
MSc Artificial Intelligence
Master Thesis

Bridging the Reality Gap for Image-Based
Robot Learning using Auto Encoders

Caitlin Gwendolyn Lagrand
August 12, 2019

Supervisor:
Dr N. van der Stap (TNO)
Dr H. van Hoof

Assessor:
Dr A. Visser

MSc Artificial Intelligence
Master Thesis

Bridging the Reality Gap for Image-Based
Robot Learning using Auto Encoders

by

Caitlin Gwendolyn Lagrand
10759972

August 12, 2019

36 E.C.
January 2019 - August 2019

Supervisor:
Dr N. van der Stap (TNO)
Dr H. van Hoof

Assessor:
Dr A. Visser

Graduate School of Informatics

Abstract

With recent developments in Artificial Intelligence and Robotics, the use of robots in daily life is
rising. However, letting a robot interact with the real world has not become easier. Currently, a
lot of manual engineering and fine tuning is needed to let a robot perform tasks, and adjusting
the robot to let it perform another task can be time-consuming. One of the developments is
the increase of the use of Reinforcement Learning (RL) for a variety of tasks. This development
arose our interest and therefore we want a robot to learn to reach a cup using RL. However,
training RL on a real robot can also be time-consuming and even dangerous for the robot, since
the robot has to act (randomly) for a long time before learning something useful. Instead, a
simulator can be used. Unfortunately, transferring the learned policy from the simulator to the
real world does often not result in the same behaviour, since the simulator is never exactly the
same as the real world.

With the goal to perform RL in a safe setting and make it achievable with limited resources
such as one real robot, one GPU and limited time (a few days to train), this thesis has the
objective to bridge the visual reality gap to be able to learn in simulation and transfer the learned
policy to the real robot. In this thesis, we focus on training a common state representation for
the simulated and real world in order to use this common state as input for RL. We extend
the method from Inoue et al. [2018] by learning the common state representation using two
Variational Auto Encoders (VAE) and Deep Deterministic Policy Gradient (DDPG) is used for
the robot to learn how to reach a cup.

From the experiments that are performed, we can conclude that a common latent space for
the simulated and real world can be learned using VAEs if the environment does not change over
time. For environments in which this is not the case, the VAEs fail to generalise to data obtained
at different moments. The RL experiments have shown that this latent space can be used to let
a robot learn how to reach a cup using RL in simulation. Compared to using the position of the
cup directly, the performance of using the latent state as input is the same. This shows that all
information needed to reach the cup, such as the position of the cup, is captured in the latent
state. A policy that uses the latent state as input has learned to reach a cup at ten different
positions with an accuracy of 74% within a range of 10cm in simulation.

Since the results of the latent state were not sufficient to reconstruct the scenes with the
robot in the real world, the trained policy is only tested in simulation and not in the real world.
Thus, it is not possible to determine whether the latent space generated by VAEs can be used to
bridge the visual reality gap, which would allow policies trained in simulation to be transferred
to the real robot.

Acknowledgements

I would first like to thank my supervisors Dr. Nanda van der Stap from TNO and Dr. Herke
van Hoof from the University of Amsterdam. They have supported me throughout my thesis
with valuable feedback and ideas. I would also like to thank Dr. Arnoud Visser for agreeing to
be my assessor and more importantly for making me enthusiastic about robotics during my study.

Furthermore, I am grateful for the thesis coaching sessions from Dr. Sander van Splunter and
Yasmin Santis. These sessions were really helpful and it was a nice opportunity to discuss thesis
struggles with fellow students.

I would also like to thank all colleagues and interns at TNO, who have supported me during my
thesis by helping me setting up or by discussing some of the problems I ran into. Finally, I would
like to thank my fellow students, friends and family for always supporting me and listening to
me when I needed it.

Contents

1 Introduction 5
1.1 Outline . 6

2 Background 7
2.1 Auto Encoders . 7

2.1.1 Variational Auto Encoder . 7
2.2 Reinforcement Learning . 8

2.2.1 Value-based . 9
2.2.2 Policy-based . 10
2.2.3 Actor-Critic . 10

3 Related Work 11
3.1 Simulation to Real World . 11
3.2 Motion Control . 12

4 Method 15
4.1 Variational Auto Encoder (VAE) . 15

4.1.1 Training VAEs to Learn a Common State Representation 18
4.2 Reinforcement Learning (RL) . 18

4.2.1 Deep Deterministic Policy Gradient (DDPG) 18
4.2.2 Learning from Demonstrations . 19
4.2.3 DDPG for Robot Control . 20

5 Experimental Setup 23
5.1 Hardware . 23
5.2 Software Implementation . 23

5.2.1 Variational Auto Encoder (VAE) . 23
5.2.2 Robot Operating System (ROS) . 24

6 VAE Exploration 27
6.1 Entire Scene . 27

6.1.1 Data set . 27
6.1.2 Results . 29

6.2 Scene with Table and Cup . 33
6.2.1 Data Set . 33
6.2.2 Results . 35

6.3 Scene with more Stable Lighting . 37
6.3.1 Data Set . 37

3

6.3.2 Results . 38
6.4 Conclusion . 41

7 RL Experiments 43
7.1 RL to Reach a Cup . 43
7.2 Reach a Cup at a Fixed Position . 44

7.2.1 Results . 44
7.3 Reach a Cup at Ten Positions . 45

7.3.1 Results . 45
7.4 Conclusion . 47

8 Discussion and Conclusion 49
8.1 Discussion . 49
8.2 Recommendations . 50
8.3 Conclusion . 51

4

Chapter 1

Introduction

With recent developments in Artificial Intelligence and Robotics, the use of robots in daily life is
rising. For example, service robots are showing up at hotel receptions and stores, robot vacuum
cleaners are cleaning more and more houses and self driving cars are being tested on highways
and in cities. However, a lot has to be done before we will have robots helping out on a daily
basis, such as in the kitchen for example by cooking diner.

A robot that helps out in the kitchen by grabbing a cup would need to recognise the cup
and grab it. Recognising the cup is relatively easy due to the rise of Deep Learning (DL), which
can be used to learn an object detector that can detect a variety of objects under different
circumstances, such as lighting, occlusion and orientation [Zhao et al., 2018]. Grabbing the cup,
however, is a harder task, since the gripper of the robot should fit perfectly around the object
and the robot should use the right amount of force while the stiffness and mass of the object
might be unknown. If the position of the object is precisely known, for example by using an
accurate object detector, the robot might still not be able to grab a cup that has fallen on its side,
since another way of grabbing the cup needs to be employed compared to a standing cup. If the
orientation is also precisely known, different ways of grabbing that cup can be employed, but the
engineer needs to provide the robot with all these different ways. This can be time-consuming,
and some orientations can be missed resulting in the robot not being able to grab the cup.

The use of Reinforcement Learning (RL) has increased for a variety of tasks. RL uses rewards
obtained from the environment to learn actions that should be taken, resulting in an action policy
that is learned from own experiences. RL enables us to learn different tasks without a lot of
manual engineering, by letting an agent perform actions in an environment by trial and error.
So, instead of telling the robot to first move forward, then turn left, then grasp, it will learn
this by itself, or even learn a better solution. For example when grabbing the cup with different
orientations, RL could learn how to do this, instead of manually engineering it. RL has shown
to be effective in different areas, for example in playing games like Pong [Mnih et al., 2015] or
Go [Silver et al., 2016], in controlling helicopters [Abbeel et al., 2007] and robots [Tai and Liu,
2016]. The idea emerges that if Reinforcement Learning could be used to let a robot learn a task
by itself, a lot of time spent on manual engineering and fine tuning would be saved to complete
complex tasks with robots.

Currently in robotics, RL has mainly been used for navigating, reaching, grasping or moving
objects [Tai and Liu, 2016]. For example, Levine et al. [2016] trained robotic arms to successfully
grasp different objects. They did this by using between 6 and 14 robotic arms at the time and
letting them train for two months. This shows that training RL with robots in the real world can
be time-consuming and dangerous, since the robot has to act (randomly) for a long time before

5

learning something useful, which arises an interest in learning control policies using a simulator.
Unfortunately, transferring the learned policy from the simulator to the real world does often
not result in the same behaviour in the real world, since the simulator is never exactly the same
as the real world. This reality gap between simulation and the real world is even larger when
using images as input data: rendered images resemble real images, but are not exactly the same.

Current methods that focus on bridging this reality gap try to generate a lot of variety in
simulation to capture the environment of the real world [Tobin et al., 2017] or use progressive
neural networks to continue learning in the real world [Rusu et al., 2016b]. However, these
methods often require a lot of training in simulation or even some training in the real world.
With the goal to perform RL in a safe setting and make it achievable with limited resources such
as one real robot and limited time (a few days to train), this thesis has the objective to bridge
the visual reality gap to be able to learn in simulation and transfer the learned policy to the real
robot. Therefore, the research question is:

RQ How can the visual gap between the simulated and real world be bridged in
order to perform RL with robots?

Our hypothesis is that this gap can be bridged by learning a common representation for
the input image from the simulated and real world using Variational Auto Encoders (VAE) as
proposed by Inoue et al. [2018]. RL can then use this common representation as input state to
learn how to perform tasks.

To answer the research question, we extend an existing method from Inoue et al. [2018]
that uses VAEs to bridge the gap between simulation and the real world. Instead of learning a
common representation for training an object detector as Inoue et al. do, we use the common
representation directly as input for RL. We choose this method, since it uses knowledge about the
real world in contrast to other methods that only use information from the simulator [Tobin et al.,
2017] [Tremblay et al., 2018]. We believe that using this data can be beneficial and therefore we
want to extend current work that uses this information. We experiment with a reaching task to
show the possibilities of the proposed method combined with RL.

