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Abstract—This thesis investigates the use of machine learning
for predicting the onset, duration and species of overlapping
bird sounds in field recordings. The resulting model - a modified
version of SEDnet - achieves state-of-the-art performance with a
frame-wise F-score of 0.94 and an error rate of 0.11 on recordings
with up to three overlapping sound sources. It is further shown
that the features learned by the model have the capacity to
segment bird songs into song phrases. To train and test the model,
a novel bird sound dataset was created with 500+ sound event
annotations for each of 5 bird species. The model, code and
dataset are publicly available1.

Index Terms—Sound Event Detection, Birds, Biomonitoring,
Species Identification

I. INTRODUCTION

Birds are an exceptional group of animals, in that they
broadcast their presence with their songs and calls. This trait
offers great potential for biomonitoring, as audio can be used
to confirm bird presence at a range of distances whilst not
requiring the animal to be visible. Despite this, bird population
estimation is currently performed by manual visual surveying
and quadrat sampling, often including volunteers to help
address the challenges of scale [1] [2]. To put audio analysis
forward as a viable alternative for bird population estimation
requires advancements in audio analysis and annotated bird
sound datasets. This work addresses both issues by proposing
a polyphonic sound event detection (PSED) model and a time
annotated bird sound dataset. The proposed model consists of
a convolutional neural network (CNN) linked to a bidirectional
recurrent layer, with each output neuron predicting the classes
present in a single audio frame. The dataset contains over
3200 annotations, with over 500 annotations for blackbirds,
chiffchaffs, great tits, warblers and wrens. Apart from the
PSED model, this paper delves into the process of creating
the dataset, segmenting bird song phrases by clustering CNN
features, and possible future use cases for the model.

1https://github.com/maxcrous/bsed

II. THEORETICAL BACKGROUND

A. Information Stored In Bird Songs

A bird vocalization can be either a song or a call. In
general, songs tend to be long and complex and serve territorial
and mating functions. Conversely, calls are simpler, occur
less spontaneously and are used for contacting and warning
conspecifics [3]. Studies have shown that songs can reveal
a number of things about the birds singing them. Certain
types of songs are perceived as territorial threats [4], with
greater song complexity adding to the perceived threat [5].
For several species, the size of song repertoires correlates
with fitness [6] and songs from adults can bear the signs of
nutritional stress experienced during early development [7].
Even parasitic infections have been shown to decrease birds’
song rate and weaken their frequency range [8] [9]. Lastly,
the set of songs sung by a bird can be codetermined by its
social environment, as both great tits and sparrows have shown
repertoire matching between neighbouring conspecifics [10]
[11]. Thus, the information stored in bird songs goes well
beyond the singer’s species or the number of birds present
in a scene. These findings set the precedent for the kind of
information we may wish to automatically extract with audio
analysis and hints at why detecting birds in recordings could
be valuable.

B. Bird Sound datasets

Supervised machine learning models require labelled data
in order to distinguish between various categories and detect
patterns. The design and format of a dataset depends on the
nature of the supervised learning task.

1) Presence Prediction: For the task of bird presence pre-
diction, several datasets exist. One that stands out with respect
to scale is the conglomerate Warblr dataset [12]. It consists of
32000 audio files, each 10 seconds long and annotated with
either a bird present or absent tag. The dataset combines the
Warblr project’s in-house data, the freefield dataset [13] and
the BirdVox-DCASE-20k dataset [14].

2) Species Classification: The largest publicly available
collection of bird sounds with species annotations is the crowd



Fig. 1: Model architectures

sourced Xeno-canto repository [15]. It houses over 470.000
recordings covering over 10.000 species2. The lengths of
the recordings range from a few seconds to over an hour.
Each recording contains rich metadata, such as the recording
location, time of day and a user description. An especially
important metadata attribute for this work is the recording
rating. Each recording on Xeno-canto has a crowd sourced
rating that ranges from A - Loud and Clear to E - Barely
audible3. While Xeno-canto is not a readily usable dataset
in itself, the repository has served as a source of data for
the BirdCLEF species classification dataset since 2014 [16].
The most recent 2019 BirdCLEF4 dataset covers 659 common
species from North and South America, with each species
being featured in at least 15 and at most 100 audio files.

