

Application Study:
 Robot Arm Control

An experience using distributed AIM

Arnoud Visser
Michiel Wiedijk
Frank Tuijnman

Hamideh Afsarmanesh

November 1993

u

University of Amsterdam

 2

1. The Robot Arm application at UvA

In the robot arm application we deal with three agents that are heterogeneous in their
representation of information. Therefore they cannot directly exchange information.
Using the AIM data modeling mechanism we approach to solve this problem through the
integration of the AIM schema's of three agents.

Three agents are active: a high level robot controller (HLI)[Meij91], a vision system
(SCILIMAGE or SCILAIM)[Kate90] and a CAD system. They are the intelligent
systems of the Archon architecture as indicated in figure 1. Sophisticated robot
controllers monitor the operations of a robot. If a contingency occurs, the controller
needs information about the situation, before plans can be made to recover. A good
example of such valuable information is the identity of unexpected objects that are found
in the working area. As soon as the identity of those objects is known, decisions how to
proceed can be made. To acquire the identity of an object, the HLI has to direct a camera
to the proper position, get a description of the object from Scilimage and compare it with
the information produced by a solid modeling CAD system. This process is called
"sensor operation Identify Object"

vision system

Integrated Schema

Import Schema

Local Schema

LOC

Export Schema

EXP1

A
IM

P
la

nn
in

g
&

C

oo
rd

in
at

io
n

Monitor

High Level Communications Manager

Agents Information Manager

Integrated Schema

INT

Import Schema
IMP2 IMP1

Local Schema

Export Schema

A
IM

P
la

nn
in

g
&

C

oo
rd

in
at

io
n

Monitor

High Level Communications Manager

Agents Information Manager

Integrated Schema

Import Schema

Local Schema

LOC

Export Schema

EXP2

A
IM

P
la

nn
in

g
&

 C
oo

rd
in

at
io

n

Monitor

High Level Communications Manager

Agents Information Manager

High Level Robot Controller

side plate 39%
spacing piece 34%

Sensor Operation "Identify Object"
CAD system

conversion

Se
ss

io
n

La
ye

r
A

rc
ho

n
La

ye
r

In
te

lli
ge

nt
 S

ys
te

m
s

Figure 1: The Archon architecture for the Robot Arm Application

 3

The main problem is that the two descriptions of the object provided by the CAD system
and the vision system are different, both in semantics and representation of the world. We
can generate procedures inside the sensor operation to filter out the information that one
needs for the matching algorithm. However, this approach has several disadvantages:

• the algorithm becomes quite complicated because it has to take care of the details of the

particular representations.
• the code of the sensor operation has to be changed for every change in the data-structure

of the other agents.
• the algorithm is only applicable for those two agents. The use of an other CAD system

or vision system will force the user to rewrite her/his code.

In the document UvA/Archon/TN-0013/1-93 an analysis was made on how the
ARCHON layer, using the AIM module, could make the entire task easier for the sensor
operation. The aim was to convert the data-structures in the import schemas of the HLI
agent, which are the same as the export schema's of the other agents, to an integrated
schema of the HLI agent.

The former report showed that such a strategy does not work and included the following
reason: the CAD system knows only about undirected edges, while the matching
algorithm requires directed edges. For every undirected edge their exist two directed
edges. At present, the schema derivation operations of AIM do not support the creation
of virtual objects. Consequently, it is not possible to define a transformation that doubles
the number of 'edge objects' and creates for each undirected edge (in the CAD database)
two directed edges (in the HLI database).

The suggestion in UvA/Archon/TN-0013/1-93 was to find a common representation that
is suited for the matching process, but does not double the number of edges with respect
to the other databases. In this report we have taken an slightly different approach, namely
we will define a schema for the CAD-agent with directed edges. This approach works
better for the implementation. Here only the CAD-database must be modified, while in
the previously suggested approach the Scilimage-database and the algorithm had to be
altered. This process is indicated as the module "conversion", between the Archon layer

 4

and the CAD-system in figure 1. As soon as the AIM system supports the creation of
'virtual' objects, we can return to the original CAD-database.