1.1 Outline

This thesis is organised as follows. Firstly, Chapter 2 provides background knowledge about
(Variational) Auto Encoders and Reinforcement Learning, followed by related work about trans-
ferring trained models from simulation to the real world and motion control for robots in Chapter
3. Next, our proposed method to bridge the visual reality gap to perform RL with robots is ex-
plained in detail in Chapter 4. In Chapter 5 the experimental setup is described, including the
hardware and the software implementation of our method. The experiments and results of the
VAE are then described in Chapter 6, followed by the experiments and results of the RL tasks
in Chapter 7. Finally, the conclusion and discussion of this thesis are described in Chapter 8,
along with suggestions for future work.

6

Chapter 2

Background

This chapter provides background knowledge about (Variational) Auto Encoders in Sec. 2.1 and
Reinforcement Learning in Sec. 2.2. Variational Auto Encoders are used in this thesis to learn a
common state representation to be able to learn tasks with Reinforcement Learning in simulation
and transferring the learned policy to the real world.

2.1 Auto Encoders

To be able to learn from simulation data, a representation which is the same for the same
state in the simulated and real world is desired. An auto encoder [Ballard, 1987] can learn
this representation by learning to generate the same image for both the input image from the
simulated world and the input image from the real world. This representation should only capture
the information that is in both the simulated and real world and can be used instead of the raw
input.

An auto encoder is an unsupervised learning algorithm that learns a latent space for the
input. A latent space is a low dimensional representation that holds the information needed to
represent the input. An auto encoder consists of two parts: an encoder and a decoder. Figure
2.1 shows a schematic depiction of an auto encoder: the input image is given to the encoder,
which needs to learn to encode it into a representation z that is often lower dimensional than
the input. This representation is given to the decoder, which generates a resembling image of
the input image. The encoder and decoder itself are often (deep) neural networks to be able to
learn a good low dimensional representation. The generated image should resemble the input
image as closely as possible, thus the objective of the auto encoder is to minimise the distance
between the input image and the generated image, also known as the reconstruction error:

loss = ||x− decoder(encoder(x))||22. (2.1)

2.1.1 Variational Auto Encoder

In contrast to auto encoders, Variational Auto Encoders (VAE) [Kingma and Welling, 2013] learn
the parameters of a probability distribution representing the data, a latent variable model. This
makes sampling from the model possible, which means that new input data can be generated.
In a VAE, the encoder is represented by a variational distribution, qφ(z|x) and the decoder is
represented by a conditional distribution pθ(x|z) used to reconstruct the input (x) given the

7

Figure 2.1: Schematic of an auto encoder: the input image is fed to the encoder, resulting in a
latent representation z, which is passed through the decoder to reconstruct the input image.

latent state (z). Since the encoder is a variational distribution, a lower bound for p(x) can be
derived with Jensen’s inequality [Jensen, 1906]:

logpθ(x) = log

∫
pθ(x, z)dz

= log

∫
qφ(z|x)

pθ(x, z)

qφ(z|x)
dz

≥
∫
qφ(z|x)

pθ(x, z)

qφ(z|x)
dz

= Ez∼qφ(z|x)[logpθ(x|z)] +DKL(qφ(z|x)||pθ(z)),

(2.2)

with Ez∼qφ(z|x)[logpθ(x|z)] being the reconstruction loss used to encourage the decoder to re-
construct the data and DKL(qφ(z|x)||pθ(z)) the KL-divergence used to regularize how much
information is lost when using qφ(z|x) to represent p(z).

2.2 Reinforcement Learning

Reinforcement Learning (RL) is a general framework for decision problems and is used to learn
what actions should be taken to achieve a goal. In RL, an agent interacts with its environment
by taking actions and observing the state of the environment and obtaining rewards as shown in
Fig. 2.2. The rewards are used to learn a good policy: what action to take at a certain state. By
starting out with a random policy and updating it according to the rewards, the robot should be
able to learn a good policy for its task in the environment. In order to learn by trial and error,
the agent needs to start with exploring the environment by trying different actions. Actions that
resulted in high rewards are likely to be good actions and need to be exploited to achieve a high
final reward. However, always taking the actions that led to high rewards will often not result
in the highest cumulative reward, since their might be a better solution which the agent has not
explored yet. Thus, there always exists a trade-off between exploration and exploitation in RL.

A Markov Decision Process (MDP) [Puterman, 1994] is often used in RL to learn a policy.
An MDP is a mathematical framework for modelling decision making and consist of a tuple
containing states (S), actions (A), transition probabilities (P (s′|s, a)) and rewards (R(s, a, s′)).
The states are observations an agent makes in a given environment. For example, a state can
be the raw input image or the joint values and velocities of a robot arm. The actions are the

8

Figure 2.2: Overview of Reinforcement Learning: an agent interacts with its environment by
taking actions, observing the state of the environment and obtaining rewards. With the obtained
state and reward, the agent updates its policy in order to predict better actions.

possible actions an agent can take, which can be discrete, such as move forward or continuous,
such as move to this joint value or go to this position. The transition probabilities describe how
the environment changes and can be deterministic: if the agent moves forward, it will be at x+1,
or stochastic: after moving forward the agent will be at x+ 0.5 with a probability of 0.2 and at
x+ 1 with 0.8 probability. The rewards can be sparse, like winning (+1) or losing (-1), or dense:
the closer to the target object the higher the reward. The goal of RL is to find an optimal policy
π: what action to take at a certain state. In order to find the optimal policy, the cumulative
rewards are maximised.

RL methods can be divided into three main categories: model-based methods, value-based
methods and policy-based methods. Model-based methods try to learn the model underlying
the MDP and are often used in cases where interactions with the environment are limited. The
model is a model of the environment and is used to simulate more episodes for performing RL. In
contrast, value-based and policy-based methods are model-free methods and depend on sampling
from the environment. In this thesis, training will be performed in simulation and interactions
with the environment are not limited, thus a model-free method is used.

2.2.1 Value-based

Value-based methods try to learn a value function V that can be used to compute the expected
discounted reward if starting in some state s and following policy π:

Vπ(s) = Es,a∼π[

T∑
t=1

γt−1r(st, at)] ∀s ∈ S, (2.3)

9

where T is the episode length and can be infinite for continuous environments and γ is the
discount factor that determines the importance of future rewards. The optimal policy is then
the policy that optimises this value function:

π∗ = argmaxπVπ(s) ∀s ∈ S. (2.4)

The action that will be taken in state s according to the best policy π∗, is thus the action that
results in the highest expected discounted reward.

Value-based methods are a key building block for many RL methods and are good at solving
simple tasks, such as solving a maze. However, they are limited to discrete actions and thus not
suitable for more complex tasks that need continuous actions.

2.2.2 Policy-based

Policy-based methods directly learn the parameters of the policy, instead of finding the policy
that optimises the expected discounted return. Policy Gradient methods use the gradient of the
policy to update the policy using gradient ascent: the policy is updated in the directions with
the steepest reward increase. The best parameters of a policy are found by maximising a policy
score function:

J(θ) = Eπθ
[

T∑
t=1

γt1rt]. (2.5)

Instead of optimising the value function as value-based methods, policy-based methods try to
learn the optimal policy directly by learning the parameters of the policy. This has three main
advantages over value-based methods. Firstly, policy-based methods are more effective in high-
dimensional action spaces and even continuous actions are possible, while value-based methods
can only handle discrete actions. Secondly, policy-based methods can handle both deterministic
and stochastic policies, while value-based methods can only learn deterministic policies. The
advantages of stochastic policies are that they can handle exploration and exploitation and that
one state can have multiple actions that can be taken. Lastly, value-based methods can have big
oscillations during training, since a small change in the estimated value function can lead to really
different actions, while policy-based methods just follow the gradient resulting in a smooth update
of the policy at each step. Since the gradient is followed, policy-based methods are guaranteed to
converge to a local or global maximum. Unfortunately, they often converge to a local maximum,
but value-based methods do not have this guarantee when function approximations over states
are used. The biggest disadvantage is that policy-based methods converge slower, so training
will take longer.

2.2.3 Actor-Critic

Actor-Critic [Konda and Tsitsiklis, 2000] methods are hybrid methods that use a Critic to mea-
sure how good the taken action is (value-based) and an Actor to control the behaviour of the
agent (policy-based). One of the drawbacks of a policy gradient is that the future reward can
only be calculated at the end of an episode, meaning that high future rewards are given to all
taken actions in that episode if the final future reward is high. However, bad actions will also
get this high future reward and thus to find the optimal policy, a lot of samples are needed to
give these bad actions lower rewards, which slows down learning. Instead of waiting until the
end of the episode, Actor-Critic methods update at each step, using the expected reward (Critic)
instead of the real future rewards. The policy (Actor) is now updated directly using this expected
reward instead.

10

Chapter 3

Related Work

This chapter provides an overview of the related work. Firstly, Sec. 3.1 describes the related
work that has been done to bridge the gap between the simulated and real world. The described
methods are general methods for bridging the visual gap, but they are or can be extended to
bridge the visual gap for Reinforcement Learning (RL) purposes. Next, related work about
controlling the robot is provided in Sec. 3.2. In this section, classic methods such as path
planning are reviewed, as well as Reinforcement Learning methods.

3.1 Simulation to Real World

Learning specific tasks in the real world requires a lot of interaction with the real world and can
be expensive, dangerous and time-consuming, since the robot has to act (randomly) for a long
time before learning something useful. As mentioned in Chapter 1, this makes it interesting to
learn control policies using a simulator. Unfortunately, transferring the learned policy from the
simulator to the real world often does not result in the same behaviour in the real world, since
the simulator is never exactly the same as the real world. This reality gap between simulation
and the real world is even larger when using images as input data: rendered images resemble
real images, but are not exactly the same. A lot of effort could be put into making the simulated
world look exactly like the real world with all textures and lighting identical, but this will never
be completely the same.