3) Bird Sound Event Detection: A supervised model trained
to detect the onset and duration of sound events requires
temporal annotations. To the best of our knowledge, there are
only two substantial bird sound datasets with time annotations:
the 2019 BirdCLEF soundscapes [16] and the BirdVox-full-
night dataset [17]. Both have shortcomings that rendered
them unusable for this work. The BirdVox dataset is species-
agnostic and only contains the onset of each sound, but not
the duration or offset. The BirdCLEF soundscapes did not
contain specific onset and offset time annotations. Instead, the
recordings were split into 5 second segments for which the
occurring species were annotated. It is important to note that
fixed length 5 second annotations are not specific enough to
train the millisecond precise model presented in this work.
While datasets with precise time annotations were not found
for birds, they do exist for other classes. For instance, the
DCASE Task 5 dataset [18] contains time annotated sound
events for cooking, dishwashing, social activity and more. The
lack of such a dataset for birds motivated the creation of the
dataset used in this paper.

2https://www.Xeno-canto.org/collection/stats/graphs
3https://www.Xeno-canto.org/help/FAQrating
4https://www.imageclef.org/BirdCLEF2019

C. Bird Recognition with Convolutional Neural Networks

Attempts to predict bird presence and classify bird species
within fixed length recordings have achieved considerable suc-
cess, partly due to the yearly challenges hosted by BirdCLEF
[16] and Warblr [12]. The top entries in these competitions
transform audio data to frequency domain representations,
interpret these representations as images (spectrograms), and
apply CNN classification [19] (see Fig 1b). These networks
are highly effective, achieving an AUC of up to 89% on
bird presence prediction [20] and 0.83% MRR on species
classification [21].

Despite the accuracy of these models, their utility for
biomonitoring is limited due to several factors:

• The models predict a bird class for the whole recording.
Information regarding the onset and offset of a bird
sound can only be implicitly inferred and requires sup-
plementary tools, such as Class Activation Maps [22] and
Saliency Maps [23]. This means that a biological monitor
will not be able diagnose which part of the recording
gave rise to a certain classification, which is valuable
information.

• There has been little research on the use of these models
for multi-label classification, even though there are often
multiple bird species present within a single field record-
ing. To the best of our knowledge, there has only been
a single published work on the performance of multi-
label bird classification with CNNs, which was implicitly
measured by mean reciprocal rank [21]. That is to say, the
predictions were ranked in order of prediction confidence
and the models were not trained to explicitly output
multiple classes.

These issues are addressed by extending this type of clas-
sification model to a sound event detection model.

D. Models for Polyphonic Sound Event Detection

Sound event detection is the task of detecting the type, start-
ing time, and ending time of sound events. In the polyphonic
case, sound events can temporally overlap with each other



Fig. 2: Sound recognition tasks, edit of on image from [24]

(see Fig 2). The first published attempts at solving PSED
employed chains of classical machine learning algorithms
[25] [26] [27]. For instance, the authors of [25] used non-
negative matrix factorisation to separate a spectrogram into its
constituent sources. Thereafter, they used the viterbi algorithm
to detect events and classes within those sources. This was
made possible by interpreting the separated sound sources
as hidden markov models, where the spectrograms were the
visible variables and the sound events were the latent variables.