In chapter two a description is given of the objects that are available in the databases of
the CAD and the vision system. The third chapter will give a short overview of the
matching algorithm, to indicate which information is relevant for the sensor operation
"Identify Object". In chapter four a description will be given of the data inside the CAD
and vision databases, inclusive the needed modification for the data-structure of the CAD
system. Furthermore those schemas are related to the data structure of the database of the
robot controller. With those relations specified, we can facilitate the communication
between the HCI and the other agents via the Archon Layer.

2. The objects

The Robot Arm Applications consists of a High Level robot controller, communicating
with two other agents about the identity of certain objects. The sort of objects that one
can expect are completely different in distinct environments. In this case we have
assumed that the HLI is controlling an assembly robot, that is given the task to produce a
product. As prototype of such an industrial product we have selected a benchmark that
the Cranfield Institute of Technology has developed. This benchmark is specifically
designed to verify the abilities of assembly robots. It contains several mechanical parts,
in a large range of size and weight, which require a set of robot motions and accuracy's
characteristic for the assembly of small mechanical assemblies. Seventeen parts have to
be put on each other in a certain order, to yield a sort of pendulum. These parts are:
 • two side plates
 • four spacer pegs
 • a large spacing piece
 • a shaft
 • a lever
 • eight locking pins

The parts are initially presented on an assembly pallet which also contains an assembly
support structure. Figure 2.1a shows the parts in their initial position on the base plate.
The assembly is started with putting one of the side plates on the assembly support. Then
any of the parts in between the side plates can be assembled, followed by the second side

 5

plate. Some constraints on the assembly sequence are that the spacing piece has to be
located over two spacing pegs that need to be available first. Also the lever must be
assembled after the shaft has been put in place. The final assembly is depicted in figure
2.1b.

Figure 2.1a and b: The Cranfield benchmark parts before and after the assembly.

If we assume that halfway the assembly for some reason the spacing piece is moved from
its original place, for instance by a shock. From the perspective of the camera the
situation looks as in figure 2.2a. A sophisticated robot controller is able to detect that
there is an obstacle on the way. Further assembly is not possible as long as the obstacle is
not removed. At this time it is important to know what sort of object is in the way. Is it a
piece of dirt, which may be omitted? Or is it a valuable part of the pendulum, which is
needed anyway. This is the moment that the diagnosis system of the HLI activates the
sensor operation "Identify Object".

To fulfil such sensor operation certain abilities are necessary. A vision system is needed
that can process the image (fig. 2.2a) to a set of nodes and edges, as indicated in figure
2.2b. As you can see one of the side plate and the spacing piece are visible in the graph,
one on top of the each other. Furthermore, lots of errors and inaccuracies are present. We
will see that are matching routine will have difficulties with this complicated figure.

 6

figure 2.2a and b: picture of the assembly support structure before and after image processing.

A matching routine will have to compare the set of edges and nodes in the image graph
with the models that are available in the CAD-system. Examples of those 3D-objects are
given in figure 2.3a and b.

figure 2.3a and: 3D-model of a side plate and a spacing piece.

 7

3. The matching algorithm

The basic idea behind the algorithm is quite simple. First, it puts up a hypothesis about a
one-to-one-mapping between the directed edges of the object graph and the image graph.
Then the algorithm compares adjacent edges in the graph to check to which amount that
hypothesis is acceptable; the result is a number that expresses the probability of the
correctness of the mapping. Then other hypotheses are tested. The mapping with the
highest probability is returned as output.

figure 3a: an example of a (correct) hypothesis, the bold edges represent the two

respective edges in the image (left) and the CAD-object (right) which will be
checked in equivalence in topology and geometry.

First, the geometrical data of the original edges is compared. Then the topological
equivalence is checked by calculating the geometrical equivalence a certain set of
adjacent edges. The way that the adjacent edges are scanned is the core of the algorithm.
This scanning occurs in two steps. The first step is that the two faces of which the two
original directed edges are a border are cycled simultaneously. These faces are called the
primary faces, surrounded by the primary chains. (fig 3b).

 figure 3b: The primary faces have been matched

 8

Thereafter, all faces adjacent directly to the primary faces are cycled. Those faces are
called the secondary faces. (fig 3c and d).

 figure 3c: The first pair of secondary faces have been matched

 figure 3d: The second pair of secondary faces have been matched

For the CAD-object there are still unmatched secondary faces left, but those faces are not
visible in the image. This means that no other secondary chains can be matched, and that
the algorithm has concluded the calculation of the probability of this hypothesis. It can
continue with the testing of another hypothesis.