One way to bridge the gap between the simulated and real world is using domain randomi-
sation or adaptation [Tobin et al., 2017] [Ben-David et al., 2010]. Domain randomisation uses
randomised environments in simulation with enough variability. The variability is obtained by
randomising several aspects in the environment, such as the position and texture of objects on
the table, the position, orientation, and field of view of the camera, etc. The idea of domain
randomisation is that if the variability in simulation is significant enough, models trained in sim-
ulation will generalise to the real world with no additional training [Tremblay et al., 2018] [Tobin
et al., 2017] [James et al., 2017]. This way, a model can be trained in simulation and then
used in the real world. However, it requires a lot of training in simulation with the different
environments and the environments should have enough variability to prevent the rise of a bias.
Besides domain randomisation, domain adaptation can be used to fine tune a model learned on
simulated data (∼ 10, 000 samples) with a small amount of data from the real world (∼ 100
samples) [Ben-David et al., 2010] [Higgins et al., 2017]. For RL, this method still needs a lot of
training in simulation. Moreover, some training with the real robot in the real world will always
be needed.

11

Another approach uses Progressive Neural Networks (PNN) to bridge the reality gap between
simulation and the real world [Rusu et al., 2016b]. PNNs [Rusu et al., 2016a] are immune to
forgetting and thus can continue learning from new data, without forgetting the previous data.
This can be used to first train a PNN in simulation, followed by training it in the real world.
Compared to fine tuning a simulation model with data from the real world, PNNs need less data
from reality to reach the same performance as the PNN in simulation. Moreover, less training in
simulation is needed compared to domain randomisation, since only one environment is needed
in simulation. However, as domain adaptation, PNNs still need some training with the real robot
in the real world.

Instead of learning in an end-to-end manner as domain randomisation and PNNs, learning
can also be split into phases [Zhang et al., 2017]. For example a vision phase and a motion control
phase. The advantage of splitting it into phases is that the phases can be trained separately and
that they can be trained on data from other tasks, such as pretraining the vision network on
Imagenet [Deng et al., 2009]. However, an inaccurate vision model influences the motion model
and in most cases the vision model will not learn from the errors that the motion model makes.

A method that uses two phases for learning is learning a common representation for the
simulated and real world using Auto Encoders [Inoue et al., 2018]. This method focuses on
learning a latent space which is the same for the same state in the simulation and the real world.
Either the latent space or the generated image can then be used to learn from, instead of the
original image. The idea behind learning this latent space is that only the relevant information
needed to describe the same state in simulation and the real world is captured. In contrast
to domain randomisation and PNNs, a data set is needed with image pairs from simulation
and the real world. This requires some interaction with the real world, but this interaction
does not have to be random and is minimal. On the other hand, just one world can be built
in simulation to obtain a data set from, which does not have to be as big as the one used
for domain randomisation. Furthermore, no training in the real world has to be performed
in contrast with domain adaptation and PNNs. Inoue et al. [2018] use two Variational Auto
Encoders (VAE) [Kingma and Welling, 2013] to learn a latent space for both the simulated
and real world. The VAEs are used to detect object positions either by using the generated
images and a Convolutional Neural Network (CNN) or the latent representation and a MultiLayer
Perceptron (MLP). The resulting object detector could estimate the position of an object in the
real world with an average error of 2.2mm, which shows that accurate object manipulation could
be performed on the latent space instead of on the raw image.

3.2 Motion Control

Motion control is determining the mapping between the control commands and the motion of
the robot. The commands are the direct controls sent to the actuators of the robot, such as the
velocity and angle for a joint. Setting these commands should take the workspace of the robot
into account, since it should be capable of moving to the joint values while avoiding collisions.
Controlling the robot can be divided into two main parts: path planning, which computes the
optimal path from A to B, and reinforcement learning, which lets a robot learn how to move by
itself from (raw) sensor data.

In classic control, path planning is often used to compute the path from A to B while avoiding
obstacles. With robots, forward and inverse kinematics are used to compute the pose of the robot
in the real world in order to compute a path for moving towards a goal using a path planning
algorithm such as Dijkstra [Dijkstra, 1959], A* [Hart et al., 1968] or STOMP [Kalakrishnan et al.,
2011]. The motion planning algorithm then computes the controls the robot should perform to

12

reach its goal, like the velocity and angle for each joint, while avoiding obstacles. These algorithms
need a good representation of the world, including all obstacles it should avoid. With a good
representation, motion planning works well in static environments, but small changes in the
environment can cause the robot to not be able to perform its task. Furthermore, the end of a
path needs to be known, meaning that the position of the goal needs to be known in the world,
thus the goal needs to be detected by a different algorithm before being able to move towards it.

With the rise of Reinforcement Learning, it is possible to let a robot learn how to perform
specific tasks by itself, saving the labour of defining every possible action manually. From raw
sensor data, such as images, a robot can learn tasks in an end-to-end manner, instead of first
detecting its goal and then reaching it. For example, in [Meyes et al., 2017] a UR5 Robot has
learned to successfully play the classic wire loop game using Reinforcement Learning, with a
camera to capture the input state, and move forward/backward/left/right/turn-left/turn-right
as actions. Instead of directly learning in the real world, Pinto et al. [2017] use training in
simulation as advantage by exploiting the full state observability provided by the simulation.
The full state observability is all information about the environment that exists, but which
might not always be visible in the real world. This is done by using an asymmetric actor-critic
algorithm in which the critic is trained using the full states while the actor only gets rendered
images as input. Combined with domain randomisation, their policy could be transferred to the
real world without training on any real world data while being able to perform the task in the
real world successfully in all trials.

These Reinforcement Learning methods are more flexible and adaptive than path planning
methods, since they use the sensor data directly as input and thus can react easier to moving
obstacles. Moreover, they do not need a representation of the world, since this is already captured
by the sensor data. However, they do require a lot of interaction with the environment to train
a good policy, which might lead to problems in the real world, such as time and wearing out the
robots joints. However, by using a simulation as in this thesis, a lot of these interactions can be
performed without any problems.

This thesis focuses on bridging the visual reality gap to be able to learn tasks in simulation
using Reinforcement Learning and transfer the learned policy to the real robot. A real robot is
available to collect a data set in a controlled setting, enabling us to use information about the
real world for bridging the reality gap. Therefore, we combine the VAE as proposed by Inoue
et al. [2018] with Reinforcement Learning. Instead of only using the VAE for the object detector
as in [Inoue et al., 2018], the latent state obtained with the encoder of the VAE will be used as
input for RL.

13

Chapter 4

Method

This thesis builds on using Variational Auto Encoders (VAE) to bridge the gap between the
simulated and real world [Inoue et al., 2018]. Since a real robot is available to collect a data
set in a controlled setting, this enables us to use information about the real world, in contrast
to domain randomisation or adaptation [Tobin et al., 2017] [Higgins et al., 2017], which need
a lot more simulation data to capture the real world in random environments. The method of
Inoue et al. [2018] is extended by using the latent space obtained from the VAE as input for
Reinforcement Learning (RL) to learn tasks.

This chapter explains the proposed method, which consists of two parts: the Variational Auto
Encoder and the Reinforcement Learning part. The VAE is used to encode the same state in
simulation and the real world to the same latent state and is explained in Sec. 4.1. This latent
state is then, together with the current joint values, the input state for the RL part, which uses
this input state to compute the desired joint values of the robot as described in Sec. 4.2. The
RL part is trained in simulation and then transferred to the real world to test the policy with
the real robot. An overview of this method is shown in Fig. 4.1.

4.1 Variational Auto Encoder (VAE)

To learn a latent space in which a state from both the simulated and the real world is represented
as the same state, two Variational Auto Encoders are used. The encoders of the VAEs output
parameters for a Gaussian probability density: the mean and the log variance, from which noisy
values of the representation z can be sampled. The decoders try to reconstruct the input image,
given the latent representation z.

The two VAEs have the same network architecture which is shown in Fig. 4.2. The archi-
tecture is based on the network in [Inoue et al., 2018] with small modifications to handle the
image size required for our camera. The encoder is used to obtain a latent state from an image
and has three convolutional layers with max pooling. After the last convolutional layer, two
separate fully connected layers follow, one for the mean of the latent space and one for the log
variance. The decoder is used to reconstruct the input image from the latent state. Therefore, a
fully connected layer with a reshape afterwards is followed by three deconvolutional layers with
upsampling. A final convolutional layer is used to obtain three channels (RGB) again.

The VAEs are trained on a data set that consists of images from the simulated and real world.
A small part of the data set contains image pairs with images from both the simulated and real
world of the same state as shown in Fig. 4.3. The rest of the data set contains only images from
simulation.

15

Figure 4.1: An overview of the proposed method: firstly, a data set containing a lot of images
from the simulated world and a few from the real world is created and used to train a VAE to
learn a common state representation. Next, a policy is learned in simulation using the simulation
encoder (blue). This policy is then transferred to the real world using the real world encoder
(green).

16

476x268x3
238x134x16

119x67x8 60x34x8

16320

150
476x268x3476x268x16

240x136x16120x68x860x34x8

16320

Encoder Latent space Decoder

Figure 4.2: The network architecture for the VAEs. The encoder (green) consists of three
convolutional layers with max pooling, followed by two separate fully connected layers, resulting
in the mean and log variance (red) of the latent space. The decoder (blue) has one fully connected
layer with a reshape afterwards, followed by three deconvolutional layers with upsampling to
reconstruct the input image.