After the advent of deep learning [28], research into PSED
moved away from classical machine learning algorithms and
works that employed deep neural networks started to appear
[29] [30] [31]. The neural network architecture that is used
in this work was inspired by SEDnet [31]. SEDnet and
other networks like it are called recurrent convolutional neural
networks (CRNNs). The CRNN in this work uses a CNN to
extract local features for each time step of a recording. Here,
a time step is defined as a single unit along the time axis in
the spectrogram of a recording (see top of Fig 1a). The model
is able to maintain a feature for each time step by not pooling
along the time axis. After the CNN module, a recurrent neural
network [32] spreads the local features from a single time step
to its temporal surroundings. This spreading of information
with recurrent layers has multiple benefits:

• The network can make better informed predictions, as
multiple similar sounds will reinforce a prediction. E.g.
a feature that by itself equally supports a sparrow and
a blackbird prediction, will skew towards predicting a
blackbird if the preceding and following feature predict
a blackbird.

• The network can be trained to include brief moments
of silence in a prediction. For example, a human speech
event contains many short silences in between words,
which we may want to include in the prediction of a
human speech event.

After the recurrent layers, the spread features are processed by
a time distributed fully connected layer to make multi-label
predictions for each time step. For a simplified visualization
of the model, see Fig 1a.

III. METHODS

A. Creating the Dataset

There are 2 popular approaches for annotating PSED
datasets [24]. The first involves annotating audio that contains
a mixture of sources. While mixed source audio is the most
truthful representation of polyphonic scenes, annotating it
is very time consuming and requires a highly perceptive
annotator. In the case of birds sounds, it would imply that the
annotator is able to recognise a large number of bird species
and precisely determine song on- and offset in cluttered scenes.

The second method involves creating synthetic mixtures by
combining the audio and annotations of isolated sound events.
This allows the annotator to focus on annotating a single class
for an extended period of time. The task thus becomes less
mentally taxing as the class is more easily recognised and
event on- and offsets are more easily determined. The dataset
in this work is a collection of isolated event annotations.

1) Collecting Audio: All audio files that are included in
the dataset in this work were downloaded in batches from
Xeno-canto. First, a search query was issued on Xeno-canto
for each species. The query flags filtered the results down to A
rated recordings of bird songs. Any lower rated recordings or
recordings of other vocalisations, such as fighting calls, were
discarded. The species were chosen based on their prevalence
in the Netherlands and number of Xeno-canto results. This
was done in the hopes of using trained models on Dutch field
recordings. The only species that does not appear in the 10
most common birds in the Netherlands [33] is the warbler.
Querying and batch downloading was achieved by refactoring
and running a Python scraping script named Birdbrain5. Once
downloaded, each audio file was prepared for annotating by
being split into sequences of 20 seconds with FFmpeg6.

2) Annotations: Annotations were made within an interac-
tive web application that allows users to brush select parts
of a recording and assign classes (see Fig 6). The frontend
was an unmodified copy of the CrowdCurio audio-annotator7.

5https://github.com/davipatti/birdbrain
6https://ffmpeg.org
7https://github.com/CrowdCurio/audio-annotator



Fig. 3: Dataset creation pipeline

The backend was based on the Dynitag project8. Dynitag was
originally programmed as a collaborative annotation tool that
could be accessed through the internet. It was modified for this
work to only allow access to a single local user. Instructions
on how to set up this annotation environment can be found in
this work’s codebase.

Although all recordings were A rated, many contained faint
traces of birds singing in the background. To reduce false
negatives in the data, a special not right tag was used to
disregard parts of the recordings (see Fig 7).

The design of the annotation storage format in this work
was inspired by the format of the TUT Sound events 2017
development dataset [34]. In it, each sound event annotation
is a line in a text file. Each line has the following format:

audio file path, event onset, event offset, class

An example entry would be:

BirdSounds1.mp3, 10.2, 14.9, Chiffchaff

This design was chosen due to its simplicity.

