduction of the needed code by a 
factor of 2.5. The original software approach, inclusive conversion routines, needed 2049 
lines, the new approach only 796. 
 
Further is this code more flexible in respect to the data-structures of the other agents. One 
can cope with modification of the export-schema of an other agent by a small change in 
the derivation-specifications of the integrated schema, while in the original set-up this 
would lead to a change in the conversion routines. 
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6 Conclusion 
 
In this technical note a description is given how in an robot application three autonomous 
agents can use the AIM module of the Archon layer to facilitate the exchange the 
complex data structures between the agents. A complete description of the data schemas 
of a vision system and a CAD-system are given, and the way to relate those schemas to 
the data schemas of the robot controller agent. The benefits are 

• a drastic reduction in the code required for data exchange 
• a complete isolation of all data modelling issues in the Archon Layer 
• a uniform description of all relevant data schemas used by various agents 
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