(a) Real world (b) Simulated world

Figure 4.3: Example image pair with the same state from the real (a) and simulated world (b).

17

Figure 4.4: Training procedure for the VAE. Firstly, the simulation encoder and decoder are
trained on a large data set. Next, the real world encoder is trained on image pairs, while keeping
the decoder fixed.

4.1.1 Training VAEs to Learn a Common State Representation

Figure 4.4 shows an overview of the training procedure of the two VAEs, which is based on the
method as described by Inoue et al. [2018]. Firstly, a VAE is trained on only simulation data
to learn a good latent representation. Next, the weights of the simulation VAE are copied to
the real world VAE and the real world encoder is then trained on image pairs, with the input
image being the real world image and the output image the simulation image. To ensure that
the encoder of the real world will learn to encode the real world state as the same latent state
as the simulation encoder would, the weights of the decoder are kept fixed. With the weights of
the decoder fixed, the model is forced to learn the same latent state for the real and simulated
image, since both VAEs need to generate the same simulation image as output image.

4.2 Reinforcement Learning (RL)

Reinforcement Learning is used to let the robot learn a task in such a way that the robot is
capable of dealing with a changing environment. As a representative experiment, we use a cup-
reaching task and change the cup position. Given the current joint values and the latent state
the robot has to learn what its joint values should be to perform its task. Thus, the input state
is the latent state concatenated with the current joint values, and the actions are the desired
joint values as shown in Fig. 4.5. Since the action space is continuous, a policy gradient method
is used. Specifically, Deep Deterministic Policy Gradient (DDPG) [Lillicrap et al., 2015], since
this algorithm has shown to be successful for robotic applications [Gu et al., 2017] [Pinto et al.,
2017] [Tai et al., 2017].

4.2.1 Deep Deterministic Policy Gradient (DDPG)

Deterministic Policy Gradient (DPG) [Silver et al., 2014] models the policy as a deterministic
decision, meaning that each state can result in only one action. In this manner, less samples are
required to learn a policy, but there is no guarantee on adequate exploration. To ensure enough

18

Figure 4.5: An overview of Reinforcement Learning using a VAE: the input for the RL algorithm
are the latent state, obtained using the encoder of the VAE, concatenated with the current joint
values. The actions that the agent should learn are the desired joint values it should move to.

exploration, an off-policy Actor-Critic is used that learns a deterministic target policy while
following a stochastic behaviour policy. Deep Deterministic Policy Gradient (DDPG) [Lillicrap
et al., 2015] extends the DPG algorithm to be able to handle deep networks by adding experience
replay and a target network as Mnih et al. [2015] do for Deep Q-Learning. Furthermore, batch
normalisation was added to make it more stable, an off-policy algorithm with some noise was
used to handle exploration and action repeats were added to be able to infer velocities.

The resulting DDPG algorithm is not guaranteed to converge, since non-linear function ap-
proximators are used, but experimental results in [Lillicrap et al., 2015] demonstrate that stable
learning is possible. The largest drawback of DDPG is, like most model-free algorithms, the need
of a large number of training episodes. However, DDPG can perform more efficiently than other
policy gradient methods due to the use of a deterministic policy and is therefore more suitable
for higher dimensions.

4.2.2 Learning from Demonstrations

Instead of letting the robot learn from performing random actions, expert demonstrations [Zhang
and Ma, 2018] are used to speed up the learning process. Expert demonstrations are example
demonstrations that show how the task can be performed. In our case, these are examples of the
arm reaching the cup. In simulation, these examples can be easily obtained, since the position
of the cup can be accessed by the simulator and a motion planner can be used to compute the
desired joint values. The expert demonstrations are recorded by letting the robot move to the
position of the cup while observing the new state and obtaining the reward for that action from
the simulator. The policy is pretrained on samples from these demonstrations to enable it to
start with useful actions instead of random actions.

19

4.2.3 DDPG for Robot Control

In this thesis, the robot has to determine the joint values it has to move to, given the current joint
values and the latent state obtained using the trained VAE. The input state of the algorithm
is thus the latent state obtained using the VAE concatenated with the current joint values and
the output actions are the joint values that the robot should move to. DDPG uses a normalised
output between −1 and 1, thus the actions need to be normalised. This is done as follows:

normalised joints =
j + lower joint limits

upper joint limits− lower joint limits
× 2− 1 (4.1)

where j is the joint values, lower joint limits are the lower limits of the joints and upper joint limits
are the upper limits of the joints.

The network architectures of the Actor and Critic are similar to the networks used in the
original DDPG paper [Lillicrap et al., 2015], since they argue that these networks are capable
of learning more than 20 different physics tasks. Both the Actor and Critic are Multi Layer
Perceptrons (MLP) with two hidden layers of 400 and 300 units with layer normalisation and a
Rectified Linear Unit (ReLU) [Nair and Hinton, 2010] as activation function. The input layer of
the Actor is a fully connected layer with the size of the input state and the output layer is a fully
connected layer with a tanh activation function that predicts the (normalised) joint values of
the robot. The Critic has a fully connected layer with the size of the input state plus the actions
as input layer. As output layer, it uses a fully connected layer without any activation function,
since it predicts the Q-value for the state-action pair. An overview of the two networks is shown
in Fig. 4.6.

20

...

...
...

...

Hidden

(400)

Hidden

(300)

Input

(150 + 7)

Output

(7)

Latent State
+

Current Joint Values

Desired Joint Values

(a) Actor

...

...
...

Q-value

Hidden

(400)

Hidden

(300)

Input

(150 + 7 + 7)

Output

(1)

Latent State
+

Current Joint Values
+

Desired Joint Values

(b) Critic

Figure 4.6: The network architectures of the Actor (a) and Critic (b). The Actor has the current
state as input and is used to predict the desired joint values. The Critic has the current state
concatenated with the action as input and is used to compute the expected Q-value given the
state-action pair.

21

Chapter 5

Experimental Setup

This chapter describes the experimental setup that was used to perform the experiments. Firstly,
the hardware, such as the robot and camera, is described in Sec. 5.1, followed by an explanation
of the implementation in Sec. 5.2.

5.1 Hardware

The Franka Panda1 with seven joints (7 DOF) and a parallel gripper is used as robot arm. The
robot arm can carry a 3kg payload and a maximum reach of 850mm. The limitations of the
joints can be found in Tab. 5.1 and the work space of the arm is shown in Fig. 5.1. The Kinect
22 is used as camera, which provides RGB and depth images with a resolution of 960× 540. All
experiments are performed on a Linux PC (Ubuntu 16.04) with an Intel Core i7-4790 processor,
32GB RAM, and an NVIDIA GeForce GTX TITAN X 12GB graphics card.

5.2 Software Implementation

5.2.1 Variational Auto Encoder (VAE)

The VAE is implemented in Python 3.5 using Keras 2.2.4 [Chollet et al., 2015] and Tensorflow
1.13.1 [Abadi et al., 2015]. The implementation of the VAE is based on the example from Keras.3

A1 A2 A3 A4 A5 A6 A7
Position (°) -166/166 -101/101 -166/166 -176/-4 -166/166 -1/215 -166/166

Velocity (°/s) 150 150 150 150 180 180 180

Table 5.1: Joint limits of the Franka Panda.

1https://www.franka.de/panda/
2https://developer.microsoft.com/en-us/windows/kinect
3https://blog.keras.io/building-autoencoders-in-keras.html

23

https://www.franka.de/panda/
https://developer.microsoft.com/en-us/windows/kinect
https://blog.keras.io/building-autoencoders-in-keras.html

(a) Side view (b) Top view

Figure 5.1: The workspace of the Franka Panda arm with all dimensions in mm obtained from
the data sheet4of the Franka Panda.

5.2.2 Robot Operating System (ROS)

To interact with the robot, the Robot Operating System (ROS) [Quigley et al., 2009] is used.
ROS is a framework for writing robot software and contains a lot of tools and libraries, such as
MoveIt [Sucan and Chitta, 2013] for motion planning. The experiments in this thesis use ROS
Kinetic on Ubuntu 16.04 and a simulation of the real world is created in Gazebo 7.0 [Koenig
and Howard, 2004]. ROS is made for Python 2, so most of the nodes use Python 2.7. However,
the implementation for DDPG is written for Python 3, so the node that handles the RL part is
started from a virtual environment5 with Python 3.5. Figure 5.2 shows an overview of the ROS
nodes that are used and each node is explained below.

Gazebo / robot + Kinect: provides the data of either the simulation (Gazebo) or the real
robot. This data consists of an image of the scene, using a Kinect, and the current joint values
from which the transform of the arm can be computed. To obtain images from the real Kinect,
IAI Kinect2 [Wiedemeyer, 2014 – 2015] is used. This is a package that reads the data from
the Kinect and publishes it as a message within ROS. Furthermore, the simulated or real robot
performs an obtained joint trajectory. In simulation, the robot moves as fast as the simulation
can handle, which results in a speed up of 4×.

compute end pose: is used to compute the pose of the end effector in real world coordinates
to be able to give a reward based on the distance between the current pose and the desired pose.
To compute this pose, the transform of the arm is needed, which is provided by Gazebo or the
real robot. Since the end pose is only used to compute the reward, this node is only needed
during training, and not during testing.