B. From Annotations to Features

1) Short-time Fourier transform: The PSED model in this
work uses spectrograms to make predictions. A spectrogram
is a time-frequency transform of a signal. There is no one-to-
one mapping from audio files to spectrograms, as there are
several different algorithms that can produce spectrograms,
each of which has an array of hyperparameters. This work
uses the short-time Fourier transform (STFT) to generate
spectrograms, as it has been used in many other works on
bird sound recognition [12] [16] [20]. One of the STFT’s
principal hyperparameters is its window length. This parameter
determines how many audio wave sample points constitute a
single spectrogram frame. It thus encodes a tradeoff between
time resolution and frequency resolution. The best value for
this parameter depends on the task at hand and would ideally
be determined empirically by training a model with different
values. To the best of the authors knowledge, there has been
no such work that thoroughly reviews this parameter for
bird songs, despite some works experimenting with up to
three different values [35]. Due to the computational costs of

8https://github.com/dynilib/dynitag

training a PSED model, this work also does not provide such
a review. Instead, we chose to manually evaluate 15 different
window lengths, ranging from 16 frames to 2560 frames, for
100 different spectrograms (see Fig 8 for an excerpt of this
comparison). The window length that on average revealed
the structure of bird song most clearly was 512 frames. This
window length was used throughout the work.

2) Sequence Length: Once a spectrogram has been created
for every audio file in the database, a sequence length needs to
be selected. The sequence length is the number of spectrogram
frames that the PSED model will receive as input. In other
words, the sequence length is proportional to the amount
time or temporal context that the network can take into
consideration when making predictions. Sequence length thus
encodes a tradeoff between a model’s memory efficiency and
the amount of information contained in each sample.

In the Warblr bird presence prediction challenge, contestants
mostly used 10 second sequence lengths [12] [20], as that
matched the 10 second length of all the recordings in the
dataset. In this work, there is not such a straightforward choice
for a sequence length, as all Xeno-canto recordings have
variable lengths. The designer of SEDnet[31] was faced with
the same issue and chose for a sequence length of 512 frames
in SEDnet’s publicly available implementation9. This sequence
length would cover approximately 3 seconds of audio, given
the audio sampling rate of 44.1kHz and the STFT window
length of 512 used in this project (see Equation 1 for the
conversion formula). Such a short time frame would make
results hard to interpret, give the model little temporal context,
and slice many bird songs into segments, which would defeat
the purpose of using a PSED model for finding song on- and
offsets. For this work, we chose a sequence length of 2048
frames, which coveres approximately 11 seconds of audio. A
sequence length of 2048 was the largest multiple of 512 that
still allowed for a batch size of 30 during training.

The code supplied with this work contains a script that
automates the creation of features given a set of audio files and
annotation files. It allows users to set different spectrogram
window lengths, sequence lengths, audio sample rates, and
more. This should allow for easy parameter experimentation
in future work.

9https://github.com/sharathadavanne/sed-crnn



Figure 3 shows a visual summary of all the above-mentioned
steps in the dataset creation pipeline. Green blocks represents
programs and arrows represent flows of data. Table I shows
the number of annotations that were made for each bird class.

Species Annotations
Chiffchaff 883
Great tit 796
Blackbird 566
Warbler 503
Wren 500
Total 3248

TABLE I: Dataset statistics

IV. PSED MODEL

A. Implementation

This work features a complete rewrite of the publicly
available code of SEDnet9. The code was rewritten for several
reasons:

• To incorporate more modularity, extensibility and docu-
mentation to provide for future growth and code reuse.

• To reorganise the flow of tensors through the model to
make the tensor operations more comprehensible.

• To use a data generator instead of variables during
training and testing to accommodate datasets whose size
exceeds the system’s memory size.

• To log as much training information as possible to
Tensorboard, instead of including plot generation code
in the training loop.

The code was mainly written in Python310 and Keras11,
an open-source neural-network library. All code is fully com-
pliant with the PEP8 style guidelines12. The shell scripts
that automate the production of features from audio files and
annotations were written for both Bash13 and Fish14.