To increase the speed of the algorithm, against a small price in reliability, there is a
possibility to reduce the number of hypotheses that are checked. Not all hypotheses are
equally probable. A hypothesis with the longest image edge and the shortest object edge
is much less likely to be successful than one between edges of equal relative length. The
same holds for other geometrical attributes like curvature and angles. Statistics can be
used to sort out the edges on basis of a geometrical cost-function. This ordered set can be
used to select a subset of all possible hypothesis, which is likely to contain good
candidate hypothesis.

 9

We can summarise the algorithm as follows:

• Create the start sets.
• For every pair of directed edges in these sets,
calculate the probability that they match.
• Cycle the primary chains, updating the score, and
assigning matches between the edges until one of
the chains is either exhausted or rounded.

• For every matched pair of the primary chains,
calculate the score of the adjacent secondary
chains
• Cycle the secondary chains, updating the score,
and assigning matches between the edges until one
of the chains is either exhausted or rounded.

• Output the score and id's of the pair that had the
highest probability.

In this way the topology of the graph's are used to guide the matching process. After
matching edges X and Y, the algorithm continues with 'some' neighbour of X and 'some'
neighbour of Y. Geometry is only used to qualify the probability of the mapping,
although the topology also contributes to that number. This approach can be justified
with the fact that the measurements of geometric features on images are not very reliable.
Under projection, angles and length can be reduced or blow up to a very high extent.
Guidance on such an unreliable information makes an algorithm unstable. But still the
geometry is necessary in the qualification. Without geometrical data the algorithm
couldn't see the difference between a cube and a rectangular box, because the topological
description of both objects is the same.

 10

The scoring is calculated in the following way:

• The probability of a hypothesis is the mean of the
scores of the primary and secondary chains:

Hypothesis_ probability =
chain_ score

i=1

N _chains∑
N _chains

⎛

⎝
⎜

⎞

⎠
⎟

where N_chains is the number of visible and matched
chains of the abstract graphs.
• The score of a chain is the mean of scores of the
edges-pairs, multiplied with a penalty (set on 0.5)
if the chains are of different length:

chain_ score =
pair_ score

i =1

N _ pairs∑
N _ pairs

⎛

⎝
⎜

⎞

⎠
⎟ ⋅ penalty

where N_pairs is the number of edges of the
shortest chain.
• The score of a edge_pair depends on the amount of
length equality, corrected for scaling, the
amount of angle-with-successor equality and the
amount of curvature equality.

length_eq = 1 −
abs get_ length e1()− get_ length(e2()
max get_length e1(),get_ length e2()()

⎛

⎝ ⎜
⎞

⎠
⎟

 curvature_ eq = 1 − XOR get_ curvature(e1),get_ curvature(e2)()()

angle_eq = 1 −
abs get_angle e1()− get_ angle(e2()

max get_angle e1(),get_angle e2()()+180°()
⎛

⎝
⎜

⎞

⎠
⎟

The score is zero if one of the edges is curved
and the other not, otherwise it is the mean of
the length equality and the angle equality:

pair_ score = curvature_eq ⋅ length_eq + angle_eq()

2
⎛
⎝ ⎜ ⎞

⎠
⎟

In the implementation the probabilities will be given as a percentage from 0 to 100%.

 11

The algorithm works good for images of single objects. Although the different parts of
the pendulum are sometimes quite alike (the large spacing piece resembles the 'foot' of
the side plate for instance), the algorithm selects always the right object. The probability
of the occurrence of selected CAD-model in the image is at least 10% higher than the
probabilities of the other objects. The correctness of the algorithm reduces significantly if
more several connected objects are visible on the image. For the matching algorithm the
face of an other object can be interpreted as the side or secondary face of the original
object. The geometrical equivalence between the faces of different objects is low, so the
probability of occurrence of any object is indicated as very low by the algorithm.