4https://s3-eu-central-1.amazonaws.com/franka-de-uploads-staging/uploads/2018/05/

2018-05-datasheet-panda.pdf
5https://virtualenv.pypa.io/en/latest/

24

https://s3-eu-central-1.amazonaws.com/franka-de-uploads-staging/uploads/2018/05/2018-05-datasheet-panda.pdf
https://s3-eu-central-1.amazonaws.com/franka-de-uploads-staging/uploads/2018/05/2018-05-datasheet-panda.pdf
https://virtualenv.pypa.io/en/latest/

Figure 5.2: An overview of the ROS nodes that are used to perform RL with the latent state
obtained using the VAEs together with the current joint values as input state.

get latent state: encodes the image obtained from the Kinect into the latent state using the
trained VAE.

robot env: obtains all information needed to perform Reinforcement Learning, such as the
current joint values and the latent state for the input state and the end pose for computing
the reward. It is implemented as an environment class which contains the same functions as
an environment from OpenAI Gym [Brockman et al., 2016] in order to easily interact with
different RL algorithms from stable baselines. This node interacts with the DDPG algorithm
that computes the next action, which is then published as desired joint values. During testing,
the trained model is used to compute the next action and it is not needed to compute the reward.

DDPG: is not a node itself, but is started within robot env. This part uses the DDPG imple-
mentation from stable baselines [Hill et al., 2018] to learn a policy. Given the state and reward
obtained by robot env, the policy is updated and the computed action is returned to robot env.
During testing, the trained policy is used to compute the next action. This part is also used to
collect expert demonstrations and pretrain the network with those demonstrations. Collecting
the demonstrations is done using the generate expert traj function from stable baselines and
pretraining the network uses the pretrain function.

25

Chapter 6

VAE Exploration

This chapter describes the experiments that have been performed for studying the performance
of the Variational Auto Encoder (VAE) and their results. The experiments and their results are
discussed in Sec. 6.1, Sec. 6.2 and Sec. 6.3, followed by a conclusion about the performance of
the VAE in Sec. 6.4.

6.1 Entire Scene

In this experiment, the robot is placed on a metal table on which a blue paper cup is placed as
shown in Fig. 6.1. The camera is situated in a corner in order to capture the entire robot and
table. This setup represents a realistic scene that can be used in daily life situations and will
be referred to as entire scene, since the robot, table, cup and background are all visible in the
camera images. Ten cup positions are defined to record the real world data set and to collect
expert demonstrations.

Firstly, the optimal latent dimension size is determined by training the simulation VAE with
different latent dimension sizes (10, 50, 100, 150, 250, 500). The VAEs are trained for 50 epochs,
with a learning rate of 0.001 and a batch size of 64. The input image is resized to 467× 268 and
a subset of the data (3000 images) is used to perform this experiment to speed up the training
time. After having found the optimal latent dimension size, the final VAEs that will be used to
obtain the latent state for the RL part are trained for 300 epochs, with a learning rate of 0.001
and a batch size of 64. Again, the input images are resized to 467 × 268. This experiment is
used to show that a common latent space can be learned using VAEs. We expect that the real
world encoder can reconstruct the simulation image given an image from the real world, while
the simulation encoder is not capable of doing this.

6.1.1 Data set

The VAEs are trained on a recorded data set. For the simulation VAE, only data generated
in simulation is needed. This data is obtained by letting the robot and cup move randomly in
simulation while saving images taken by the simulated Kinect. The real world VAE needs image
pairs of the simulated and real world which are obtained by saving the joint values and the
position of the cup while recording a real world data set. The same data can now be collected
in simulation by performing the same movements and putting the cup at the same positions.
Example image pairs are shown in Fig. 6.2 and the amount of data used per VAE for both the
simulated and the real world can be found in Tab. 6.1.

27

(a) (b)

Figure 6.1: The environment in which the robot has to perform tasks. The robot is placed on a
metal table on which a blue paper cup is placed. The camera is situated in a corner in order to
capture the entire robot and table. Ten cup positions are defined to record the real world data
set and to collect expert demonstrations.

Figure 6.2: Example image pairs with the same state from the real (left) and simulated world
(right) for the entire scene.

Simulation Real World
Simulation VAE 26,000 -
Real World VAE 120 120

Table 6.1: The amount of data needed to train the simulation and real world VAEs for the entire
scene.

28

Figure 6.3: Loss per epoch for different latent dimension sizes trained on data from the entire
scene.

6.1.2 Results

The results of training the simulation VAE with different latent dimensions is shown in Fig. 6.3.
No big difference can be observed between the different sizes, but since the latent dimension of
150 slightly outperforms the other dimension sizes, a latent dimension of 150 will be used in the
other experiments.

Figure 6.4 shows some images generated with the VAEs on the test set from the same real
and simulated state. As can be seen, the simulation VAE is able to reconstruct the simulated
image given a simulated image, and the real world VAE is capable of reconstructing the simulated
image given a real world image. In contrast, the simulation VAE is not capable of reconstructing
the simulated image given a real world image. The VAEs are able to reconstruct the table
perfectly, but the reconstruction of the cup and arm are noisy. However, the cup is always
reconstructed at the correct position, thus useful information is still available in the latent state.
For our experiments, a perfect reconstruction of the arm is less important, since the joints of
the arm are available as well. Thus these reconstructions suggest to be sufficient to contain all
information needed to learn a good policy. The average difference between the generated images
from simulation and the real world is 7512.59, which is an average difference of 0.06 per pixel
in the range from 0 − 1. The average difference between the generated images is computed as
follows:

1

N

N∑
n

P∑
p

|generated sim imgnp − generated real imgnp |, (6.1)

where N is the amount of images and P is the amount of pixels in an image (width × height).
Similarly, the average difference per pixel is computed as:

1

N

N∑
n

∑P
p |generated sim imgnp − generated real imgnp |

P
, (6.2)

where N is again the amount of images, and P is the amount of pixels in an image (width ×
height).

29

Figure 6.4: Results of the VAEs on the real and simulated images. The simulation VAE is able
to reconstruct the simulated image given a simulated image, and the real world VAE is capable
of reconstructing the simulated image given a real world image. In contrast, the simulation VAE
is not capable of reconstructing the simulated image, given a real world image.

30

(a) Real world (b) Reconstructed image

Figure 6.5: Reconstructed image (b) of the real world (a) with the model trained on data from
the first day, but tested on a new day. The VAE is not capable of reconstructing the scene
correctly.

(a) Real world (b) Reconstructed image

Figure 6.6: Reconstructed image (b) of the real world (a) with the model trained on data from
three different days, but tested on a new day. The VAE is not capable of reconstructing the
scene correctly.

VAE on Data from another Day

The results of the VAE look promising on the collected test data set. However, when testing it
again in the real world environment on another day, the VAE was not capable of reconstructing
the scene as shown in Fig. 6.5. This might be explained by the limited amount of real world data
from only one specific day. However, when trained on data from three different days, it is still
not able to correctly reconstruct images from a new day as shown in Fig. 6.6. In contrast, when
trained on data of the same day in the morning and tested on data from the afternoon, some
useful reconstructions were made, but it always reconstructs the cup on the same position (Fig.
6.7). This suggests that the images vary too much between different days and no generalisation
can be learned from this (limited) data set. This variation can be in the different backgrounds,
since that slightly changed from day to day, for example due to wearing a different shirt. Figure
6.8 shows an example of adding a black box to the background of the image. The VAE fails to
reconstruct the simulated image. This suggests that a small change in the background effects
the reconstruction as well, thus a small difference in the background between the data set on
which the VAE is trained and the tested image, can cause a large failure in the reconstruction.

31

Figure 6.7: Reconstructed images (right) of the real world (left) with the model trained on
data from the same day. When collecting data on the same day, the VAE seems to be able to
reconstruct the scene correctly. However, it has not learned to reconstruct the cup at the correct
position.

Figure 6.8: Example of adding a black box to the background of the image. Without adding the
black box a normal reconstruction can be made (top), while adding a black box in the background
causes the reconstruction to fail (bottom).

32

(a) (b)

Figure 6.9: The second scene in which the robot has to perform tasks. The robot is placed on a
metal table on which a chessboard and a blue paper cup are placed. The camera is situated in
front of the table, such that only the chessboard and the cup are visible in the obtained images.

6.2 Scene with Table and Cup

The results from the previous experiments suggest that a small difference in the background
between the data set on which the VAE is trained and the tested image, can cause a large failure
in the reconstruction. To exclude this component, the next experiment uses a scene in which the
camera is positioned in such a way that only the table and the cup are visible as shown in Fig.
6.9. To make recording a data set easier, a chessboard is placed on top of the table, to be able to
determine the position of the cup more accurately. The VAE should now only learn to reconstruct
the table, the chessboard and the cup, and not a moving robot or (changing) background. We
expect that the VAE is able to reconstruct both the test images and images from the same scene
obtained on another day, since the background cannot influence the reconstruction anymore.
The VAEs are trained for 300 epochs on images that were resized to 467 × 268, with a latent
dimension size of 150, a learning rate of 0.001 and a batch size of 64.

6.2.1 Data Set

The VAEs are trained on a recorded data set. In contrast to the data set for the entire scene, no
robot is needed to collect this data set. For the simulation VAE, the data is obtained by randomly
moving the cup over the chessboard while saving images taken by the simulated Kinect. The real
world VAE needs image pairs of the simulated and real world which are obtained by saving the
position of the cup while recording a real world data set. The same data can now be collected
in simulation by putting the cup at the same positions. Example image pairs are shown in Fig.
6.10 and the amount of data used per VAE for both the simulated and the real world can be
found in Tab. 6.2.

33

Figure 6.10: Example image pairs with the same state from the real (left) and simulated world
(right) for the scene with only the table and the cup.

Simulation Real World
Simulation VAE 5,000 -
Real World VAE 70 70

Table 6.2: The amount of data needed to train the simulation and real world VAEs for the scene
with only the table and the cup.

34

Figure 6.11: Reconstructed images (right) of the real world (left) with the model trained on data
from the first day, but tested on a new day. The VAE is not capable of reconstructing the scene
correctly.