B. Model parameters

Preliminary experiments on the TUT Sound events 2017
development dataset [34] showed that an increase in the
number of features in every layer of the network significantly
improved model performance. The number of features in
the recurrent layers was multiplied by 8. The number of
features in the convolutional layers was set to increase from
64 to 256, instead of using 128 features throughout all layers
(see Table II for the this work’s model architecture and the
SEDnet codebase9 for the original feature counts). Dropout
was removed as it only weakened performance on bird PSED
task. The Adam optimiser [36] was used with a learning
rate of 0.001. Model loss was calculated using a binary
crossentropy loss. Separate models were trained and tested on
single, double and triple concurrent sound sources. Whenever
technically feasible, models were trained 3 times with different

10https://www.python.org/
11https://keras.io/
12https://www.python.org/dev/peps/pep-0008/
13https://www.gnu.org/software/bash/
14https://fishshell.com/

cross validation seeds for 40 epochs with a batch size of 30.
Exceptions were made for the model trained on 3 concurrent
sound events, as the model’s memory footprint exceeded
system memory (see Table III). The data was apportioned into
a training and a test set with a 80%-20% split.

C. Data Generators

A novel addition to the SEDnet codebase was the data
generator. A Keras generator was used to get batches of
spectrograms and label arrays during training. The generator
also greatly simplified the creation of mixed spectrograms
and label arrays. During training, the generator selects a bird
class at random and then selects a random spectrogram and
label array pair from that class. Each sample is popped off
a periodically refreshed list, to ensure that each sample has
an equal probability of being selected and that no sample
is selected a disproportionate number of times. Whenever
concurrent sound sources are required, the generator merges
spectrograms and label arrays.

Layer type Block occurences Number of Features

2D Convolution (3x3)

5x 64, 64, 128, 128, 256
Batch Normalization

Relu Activation

Max Pooling (2x1)

Bidirectional Gated Recurrent Unit 2x 256, 256

Time Distributed Fully Connected 2x 256, 256

Sigmoid Activation 1x

TABLE II: Network block & feature counts

V. MATERIALS

All programs were run on an Ubuntu 16.04 desktop. All
3rd party Python3 modules that were used are listed in a
requirements file in the codebase. Whenever a model needed
to be trained, six GTX 1080 GPUs were rented on Vast.ai
to accommodate for the model’s large memory footprint.
Vast.ai15 is a cloud GPU rental market that allows users to rent
and list machines. Adobe Photoshop16 was used for editing
some of the images that appear in this report. This document
was prepared in Latex17.

VI. PERFORMANCE METRICS

The PSED model in this work is evaluated by comparing
its predictions to ground truth label arrays. We use the F-
score and error rate described in [24] as metrics, as they have
been used in numerous PSED publications and have been the
primary metrics used in the DCASE PSED challenges since
2016 [18].

15https://vast.ai/
16www.adobe.com/Photoshop
17https://www.latex-project.org/



Fig. 4: Bird song phrases, image from [3]

The F-score considers both precision P and recall R, which
in turn consider true positives TP , false positives FP and false
negatives FN . The F-score is calculated as follows:

P =
TP

TP + FP
, R =

TP

TP + FN
, F =

2 · P ·R
P +R

The error rate ER measures the amount of errors in terms
of insertions I , deletions D and substitutions S in N segments
and is calculated as follows:

ER =

∑K
k=1 S(k) +

∑K
k=1 D(k) +

∑K
k=1 I(k)∑K

k=1 N(k)

S(k) = min(FN(k), FP (k))

D(k) = max(0, FN(k)− FP (k))

I(k) = max(0, FP (k)− FN(k))

There are two ways one can count the intermediate statistics
TP , FP , FN : by segment or by event. Segment-based
counting entails that every spectrogram segment is treated
as a multi-class classification problem. Event-based counting
considers a series of segments as a whole, that is, whether or
not a prediction event overlaps with a ground truth event. In
this work the event-based counting method is not used for two
reasons.

1) The PSED model occasionally predicts many short
events (see Fig 11).

2) Single bird songs are sometimes annotated as many short
events.