 12

4. Data-schemas

In this chapter we will model the stored data in the different agents for distributed Agent
Information Manager (AIM)[UvA/TN11/7-92][Afsar93]. Distributed AIM is a federated,
object-oriented database management system designed and implemented primarily to
support the industrial automation application environments, where there is a network of
cooperating agents.

Distributed AIM defines an information access/sharing mechanism that is based on a
global data model, the 3DIS model, to represent the information of each agent and a
global language, the 3DIS/ISL query/update language, defined on top of the data model
to support database interactions among agents. Using the global data model, agents'
heterogeneous 'schemas' are made homogeneous. However, the homogeneity of schema
representation does not address the semantic interrelationships (loose or tight integration)
that may exist among the data and knowledge of different agents. These interrelationships
are established systematically and incrementally through a set of derivation/integration
operations defined for distributed schema management of AIM. Clearly, the query
language and its capabilities play a major role in the specification of schema integration
among the agents.

Every agent is represented by several schemas. The local schema is the schema that
models the data stored locally. The various import schemas model the information that is
accessible from other databases. An export schema models some information that this
database wishes to make accessible to other databases. Usually, an agent defines several
export schemas. The integrated schema presents a coherent view on all accessible local
and remote information. The integrated schema can be interpreted as one user's global
classification of objects that are classified differently by the schemas in other databases.

In this chapter, the schemas that define objects in the CAD-system, Scilimage and HLI
are presented. Which information from the vision- and CAD-agents is relevant for the
HLI-agent is analysed, and made available for distribution by the definition of import and
export schemas. For the CAD-system we will show the original data-structure, and the
data-structure after the modification from undirected edges to directed edges.

 13

4.1 The CAD data-structure

There are four basic methods to describe objects: wireframes, polygonal schemes,
sculptured surfaces and solid modeling [Requ80]. Wireframes and solid modeling are in
widespread use, although wireframes are often considered old-fashioned, since they do
not fully describe an object. A wireframe representation can be interpreted in various
ways, as shown in figure 4.1.1.

 figure 4.1.1: Ambiguity in the wireframe representation

Solid modeling has a much more profound theoretical basis. It does not suffer from
ambiguity. The two most important ones are constructed solid geometry (CSG) and
boundary representation (B-rep).

With CSG, every object is represented as a composition of primitive objects like
cylinders, cones, and cubes. Representing an object thus means specifying what primitive
object is composed of, the dimensions of the primitive objects, their spatial relation, and
the way they should be composed: union, difference, or intersection.

In the boundary representation an object is described by specifying its outer shell which
is given by the faces it is composed of. The faces can be curved to allow exact modeling
of round objects. In turn, every face can be described by its 'border', which is given by the
edges, pieces of straight or curved line; every straight edge can be represented by stating
start end and vertex.

In our application we have chosen the Modified Winged-Edge representation (MWE),
which is of the B-rep type. It is described in [Weil85].

 14

As you can see in figure 4.1.2 the object is specified by an outer shell, which is an set of
faces that form the boundary of the object. Every instance of the type SHELL_3D also
contains a pointer to the list of edges of those faces: the wireframe. Every frame is
limited by a chain of edges. No information is stored about adjacent faces in the
FACE_3D, this data is stored inside the EDGE_3D type. Only the pointers to previous
and next faces in the list are stored, to support an two-directional list. An undirected edge
is the boundary between two faces, a fact stored in the PAIR_OF_FACES membership.
The line itself is bound between two nodes. Because the edge is undirected, no indication
can be made which is the start or end-node. The only statement that can be made that if
one of adjacent faces is cycled in clockwise direction, one speak of an start- and end-
node, about an clockwise successor (cwe), and the angle with that successor (cwe_angle),
etc. All this information has to be stored for both faces (or for both halfedges). To
facilitate an consequent choice of first and the last of an pair, the selection is guided by
the flags in the memberships CWEHALF and CCWEHALF.