6.2.2 Results

Figure 6.12 shows some images generated with the VAEs on the test set from the same real and
simulated state. Again, the simulated VAE is able to reconstruct the simulated image given a
simulated image, and the real world VAE is capable of reconstructing the simulated image given
a real world image. The VAEs are able to reconstruct all components of the scene perfectly, in
contrast to the VAE of the entire scene. Furthermore, the simulation VAE, given a real world
image, is able to reconstruct the scene, but not the correct position of the cup. This means that
the decoder obtains all necessary information about the scene, and that only the position of the
cup should be obtained from the latent space. The average difference between the generated
images from simulation and the real world is 9366.25, which is an average difference of 0.07 per
pixel in the range from 0− 1.

VAE on Data from another Day

Again, the results of the VAE look promising on the collected test data set, but testing it on
another day in the real world environment resulted in imperfect reconstructions as shown in Fig.
6.11. The images from two different days still vary too much, which can be explained by the
various lighting conditions on different days. Furthermore, the metal table reflects differently
depending on the lighting conditions and these small differences might already effect the results
of the VAE.

35

Figure 6.12: Results of the VAEs on the real and simulated images for the scene with only
the table and the cup. The simulation VAE is able to reconstruct the simulated image given a
simulated image, and the real world VAE is capable of reconstructing the simulated image given
a real world image. In contrast, the simulation VAE is is can reconstruct the scene, but is not
capable of reconstructing the cup on the right position, given a real world image.

36

(a) (b)

Figure 6.13: The third environment with stable lighting. No robot arm is present and the blue
paper cup is placed on a wooden table. The camera is situated in such a way that only the table
and the cup are visible in the obtained images.

6.3 Scene with more Stable Lighting

In the last experiment, a different environment is used which is not right next to a window and
does not have a metal table that reflects differently depending on the lighting conditions. In this
environment, no robot is present and the blue paper cup is placed on a wooden table instead
of on a metal table as shown in Fig. 6.13. Furthermore, during this experiment a Microsoft
LifeCam HD-5000 with a resolution of 640 × 480 is used to collect the data set instead of a
Kinect. We expect the VAE to be able to reconstruct both the test images and images from the
same scene obtained on another day, since the background or lighting conditions cannot influence
the reconstruction anymore. The VAEs are again trained for 300 epochs on images that were
resized to 467 × 268, with a latent dimension size of 150, a learning rate of 0.001 and a batch
size of 64.

6.3.1 Data Set

Similarly to the data set for the scene with the table and cup, no robot is needed to collect
this data set. For the simulation VAE, the data is obtained by randomly moving the cup over
the table while saving images taken by the simulated Kinect. The real world VAE needs image
pairs of the simulated and real world which are obtained by saving the position of the cup while
recording a real world data set. The same data can now be collected in simulation by putting
the cup at the same positions. Example image pairs are shown in Fig. 6.14 and the amount of
data used per VAE for both the simulated and the real world can be found in Tab. 6.3.

Simulation Real World
Simulation VAE 2,500 -
Real World VAE 125 125

Table 6.3: The amount of data needed to train the simulation and real world VAEs for the scene
with only the table and the cup and stable lighting.

37

Figure 6.14: Example image pairs with the same state from the real (left) and simulated world
(right) for the scene with stable lighting.

6.3.2 Results

Figure 6.15 shows some images generated with the VAEs on the test set from the same real and
simulated state. Again, the simulated VAE is able to reconstruct the simulated image given a
simulated image, and the real world VAE is capable of reconstructing the simulated image given
a real world image. The VAEs are able to reconstruct all components of the scene perfectly, in
contrast to the VAE of the entire scene. The average difference between the generated images
from simulation and the real world is 791.14, which is an average difference of 0.006 per pixel in
the range from 0− 1.

VAE on Data from another Day

Figure 6.16 shows the results of testing the VAE on another day in the real world environment.
In contrast to the other scenes, the VAE is capable of reconstructing the simulation images on
another day when the lighting conditions are kept the same and no metal table that reflects
differently depending on the lighting conditions is used.

38

Figure 6.15: Results of the VAEs on the real and simulated images for the scene with stable
lighting. The simulated VAE is able to reconstruct the simulated image given a simulated image,
and the real world VAE is capable of reconstructing the simulated image given a real world
image. In contrast, the simulated VAE is not capable of reconstructing the simulated image,
given a real world image.

39

Figure 6.16: Reconstructed images (right) of the real world (left) with the model trained on data
from the first day, but tested on a new day. The VAE is capable of reconstructing the scene
correctly.

40

6.4 Conclusion

The VAEs are capable of learning a common representation for the simulated and real world if
we look at the results on the test set. However, unless the lighting conditions are very similar, it
does not generalise well to new real world data, which is obtained at a different moment than the
recorded train and test set. We have tried to remove the aspects that influence these differences,
such as the noise from the background by positioning the camera in such a way that only the
table and the cup are visible, and the different lighting conditions by changing to an environment
that is not next to a window and does not have a metal table that reflects the light differently.

Only removing the background was not sufficient to learn a model that generalises well to new
real world data, but also changing the table and moving to another environment with more stable
lighting conditions did help. To conclude, in a controlled environment in which the differences
between images obtained at different moments are almost the same, VAEs are capable of learning
a common representation for the simulated and real world. However, it is not easy to create these
circumstances, especially for daily life situations.

41

Chapter 7

RL Experiments

This chapter describes the experiments and the results for performing Reinforcement Learning
(RL) with the latent state obtained from the encoder of the VAE as input. Firstly, a detailed
description of the task is given in Sec. 7.1. Secondly, the experiments and their results are
discussed in Sec. 7.2 and Sec. 7.3. Finally, a conclusion about the performance of the VAE is
drawn in Sec. 7.4.

7.1 RL to Reach a Cup

In this thesis, RL is used to let the robot learn tasks in simulation and perform them in the
real world. The task that the robot has to learn is to reach a blue cup on top of a metal table
from a fixed starting position as shown in Fig. 7.1. For this experiment, the entire scene is used,
meaning that the camera is positioned in such a way that the robot arm, the table, the cup and
some background is visible. Since the scope of this thesis is to show that the latent state can be
used as input for RL, the task is kept simple by not taking collision with the table or itself into
account. This is done by giving the table no collision in simulation, such that the robot can just
hit the table without any consequences in simulation.

Since the task of this experiment is to reach a certain goal position, the reward function of
this task is the negative distance between the end effector of the robot and the goal position:

reward = −||ee− goal||2, (7.1)

where ee is the position of the end effector and goal the position of the cup.

Training the policy is done with a Ornstein-Uhlenbeck process [Uhlenbeck and Ornstein,
1930] as noise with µ = 0 and σ = 0.2, and a memory limit of 1e6. For all other parameters, the
default values from Stable Baselines [Hill et al., 2018] are used.

The experiments are evaluated by the time to train in hours, the average distance (error)
between the end effector of the robot and the centre of the cup in centimetres, and the accuracy,
which is the percentage that the robot reached the cup within a range of 10cm. To compute
the average error and the accuracy, the robot performs the learned policy 100 times. The policy
is only tested in simulation and not in the real world, since the results of the VAE were not
sufficient to reconstruct the scenes with the robot in the real world. Any tests with the policy
in the real world would thus result in obtaining a random latent state as input, which the policy
has probably not seen, resulting in unknown behaviours.

43

Figure 7.1: The starting position of the robot from which it should reach the cup.

7.2 Reach a Cup at a Fixed Position

In this experiment, the robot has to reach a cup that is placed at a fixed position: 35cm in front
of the robot. This experiment is used to show that the setup for training the robot with RL is
working and tries to answer the question: Can the robot learn to go to a fixed target position,
given the latent state and current joint values as input? While the latent state is given as input,
it does not actually need it. The robot should learn to always go to the same joint values.
We expect that the robot is capable of learning this, since it only needs to predict the same
actions as seen during demonstration. Firstly, the robot is trained for 1, 000 epochs on 10 expert
demonstrations reaching the cup. Next, the robot continues to learn how to reach the cup using
RL for 2, 500 steps.

7.2.1 Results

The results of reaching a cup at a fixed position in simulation are shown in Tab. 7.1. The
imitation policy is only pretrained on the expert demonstrations and has thus not been trained
using RL. As can be seen from the results, the RL policy outperforms the imitation policy for
reaching a cup at a fixed position. Compared to using the position of the cup as input state
instead of the latent state, the latent state performs slightly worse. This can be explained by
the fact that the latent state can be slightly different each time, since a small adjustment in the
captured image, for example the arm not being at the precise start position, might influence the
latent state.

Time to train (h) Avg error (cm) Accuracy (%)
With cup position Imitation < 0.1 2.63 98

RL 1.27 3.34 100
With latent state Imitation < 0.1 5.37 89

RL 1.37 4.67 96

Table 7.1: Results for reaching a cup at a fixed position in simulation. The RL policy outperforms
the imitation policy. Having the cup position as input slightly outperforms the latent state.

44

Figure 7.2: The episode reward and the actor/critic losses over time during training for reaching
a cup at a fixed position averaged over three training runs. After 600 steps, the losses start to
decrease and the episode reward gets more stable towards 0.

Figure 7.2 shows the episode reward, the actor loss and the critic loss over time during training
for reaching a cup at a fixed position averaged over three training runs. As can be seen, the
losses start increasing, since the robot starts to take actions with noise while initialised with
the imitation policy. This can also be seen from the episode reward: the rewards are heavily
fluctuating in the beginning. After 600 steps, the losses start to decrease and the episode reward
gets more stable towards 0.

