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Abstract

Robots at home and in other uncontrolled environments need to be versatile.
Time designing behavior for each task can be drastically reduced when robots
can optimize behavior or learn it from scratch. Using reinforcement learning,
a simulated humanoid robot, the NAO, is trained to perform a soccer kick.
The used policy maps poses in joint space, encoded in policy parameters,
via splines to motor settings. Shaping was applied by using different reward
functions for different stages of the learning process. Direct policy search
algorithms were used for learning. More specifically, the used learning al-
gorithms are Finite Difference, Vanilla, Episodic Natural Actor Critic and
a Genetic Algorithm. Results were compared. Using Finite Difference and
the Genetic algorithm yielded the best results. Poor performance of Vanilla
and Episodic Natural Actor Critic algorithms was probably due to error in
the estimation of the gradient of the policy with respect to the parameters.
Estimating that gradient is not needed for Finite Difference and the Genetic
algorithm. Shaping was applied in two different approaches. In one, shaping
resulted in reduced performance. In the other, performance was improved by
shaping. While a good soccer kick was learned from scratch, the best soccer
kick was the result of optimizing an already existing policy.
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Chapter 1

Introduction

Figure 1.1: Romeo is a prototype under development, designed
to assist people at home.

In the cartoon The Jetsons from the 60s, the starring family was assisted
by a versatile cleaning robot. This idea is more and more becoming reality.
Many robots are designed to do a specific task like vacuum cleaning or lawn
mowing. Others are designed to perform a greater range of tasks with the
purpose of assisting or entertaining people. One such robot is the humanoid
NAO by Aldebaran Robotics. This robot, designed for entertainment and
research, is too small to be able to assist people around the house. A bigger
humanoid robot, a project led by Aldebaran Robotics, is the French Romeo
in Figure 1.1. This robot is a 1.43 meter tall prototype, that is still under
development. Romeo is being designed to help elderly and other individuals
who need help in their daily actions. This robot will be able to open doors,
grasp items like key chains, and help fallen people. Designing these individual
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actions by hand is time-consuming. If robots can learn to optimize such
actions, or even learn them from scratch, the time needed to implement
many actions would be reduced drastically.

An environment where the NAO needs to be versatile is that of the robot
soccer competitions organized by RoboCup. RoboCup is an international
initiative to stimulate research in the field of robotics. RoboCup organizes
annual soccer tournaments for robots since 1997 called RoboCup Soccer. The
famous ultimate goal of the RoboCup organization that it has set for itself,
is as follows:

By mid-21st century, a team of fully autonomous humanoid robot
soccer players shall win the soccer game, comply with the official
rule of the FIFA, against the winner of the most recent World
Cup.

Through the years, RoboCup has expanded by also organizing competi-
tions of other games for robots. Besides RoboCup Soccer, RoboCup currently
organizes competitions in three other types of games. In RoboCup Rescue,
teams of robots need to navigate through and search simulated disaster zones.
In RoboCup @Home, robots compete in tests that focus on abilities needed
for assisting people in home environments. RoboCupJunior is organized to
introduce robotics to young students.

Like most RoboCup competitions, RoboCup Soccer has several leagues.
In Middle Size and Small size leagues, robots usually on wheels play with the
focus on team play and strategy. In the Humanoid league, human-like robots
of different sizes, designed by the competing teams themselves, compete with
each other. In the Standard Platform league, all robots are identical, meaning
that purely the software determines who wins. The robot currently used for
this league is the humanoid NAO, discussed below. In the past, Sony’s Aibo
dog-like robot fulfilled this role. Another league is the simulation league in
which models of the NAO compete in a virtual world.

The NAO is a humanoid robot created by Aldebaran Robotics 1. Several
versions have been available. The first version that was released was the
RoboCup version which became available in 2008. The robot had 21 degrees
of freedom. Later that year, an academic version was released that had
additional degrees of freedom in the hand area of the robot. In December

1http://www.aldebaran-robotics.com/
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Figure 1.2: The degrees of freedom of the humanoid NAO robot
by Aldebaran Robotics. [20]

2011, a new generation of the NAO was announced, the NAO 4.0 2 which is
currently the latest model. Figure 1.2 shows the NAO and the position of its
joints.