The approach of this report was to convert all the databases in such a way, that edges
were represented in a directed fashion. In this way no virtual objects had to be created.
The database schema showed on the right side was the result of this research. The
representation is still a boundary representation: the object is defined by the shell of faces
that surrounds it. The difference is that the faces are defined by chains of halfedges,
instead of undirected edges. Every undirected EDGE_3D has an pointer to its
counterpart. Start and end node, clockwise and counter clockwise successor, all this
information is now uniquely determined. The price we have to pay from this design is
that the length and curvature, features that must be the same for both halfedges by
definition, are stored twice. This cost some memory space and requires some truth
maintenance routines. The advantage of this approach is the much simpler structure,
which allows shorter and faster queries on all information concerning the relation
between the directed edge and the other edges of its face.

With the modified schema, we are able to define an export schema (fig. 4.1.5), which the
HLI-agent can use to build an integrated schema. This schema is explained in chapter
4.3.

 15

define_schema LOC used_schema

 type PAIR_OF_INTS
 first_int: INTEGERS
 last_int: INTEGERS

 type PAIR_OF_REALS
 first_real: REALS
 last_real: REALS

 type NODE_3D
 node_name: STRINGS
 x: REALS
 y: REALS
 z: REALS

 type PAIR_OF_NODES
 first_node: NODE_3D
 last_node: NODE_3D

 type EDGE_3D
 edge_name: STRINGS
 chrono_succ: EDGE_3D
 nodes: PAIR_OF_NODES
 cwe: PAIR_OF_EDGES
 ccwe: PAIR_OF_EDGES
 cwehalf: PAIR_OF_INTS
 ccwehalf: PAIR_OF_INTS
 cw_angle: PAIR_OF_REALS
 ccw_angle: PAIR_OF_REALS
 faces: PAIR_OF_FACES
 curvature: REALS

 type PAIR_OF_EDGES
 first_edge: EDGE_3D
 last_edge: EDGE_3D

 type FACE_3D
 face_name: STRINGS
 next_face: FACE_3D
 prev_face: FACE_3D
 edge_list: EDGE_3D

 type PAIR_OF_FACES
 first_face: FACE_3D
 last_face: FACE_3D

 type SHELL_3D
 shell_name: STRINGS
 face_list: FACE_3D
 chronologic_edge_list:
 EDGE_3D

end_schema LOC

define_schema LOC used_schema

 type NODE_3D
 node_name: STRINGS
 x: REALS
 y: REALS
 z: REALS

 type EDGE_3D
 edge_name: STRINGS
 start_node: NODE_3D
 end_node: NODE_3D
 chrono_succ: EDGE_3D
 otherhalf: EDGE_3D
 cwe: EDGE_3D
 ccwe: EDGE_3D
 cw_angle: REALS
 ccw_angle: REALS
 curvature: REALS
 length: REALS
 face: FACE_3D

 type FACE_3D
 face_name: STRINGS
 next_face: FACE_3D
 prev_face: FACE_3D
 edge_list: EDGE_3D

 type SHELL_3D
 shell_name: STRINGS
 face_list: FACE_3D
 chronologic_edge_list:
EDGE_3D

end_schema LOC

Figure 4.1.4a and b The original and modified database schema of the CAD-
agent.

 16

derive_schema EXP2 from_schema LOC

 type EDGE_3D
 edge_name: STRINGS
 chrono_succ: EDGE_3D
 otherhalf: EDGE_3D
 cwe: EDGE_3D
 cw_angle: REALS
 curvature: REALS
 length: REALS

 type SHELL_3D
 chronologic_edge_list:
 EDGE_3D
 shell_name: STRINGS

derivation_specification

 EDGE_3D = EDGE_3D@LOC
 edge_name = edge_name@LOC
 chrono_succ = chrono_succ@LOC
 otherhalf = otherhalf@LOC
 cwe = cwe@LOC
 cw_angle = cw_angle@LOC
 curvature = curvature@LOC
 length = length@LOC

 SHELL_3D = SHELL_3D@LOC
 chronologic_edge_list =
chronologic_edge_list@LOC
end_schema EXP2

Figure 4.1.5 The exported database schema of the CAD-agent.