7.3 Reach a Cup at Ten Positions

In the next experiment, the robot has to reach a cup that is placed at ten different positions.
It should now use the latent state for determining where the cup is placed to reach it correctly.
Our hypothesis is that the latent state is a sufficient input for RL to determine where the cup
is and to learn to move towards it. Firstly, the robot is trained for 5, 000 epochs on 50 expert
demonstrations reaching the cup at the ten positions. Next, the robot continues to learn how to
reach the cup using RL for 10, 000 steps.

7.3.1 Results

The results of reaching ten cups in simulation are shown in Tab. 7.2. In contrast to reaching a
cup at a fixed position, the RL policy performs a lot worse than the imitation policy for reaching
ten cups. However, this is the case for both the cup position and the latent state, so this is
not due to the latent state, but due to the RL algorithm. Using the latent state as input even
slightly outperforms using the cup position as input.

45

Time to train (h) Avg error (cm) Accuracy (%)
With cup position Imitation < 0.1 12.10 80

RL (10, 000) 4.75 27.41 44
With latent state Imitation < 0.1 12.48 82

RL (10, 000) 3.53 28.48 58
RL (50, 000) 27.66 20.79 74

Table 7.2: Results for reaching ten cups in simulation. The imitation policy outperforms the RL
policy, but using the latent state as input slightly outperforms the cup position.

Figure 7.3: The episode reward and the actor/critic losses over time during training for reaching
a cup at ten positions averaged over three training runs. Both the reward and the losses seem
to be not yet at an optimum, suggesting that it can still learn more when training longer.

Figure 7.3 shows the episode reward, the actor loss and the critic loss over time during training
for reaching a cup at ten positions averaged over three training runs. Similar to the training
process for reaching one cup, the losses first start increasing before decreasing. However, the critic
loss does not decrease yet and the actor loss and episode reward are not yet at an optimum. This
can be explained by the fact that it has not had enough time to train yet. Figure 7.4 shows the
episode reward, the actor loss and the critic loss over time during training one run for 50, 000
steps. As can be seen, after 50, 000 steps, the losses are lower compared to the 10, 000 steps
training runs, but the reward is about the same. Despite the same reward, the policy that was
trained for 50, 000 steps heavily outperforms the policy that was trained for 10, 000 steps as
shown in Tab. 7.2. However, training this policy took almost 28 hours, compared to the 3.53
hours for 10, 000 steps.

46

Figure 7.4: The episode reward and the actor/critic losses over time during training for reaching
a cup at ten positions for 50, 000 steps. Both the reward and the losses seem to be not yet at an
optimum, suggesting that it can still learn more when training longer.

7.4 Conclusion

The experiments have shown that the latent state obtained from the encoder of the VAE, can
be used as input for RL. Compared to using the position of the cup directly, the performance of
using the latent state as input is the same. This shows that all information needed to reach the
cup, such as the position of the cup, is captured in the latent state. However, training a policy
for reaching a cup takes a long time in our setting within ROS. Furthermore, the imitation policy
still outperforms the RL policy for more complex tasks.

All these experiments have been tested in simulation and no tests with the real robot are
performed. No conclusion can thus be drawn about the capability of using the latent state
obtained using the encoder of a VAE to bridge the visual reality gap in order to transfer a policy
trained in simulation to the real robot. However, we can conclude that the latent state can
be used as input state for RL. Thus, if this latent state can be improved in such a way that
the same states in simulation and the real world are consistently represented as the same latent
state, experiments with transferring the policy trained in simulation to the real robot can be
conducted.

47

Chapter 8

Discussion and Conclusion

Since the use of robots in real life situations is still limited and adjusting a robot to new situations
can be time-consuming, we have decided to look into using Reinforcement Learning (RL) for
robot learning. However, RL on a real robot can be time-consuming and even dangerous, thus
learning in simulation could be used instead. Unfortunately, transferring a learned policy from
the simulator to the real world does often not result in the same behaviour in the real world.
Therefore, we looked into using Variational Auto Encoders (VAE) to bridge the visual reality
gap in order to perform RL with robots. This chapter discusses the results of using VAEs to
bridge the visual reality gap in Sec. 8.1. Next, recommendations for future work are provided in
Sec. 8.2. Finally, a conclusion is drawn in Sec. 8.3.

8.1 Discussion

The conducted experiments have shown that in a controlled environment in which the differences
between images obtained at different moments are almost the same, VAEs are capable of learning
a common representation for the simulated and real world. However, it is not easy to create these
circumstances, especially for daily life situations. The RL experiments have shown that the latent
state, obtained using the encoder of the VAE, can be used as the input state for RL to learn a
simple task, such as reaching a cup. However, training such a policy can take days while still
being outperformed by the imitation policy. But, this is independent of the latent state, since
training such a policy with the position of the cup as input instead of the latent state has the
same performance and training time.

The experiments have also shown the limitations of using a VAE to obtain a common repre-
sentation for the simulated and real world. Firstly, the conditions of the real world environment
should stay the same, which is very difficult when both the workspace of the robot and the back-
ground are in the image, or when the lighting conditions vary. Furthermore, the reconstruction
of the original image with the VAE is not perfect for the entire scene. Specifically, the arm was
not always correctly reconstructed. This is not a problem for our experiments, since the current
joint values can be obtained and the robot does not have to avoid obstacles. However, more
complex tasks that require hand-eye coordination might need a better reconstruction. Another
drawback of using VAEs is the lack of the ability to generalise to unknown objects. VAEs tend
not to reconstruct objects that are not observed often, since it would been seen as noise. This
might lead to problems when unknown objects occur. For example, avoiding a human arm in
our setting would not be possible if it has never seen that arm before, since it would most likely
not be reconstructed. This is the nature of VAEs and one should think about the use cases for

49

the robot before using this method.

In addition to the limitations imposed by the VAE, there are also some limitations regarding
the RL part. Our method requires some expert knowledge about the task, since demonstrations
are used to speed up the learning process. Without these demonstrations, learning a simple task
such as reaching a cup would take a lot more time [Zhang and Ma, 2018]. Furthermore, the
current task is a relatively simple task compared to other tasks that robots can perform, and
it is already solvable using other techniques such as an object detector in combination with a
motion planner. Moreover, no collision avoidance is learned in our experiments, so a motion
planner would still be needed when testing the policy on the real robot to prevent it from hitting
anything. This is something that could be added within the reward function during training.
We planned to do this using MoveIt [Sucan and Chitta, 2013], such that MoveIt could provide
us with feedback if a desired joint value would be valid or not, which could be used in the
reward function to learn to avoid taking invalid actions. However, we did not get this to work,
since MoveIt crashes after a while for no clear reason, so we decided not to learn any collision
avoidance. Lastly, training tasks using RL still take a long time and one should currently still
wonder if that time is worth saving the manual engineering and fine tuning. However, RL is
still a large active research area with a lot of new techniques still under development, including
methods to speed up the learning process such as [Jain and Tulabandhula, 2017] and [Stooke
and Abbeel, 2018].

8.2 Recommendations

This thesis has shown that using VAEs to obtain a common representation for the simulated and
real world is still complicated. The next step to bridge the visual reality gap in order to perform
RL with robots would thus be to improve the VAE. One way of improving the VAE is by using
a conditional Auto Encoder such as DIVA [Ilse et al., 2019] or Variational Fair Auto Encoders
[Louizos et al., 2015] to condition the Auto Encoder on the day of the recorded data set. In this
way, the variation caused by the different days can be removed.

Another way to improve the VAE is by continuing to train the simulation VAE during training
of the RL part. In this way, more data can be collected while already learning a policy. This
could, however, cause a bias towards the states that are visited more often during training, but
these are also the states that the robot will probably encounter the most, so good representations
of these states are desired. Furthermore, the depth information of the images obtained using a
Kinect is not used in this thesis. To improve the information that can be extracted from the
Kinect, the depth information can be used to better estimate the position of the objects in the
environment.

Besides obtaining more or different data, Data Augmentation [Shorten and Khoshgoftaar,
2019] can be used to generate more training images with different lighting conditions to learn a
more robust VAE that performs well under different lighting conditions. Another way to learn a
model that is invariant to different lighting conditions is by normalising the colours in order to get
colour constancy [Agarwal et al., 2006], which means that the same objects have the same colours
under different illumination conditions. For example, the Gray World algorithm [Buchsbaum,
1980] assumes that the colour in each channel averages to grey over the entire image and thus
colour constancy can be achieved by dividing each channel by its average value.

Aside from improving the latent space obtained with the VAEs, the RL part can be improved
by extending the current tasks to more complex tasks, such as including collision avoindance or
grabbing the cup instead of only reaching it. Also, different starting positions can be used to let
the robot learn how to reach the cup from different positions.

50

Finally, one can look into RL methods that try to speed up the learning procedure for example
by optimising existing (deep) RL algorithms for a combination of CPUs and GPUs [Stooke and
Abbeel, 2018] or by training in parallel [Liu et al., 2018], but this also requires the simulator to
be able to run in parallel.

8.3 Conclusion

From the experiments that are performed, we can conclude that a common latent space for the
simulated and real world can be learned using VAEs. The generated images from the common
latent space look alike and only differ slightly between the simulated and real world. However,
the VAE does not generalise well to slightly different data, so the environment should be exactly
the same as at the moment that the data set was recorded. This also includes the background
and lighting, which is difficult to keep the same since the surrounding of the environment can
change. The RL experiments have shown that this latent space can be used to let a robot learn
to reach a cup using RL in simulation. Compared to using the position of the cup directly,
the performance of using the latent state as input is the same. This shows that all information
needed to reach the cup, such as the position of the cup, is captured in the latent state. Since
the results of the latent state were not sufficient to reconstruct the scenes with the robot in the
real world, the trained policy is only tested in simulation and not in the real world. Thus, it is
not possible to determine whether the latent space generated by VAEs can be used to bridge the
visual reality gap, which would allow policies trained in simulation to be transferred to the real
robot.