Given these two facts, the overlap between the predicted events
and ground truth events would give a skewed view of model
performance. Thus, this work will use frame-wise F-score
and error rate as primary metrics. Note that segment-based
metrics are called frame-wise in this work, as a segment of a
spectrogram is called a frame and the term ’frame-wise’ has
been popularised by [31]. For visual examples of the above-
mentioned metrics, see Fig 9 and Fig 10.

A Python implementation of these metrics was made pub-
licly available18 by the authors of [24]. This implementation
was used throughout this work. To enable Keras to display
the metrics in Tensorboard during training (see Fig 12), the
code for the F-score and error rate was also rewritten in Keras
variables and operators.

18http://tut-arg.github.io/sedeval/

VII. RESULTS

The average performance of the 3 final models can be
found in Table III. The F-score and error rate are averaged
over three cross-validation iterations for each model. For a
minor qualitative analysis, one can refer to the 3 randomly
chosen predictions in Fig 14 for each of the three models. The
performance is surprisingly high for such a challenging task,
considering the original SEDnet architecture [31] achieved
an F-score of 71.7 and error rate of 0.43 on the TUT-SED
2009 dataset in 2017 [37]. As seen in Fig III, the inclusion of
additional sound sources during training and validation only
slightly reduced performance. This shows that the model was
nearly as successful at detecting polyphonic sound events as
it was at detecting isolated sound events.

We suspect that there are several factors that contributed to
the model’s high performance:

1) Some bird songs contain extremely repetitive structures.
E.g. a single recording of a chiffchaff can contain many
nearly identical phrases (see Fig 13). This means that
the network is exposed to many similar cues that can all
reinforce the same prediction.

2) Due to the batch size of 30, the 11 second sequence
length and the high temporal resolution, the model is
exposed to more than five minutes of high resolution
data for every single weight update. This may have
contributed to the model’s stable learning progression
(see Fig 12). This effect is multiplied by the number of
species in a sample for the models trained on multiple
audio sources.

3) The data used for annotations was exceptionally clean.
Only A class recordings were considered, which are
often recorded by Xeno-canto users with professional
gear, such as parabolic microphones. All annotations
were made by a single person, which promises some
level of annotation consistency. To avoid mislabeling
during the annotation process, recordings were skipped
if the class of the bird songs was ambiguous. Other
SED datasets, such as earlier mentioned TUT-SED 2009,
feature more cluttered recordings and a larger variance
in audio quality [38].

4) Even though there is absolutely no overlap in the training
and test set, the data distributions may be very similar.
That is to say, many of the recordings may share acoustic



Fig. 5: t-SNE of CNN features covarying with phrases

features as they may have been recorded by the same
person with the same gear. The Xeno-canto recording
contribution graphs19 follows a power law distribution,
which means that a large portion of the repository has
been contributed by a small group of members.

5) The spectrogram window length of 512 is relatively
short when compared to window lengths used in other
works on bird sound recognition [16] [12]. Upon manual
inspection, this high temporal resolution reveals struc-
tures in the spectrograms that are distinct in outline
and detail (see Fig 8). This sharpness may benefit the
network’s pattern detection capabilties.

Audio Sources Batch size Epochs Avg. F-score Avg. error rate
1 30 40 0.97 0.05
2 30 40 0.95 0.10
3 22 40 0.94 0.11

TABLE III: Results

A. Song Phrases

Surprisingly, the trained models were found to have the
capacity to segment bird song phrases. A song phrase is
defined as a series of units which occur together in a particular
pattern [3]. Without going into the terminology of song units,
one can refer to Fig 4 for a visual example of bird song
phrases. The discovery was made during model debugging.
A one dimensional t-SNE [39] plot was used to gain insight
into the model’s inner representation of the data (see Fig 5).
For each inference, the feature vectors from the final CNN
layer were intercepted. A one dimensional t-SNE mapping of
these feature vectors was then plotted along a time axis, such
that the visualisation would align with the spectrograms and
label arrays. As can be seen in Fig 5, a switch in phrases
in the spectrogram is accompanied by a change of the t-SNE
mapping. To test whether these phrases could be automati-
cally segmented, a K-means clustering algorithm was used
on unmodified CNN feature vectors. The number of cluster
centroids was manually tuned for demonstration purposes, but
could be automatically determined by, for instance, using the

19https://www.Xeno-canto.org/collection/stats/recordists

elbow method20. Each red line in Fig 5 indicates the switch
between the most dominant cluster in the local neighbourhood
of 3 time steps.