 17

4.2 The Scilimage data-structure

The vision system Scilimage is an interactive image processing environment. In this
environment the image is taken by a digital camera. On the image, some edge-detection
techniques are applied to get the vertices and segments of the objects. Special care has to
be taken on the lighting conditions, because every shadow will result in to additional
edges. The segments are stored as directed edges, so one can speak of start and end nodes
(fig 4.2.1). The angles are given with the clockwise and counter clockwise neighbours
(CW_SUCC_ANGLE, CW_PRED_ANGLE). 'Straight ahead' is defined as 0�, 'straight
corner to the left' as -90�. Only a part of this information, relevant for the matching
algorithm is exported (fig 4.2.2)

define_schema LOC used_schema

 type NODE_2D
 node_2d_name: STRINGS
 x: REALS
 y: REALS

 type EDGE_2D
 edge_2d_name: STRINGS
 start_node: NODE_2D
 end_node: NODE_2D
 chrono_succ: EDGE_2D
 otherhalf: EDGE_2D
 cw_succ: EDGE_2D
 cw_pred: EDGE_2D
 cw_succ_angle: REALS
 cw_pred_angle: REALS
 curvature: REALS
 length: REALS
 at_border: STRINGS
 used: STRINGS

 type GRAPH_2D
 image_name: STRINGS
 chronologic_head: EDGE_2D
 chronologic_tail: EDGE_2D

end_schema LOC

Figure 4.2.1 The internal database schema of the SCILIMAGE-agent.

 18

derive_schema EXP1 from_schema LOC

 type EDGE_2D
 edge_2d_name: STRINGS
 chrono_succ: EDGE_2D
 otherhalf: EDGE_2D
 cw_succ: EDGE_2D
 cw_succ_angle: REALS
 curvature: REALS
 length: REALS
 at_border: STRINGS

 type GRAPH_2D
 chronologic_head: EDGE_2D

derivation_specification

 EDGE_2D = EDGE_2D@LOC
 edge_2d_name = edge_2d_name@LOC
 chrono_succ = chrono_succ@LOC
 otherhalf = otherhalf@LOC
 cw_succ = cw_succ@LOC
 cw_succ_angle = cw_succ_angle@LOC
 curvature = curvature@LOC
 length = length@LOC
 at_border = at_border@LOC

 GRAPH_2D = GRAPH_2D@LOC
 chronologic_head = chronologic_head@LOC

end_schema EXP1

Figure 4.2.2 The exported database schema of the SCILIMAGE-agent.

 19

4.3 The HLI data-structure

In the abstract graph is constructed by set of points (representing the directed EDGES in
the image and the CAD-model), and the relations between those points. There are two
types of relations: the relations with the other points of the chain that defines a face, and
the relation with the directed EDGE that represents the same boundary, but traversed in
opposite direction. The first relation is stored as an pointer to the next POINT of the
chain: arc_I. The second relation is stored as an pointer to the POINT representing the
otherhalf of the EDGE. This relation is undirected, so care have to taken that the arc_II-
relation of both POINT's are set simultaneously, pointing to each other, in an atomic
transaction.

The geometrical information is stored in slots curvature, length and cw_succ_angle of the
POINT's. In contrast with the schemas of the other agents, were complementary
information was stored in the co-ordinates of the nodes, this is only place were
geometrical data is found. This feature makes it easy to change the geometry of an object,
for instance by scaling. In the abstract graph representation, topology and geometry have
been separated totally.

The instances of this data structure, have a one-to-one relationship with the objects in the
other agents. So instead of acquiring information about an object in the (export-)format
of the other agents, followed by a conversion to the abstract graph format by sensor
operation, direct access to the attributes of the abstract graph is possible via the definition
of an integrated schema (fig 4.3). Conversions to the appropriate type- and map-names is
defined with derivation primitives defined in AIM. This makes that the algorithm don't
have to care about implementation details of other agents, but directly can query in the
abstract-graph format, with the queries defined in UvA/Archon/TN-0013/1-93.