51

Bibliography

Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Good-
fellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL https:

//www.tensorflow.org/. Software available from tensorflow.org.

Pieter Abbeel, Adam Coates, Morgan Quigley, and Andrew Y. Ng. An applica-
tion of reinforcement learning to aerobatic helicopter flight. In B. Schölkopf, J. C.
Platt, and T. Hoffman, editors, Advances in Neural Information Processing Sys-
tems 19, pages 1–8. MIT Press, 2007. URL http://papers.nips.cc/paper/

3151-an-application-of-reinforcement-learning-to-aerobatic-helicopter-flight.

pdf.

Vivek Agarwal, Besma R Abidi, Andreas Koschan, and Mongi A Abidi. An overview of color
constancy algorithms. Journal of Pattern Recognition Research, 1(1):42–54, 2006.

Dana H Ballard. Modular learning in neural networks. In AAAI, pages 279–284, 1987.

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jen-
nifer Wortman Vaughan. A theory of learning from different domains. Machine learning,
79(1-2):151–175, 2010.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym, 2016.

Gershon Buchsbaum. A spatial processor model for object colour perception. Journal of the
Franklin institute, 310(1):1–26, 1980.

François Chollet et al. Keras. https://keras.io, 2015.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische mathematik,
1(1):269–271, 1959.

53

https://www.tensorflow.org/
https://www.tensorflow.org/
http://papers.nips.cc/paper/3151-an-application-of-reinforcement-learning-to-aerobatic-helicopter-flight.pdf
http://papers.nips.cc/paper/3151-an-application-of-reinforcement-learning-to-aerobatic-helicopter-flight.pdf
http://papers.nips.cc/paper/3151-an-application-of-reinforcement-learning-to-aerobatic-helicopter-flight.pdf
https://keras.io

Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning
for robotic manipulation with asynchronous off-policy updates. In 2017 IEEE international
conference on robotics and automation (ICRA), pages 3389–3396. IEEE, 2017.

Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):100–107,
1968.

Irina Higgins, Arka Pal, Andrei Rusu, Loic Matthey, Christopher Burgess, Alexander Pritzel,
Matthew Botvinick, Charles Blundell, and Alexander Lerchner. Darla: Improving zero-shot
transfer in reinforcement learning. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 1480–1490. JMLR. org, 2017.

Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Rene Traore, Prafulla Dhari-
wal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford, John
Schulman, Szymon Sidor, and Yuhuai Wu. Stable baselines. https://github.com/hill-a/

stable-baselines, 2018.

Maximilian Ilse, Jakub M. Tomczak, Christos Louizos, and Max Welling. DIVA: domain invariant
variational autoencoders. CoRR, abs/1905.10427, 2019. URL http://arxiv.org/abs/1905.

10427.

Tadanobu Inoue, Subhajit Choudhury, Giovanni De Magistris, and Sakyasingha Dasgupta.
Transfer learning from synthetic to real images using variational autoencoders for precise
position detection. In 2018 25th IEEE International Conference on Image Processing (ICIP),
pages 2725–2729. IEEE, 2018.

Vikas Jain and Theja Tulabandhula. Faster reinforcement learning using active simulators.
CoRR, abs/1703.07853, 2017. URL http://arxiv.org/abs/1703.07853.

Stephen James, Andrew J Davison, and Edward Johns. Transferring end-to-end visuomotor
control from simulation to real world for a multi-stage task. arXiv preprint arXiv:1707.02267,
2017.

J. L. W. V. Jensen. Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta
Mathematica, 30(1):175–193, Dec 1906. ISSN 1871-2509. doi: 10.1007/BF02418571. URL
https://doi.org/10.1007/BF02418571.

Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou, Peter Pastor, and Stefan Schaal.
Stomp: Stochastic trajectory optimization for motion planning. In 2011 IEEE international
conference on robotics and automation, pages 4569–4574. IEEE, 2011.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Nathan Koenig and Andrew Howard. Design and use paradigms for gazebo, an open-source
multi-robot simulator. In 2004 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS)(IEEE Cat. No. 04CH37566), volume 3, pages 2149–2154. IEEE, 2004.

Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in neural information
processing systems, pages 1008–1014, 2000.

Sergey Levine, Peter Pastor, Alex Krizhevsky, and Deirdre Quillen. Learning hand-eye co-
ordination for robotic grasping with deep learning and large-scale data collection. CoRR,
abs/1603.02199, 2016. URL http://arxiv.org/abs/1603.02199.

54

https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
http://arxiv.org/abs/1905.10427
http://arxiv.org/abs/1905.10427
http://arxiv.org/abs/1703.07853
https://doi.org/10.1007/BF02418571
http://arxiv.org/abs/1603.02199

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Qihao Liu, Xiaofeng Liu, and Guoping Cai. Control with distributed deep reinforcement learning:
Learn a better policy. arXiv preprint arXiv:1811.10264, 2018.

Christos Louizos, Kevin Swersky, Yujia Li, Max Welling, and Richard Zemel. The variational
fair autoencoder. arXiv preprint arXiv:1511.00830, 2015.

Richard Meyes, Hasan Tercan, Simon Roggendorf, Thomas Thiele, Christian Büscher, Markus
Obdenbusch, Christian Brecher, Sabina Jeschke, and Tobias Meisen. Motion planning for
industrial robots using reinforcement learning. Procedia CIRP, 63:107–112, 2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-
level control through deep reinforcement learning. Nature, 518(7540):529, 2015.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines.
In Proceedings of the 27th international conference on machine learning (ICML-10), pages
807–814, 2010.

Lerrel Pinto, Marcin Andrychowicz, Peter Welinder, Wojciech Zaremba, and Pieter Abbeel.
Asymmetric actor critic for image-based robot learning. arXiv preprint arXiv:1710.06542,
2017.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1994. ISBN 0471619779.

Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob
Wheeler, and Andrew Y. Ng. Ros: an open-source robot operating system. In ICRA Workshop
on Open Source Software, 2009.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv
preprint arXiv:1606.04671, 2016a.

Andrei A Rusu, Mel Vecerik, Thomas Rothörl, Nicolas Heess, Razvan Pascanu, and Raia Hadsell.
Sim-to-real robot learning from pixels with progressive nets. arXiv preprint arXiv:1610.04286,
2016b.

Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep
learning. Journal of Big Data, 6(1):60, 2019.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In ICML, 2014.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al.
Mastering the game of go with deep neural networks and tree search. nature, 529(7587):484,
2016.

Adam Stooke and Pieter Abbeel. Accelerated methods for deep reinforcement learning. arXiv
preprint arXiv:1803.02811, 2018.

55

Ioan A Sucan and Sachin Chitta. Moveit! Online at http://moveit. ros. org, 2013.

Lei Tai and Ming Liu. Deep-learning in mobile robotics - from perception to control systems:
A survey on why and why not. CoRR, abs/1612.07139, 2016. URL http://arxiv.org/abs/

1612.07139.

Lei Tai, Giuseppe Paolo, and Ming Liu. Virtual-to-real deep reinforcement learning: Continuous
control of mobile robots for mapless navigation. In 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 31–36. IEEE, 2017.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel.
Domain randomization for transferring deep neural networks from simulation to the real world.
In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
23–30. IEEE, 2017.

Jonathan Tremblay, Aayush Prakash, David Acuna, Mark Brophy, Varun Jampani, Cem Anil,
Thang To, Eric Cameracci, Shaad Boochoon, and Stan Birchfield. Training deep networks with
synthetic data: Bridging the reality gap by domain randomization. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2018.

George E Uhlenbeck and Leonard S Ornstein. On the theory of the brownian motion. Physical
review, 36(5):823, 1930.

Thiemo Wiedemeyer. IAI Kinect2. https://github.com/code-iai/iai_kinect2, 2014 – 2015.
Accessed June 12, 2015.

Fangyi Zhang, Jürgen Leitner, Michael Milford, and Peter Corke. Sim-to-real transfer of visuo-
motor policies for reaching in clutter: Domain randomization and adaptation with modular
networks. world, 7(8), 2017.

Xiaoqin Zhang and Huimin Ma. Pretraining deep actor-critic reinforcement learning algorithms
with expert demonstrations. arXiv preprint arXiv:1801.10459, 2018.

Zhong-Qiu Zhao, Peng Zheng, Shou-tao Xu, and Xindong Wu. Object detection with deep
learning: A review. CoRR, abs/1807.05511, 2018. URL http://arxiv.org/abs/1807.05511.

56

http://arxiv.org/abs/1612.07139
http://arxiv.org/abs/1612.07139
https://github.com/code-iai/iai_kinect2
http://arxiv.org/abs/1807.05511

	Introduction
	Outline

	Background
	Auto Encoders
	Variational Auto Encoder

	Reinforcement Learning
	Value-based
	Policy-based
	Actor-Critic

	Related Work
	Simulation to Real World
	Motion Control

	Method
	Variational Auto Encoder (VAE)
	Training VAEs to Learn a Common State Representation

	Reinforcement Learning (RL)
	Deep Deterministic Policy Gradient (DDPG)
	Learning from Demonstrations
	DDPG for Robot Control

	Experimental Setup
	Hardware
	Software Implementation
	Variational Auto Encoder (VAE)
	Robot Operating System (ROS)

	VAE Exploration
	Entire Scene
	Data set
	Results

	Scene with Table and Cup
	Data Set
	Results

	Scene with more Stable Lighting
	Data Set
	Results

	Conclusion

	RL Experiments
	RL to Reach a Cup
	Reach a Cup at a Fixed Position
	Results

	Reach a Cup at Ten Positions
	Results

	Conclusion

	Discussion and Conclusion
	Discussion
	Recommendations
	Conclusion