While this segmentation approach appears to be promising,
no performance metrics were calculated in this work as such
an evaluation would require a dataset with phrase annotations.

VIII. DISCUSSION

While building the dataset and PSED model for this work,
many questions regarding future work arose. We would like to
consider how the model and dataset could be improved, what
steps could be taken to scale them up, and how they could be
modified to distill other types of information from audio.

Annotating the dataset was the most time-consuming task
in this work. Expanding the dataset to contain enough species
for effective biomonitoring will either require a collabora-
tive effort or some fundamental alterations to the model’s
architecture. The authors of [37] recently showed that it is
possible to teach a network to perform PSED by using only
weakly labeled data. They achieved this by adding an auxiliary
classification branch after the time distributed fully connected
layer and training the model on a classification task. The
weak labels would allow the network to learn features for
classification, which could thereafter be used for PSED. Such
a model may be very powerful when combined with the
hundreds of thousands of recordings on Xeno-canto and a
rigorous hyperparameter and architecture search.

Another interesting finding, published in [40] by the same
team, was that the model can be extended to localise and track
sound sources. They accomplished this by adding a regression
branch that predicts a sound’s direction of arrival over time.
For bird monitoring, one could generate a synthetic dataset
by simulating moving bird sound sources and stereo micro-
phones. Being able to track sources would greatly simplify
and possibly solve the problem of counting individual birds in
an audio scene.

As a final point of interest, we would like to consider
the possible implications of the phrase segmentation method
presented in this work. It could be used to replace or aid
the very involved process that is currently used for creating

20https://en.wikipedia.org/wiki/Elbowmethod(clustering)



phrase catalogues21. The idea of manipulating the network’s
inner representation of bird songs could also be taken a step
further. One may use it to distill other kinds of information
given a different learning task. For instance, training a model
to distinguish between birds of the same species may give rise
to latent variables that are interpretable, such as a specimen’s
age, sex or fitness. A classifier trained to distinguish bird
species may reveal features whose differences correspond to
genetic distance. These and other possible implicit features
would bypass the need for expensive labeled datasets and make
neural networks even more valuable as biomonitoring tools.

IX. CONCLUSION

In this work a dataset was created that covers more than
3200 bird sounds. The dataset was used to train a polyphonic
sound event detection neural net model that was able to
recognise up to three overlapping sound events with an F-
score of 0.94. This performance is well above that of similar
PSED models used in other domains, which can most likely
be attributed to the data cleanliness and carefully selected
hyperparameters. The full journey from initial experiments to
dataset assemblage and model training has been documented
in this report and in the publicly available codebase. We invite
those that may wish to continue this research to contribute to
the codebase and dataset. We also hope that this work will
serve as a motivator for future research into the applications
of neural networks in biomonitoring.
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APPENDIX

Frames in 1 second =
sample frequency
window length/2

(1)

Fig. 6: Annotation interface

Fig. 7: Suppressing unwanted sounds
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Fig. 8: Spectrograms for different STFT window lengths



Fig. 9: Segment-based metrics for SED

Fig. 10: Event-based Metrics for SED

Fig. 11: Rapid Bursts of unconfident predictions



Fig. 12: Accuracy, F-score, error rate and loss on a validation set during training for 3 concurrent sound sources

Fig. 13: Spectrogram of a chiffchaff’s song



Fig. 14: A sample of predictions for the single source model Fig. 15: A sample of predictions for the 2 concurrent sources
model



Fig. 16: A sample of predictions for the 3 concurrent sources
model
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