 20

define_schema IMP1 same_as_export_schema EXP1 from SCILIMAGE

 type EDGE_2D
 edge_2d_name: STRINGS
 chrono_succ: EDGE_2D
 otherhalf: EDGE_2D
 cw_succ: EDGE_2D
 cw_succ_angle: REALS
 curvature: REALS
 length: REALS
 at_border: STRINGS

 type GRAPH_2
 image_name: STRINGS
 chronologic_edge_head: EDGE_2D

end_schema IMP1

define_schema IMP2 same_as_export_schema EXP2 from_agent CAD

 type EDGE_3D
 edge_name: STRINGS
 chrono_succ: EDGE_3D
 otherhalf: EDGE_3D
 cwe: EDGE_3D
 cw_angle: REALS
 curvature: REALS
 length: REALS

 type SHELL_3D
 chronologic_edge_list: EDGE_3D
 shell_name: STRINGS

end_schema IMP2
Figure 4.3.1 The imported database schemas of the HLI-agent.

 21

derive_schema INT from_schema IMP1,IMP2
 type POINT
 point_name: STRINGS
 chrono_succ: POINT
 arc_I: POINT
 arc_II: POINT
 succ_angle: REALS
 curvature: REALS
 length: REALS
 at_border: STRINGS

 derivation_specification
 POINT = union(EDGE_2D@IMP1,EDGE_3D@IMP2)

 point_name = {edge_2d_name@IMP1,edge_name@IMP2}
 chrono_succ = {chrono_succ@IMP1,chrono_succ@IMP2}
 arc_I = {cw_succ@IMP1,cwe@IMP2}
 arc_II = {otherhalf@IMP1,otherhalf@IMP2}
 succ_angle = {cw_succ_angle@IMP1,cw_angle@IMP2}
 curvature = {curvature@IMP1,curvature@IMP2}
 length = {length@IMP1,length@IMP2}
 at_border = at_border@IMP1

 type ABSTRACT_GRAPH
 chronologic_head: POINT
 graph_name: STRINGS

 derivation_specification
 ABSTRACT_GRAPH = union(GRAPH_@D@IMP1,SHELL_3D@IMP2)

 chronologic_head = {chronologic_edge_head@IMP1,
 chronologic_edge_list@IMP2)}
 image_name = {image_name@IMP1,shell_name@IMP@}

end_schema INT
Figure 4.3.2 The database schema of the HLI-agent.

5 Results

The modification of the existing software to a version that makes use of the advantages of
the AIM data modeling mechanism has leaded to a reduction of the needed code by a
factor of 2.5. The original software approach, inclusive conversion routines, needed 2049
lines, the new approach only 796.

Further is this code more flexible in respect to the data-structures of the other agents. One
can cope with modification of the export-schema of an other agent by a small change in
the derivation-specifications of the integrated schema, while in the original set-up this
would lead to a change in the conversion routines.

 22

6 Conclusion

In this technical note a description is given how in an robot application three autonomous
agents can use the AIM module of the Archon layer to facilitate the exchange the
complex data structures between the agents. A complete description of the data schemas
of a vision system and a CAD-system are given, and the way to relate those schemas to
the data schemas of the robot controller agent. The benefits are

• a drastic reduction in the code required for data exchange
• a complete isolation of all data modelling issues in the Archon Layer
• a uniform description of all relevant data schemas used by various agents

 23

7 References

[Afsar93] H. Afsarmanesh, F. Tuijnman, M. Wiedijk and L.O. Hertzberger:

'Distributed Schema Management in a Cooperation Network of
Autonomous Agents'
Proceedings of the 4th IEEE Internal Confererence on 'Database and
Expert Systems Applications (DEXA)", Springer Verlag, LNCS 720, Sept.
1993.
Also published in: Archon Technical Report TR46, 1993

[Kate90] T.K. ten Kate, R. van Balen, A.W.M. Smeulders, F.C.A. Groen, G.A. den
Boer:
'SCILAIM: A mult-level interactive image processing environment'
Pattern Recognition Letters 11 (1990) 429-441

[Meij91] G.R. Meijer:
'Autonomous shopflour systems, a study into exception handling for robot
control'
PhD Thesis, Universiteit van Amsterdam, June 1991

[Requ80] A.A.G. Requicha:
'Representations for rigid solids: theory, methods and systems'
Computer Surveys, 12(4), pp. 437-464

[Weil85] K.Weiler:
'Edge-based data structures for solid modeling in curved-surface
environments'
IEEE Computer Graphics and Applications, 5(1), pp. 21-40.