Because of RoboCup Soccer, there is a large amount of literature about
developing soccer behavior. To build on this literature, the research of cur-
rent thesis focuses on teach a NAO to kick a ball. This was done using
reinforcement learning.

1.1 Related work

RoboCupSoccer is an often used environment in which to test reinforcement
learning methods. Research to improve soccer play have led to many pub-
lications. Robots have learned to dribble [19] or to walk as fast as possible
[12, 13]. Often, reinforcement learning has been done to fine tune parameters

2http://www.engadget.com/2011/12/10/aldebaran-robotics-announces-nao-next-gen-
humanoid-robot-video/
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of some existent behavior, often designed by hand [23]. For instance, a robot
had learned to adapt its soccer kick to small variations in the ball’s location
[11].

In research by Hausknecht and Stone [10], quadrupedal robots learned to
pass a ball without an initial working policy of a kick. To do this, Hausknecht
and Stone used a policy that consisted of a number of poses which were in
turn defined by the desired position of all the joints of the robot. In other
words, they defined the pose of the robot at several moments during the
kicking motion. Because a quadrupedal robot was used, it was assumed that
effective kicks would be symmetrical. By only including symmetrical policies
in the search, the parameter space could be reduced. To further reduce the
number of parameters that had to be learned, some joints that did not seem
relevant for kicking the ball, like those in the tail of the robot, were fixed
and not included in the search. Parameters were added for the timing of the
poses. Hausknecht and Stone [10] used a Policy Gradient algorithm to find
parts of the 66-dimensional parameter space that resulted in an effective kick.
These behaviors were fine tuned afterwards using a hillclimbing algorithm.
Learning on a real robot resulted in a powerful kick. The robot had to try
out 650 different kicking techniques during the Policy Gradient stage and
another 135 for the hillclimbing stage.

Hausknecht and Stone used a ‘vanilla’ [26, 3, 16] Policy Gradient algo-
rithm to successfully learn a kick. Peters et al. derived an algorithm based
on this Vanilla Policy Gradient called Episodic Natural Actor Critic [16]. Pe-
ters and Schaal have compared learning performance of Vanilla and Episodic
Natural Actor Critic [15], and a Finite Difference algorithm on a single degree
of freedom motor control task. All three algorithms are described in Section
2. When learning to pass through a point using splines, the Episodic Natu-
ral Actor Critic outperformed both other algorithms, while Finite Difference
performed better than the Vanilla Policy Gradient algorithm.

Searching for policies can be facilitated by shaping. The term shaping
was invented by the psychologist Skinner [24]. He used the term for teaching
animals behavior by rewarding them for increasingly difficult tasks. This
behavior would have been too complex for animals without experience to
learn directly by rewarding only the ultimately targeted behavior. In the
field of artificial intelligence, the idea of shaping has been applied to facilitate
machine learning. By learning on tasks with increasing difficulty, a policy
for controlling a robot hand was learned that could not be found without
shaping [9]. Shaping has accelerated the search for a policy for controlling
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a simulated bike [18]. For an overview of shaping methods for in artificial
intelligence see [7].

1.2 Research questions

Section 1.1 described that in the research of Hausknecht and Stone, a policy
for a soccer kick for a quadrupedal robot was learned from scratch. The
research of the thesis focuses on learning a soccer kick on a humanoid robot
instead of a quadrupedal robot. A bipedal, humanoid robot is a more difficult
subject to learn behavior on as more effort, compared to a quadrupedal, is
needed to prevent the robot from falling over. Also, a bipedal robot’s kicking
technique will have to be asymetrical and will therefore have more parameters
that need to be learned. While parameters of soccer kicks in bipedals have
been tuned using machine learning, to the best of the author’s knowledge, no
kick has been learned without an initial working policy. Learning this new
behavior using existing methods can therefore validate methods described in
the literature. For these reasons, the first research question of this thesis is
as follows. What is a good approach for learning a soccer kick on a humanoid
robot using reinforcement learning?

An important part of the approach is the choice of a learning algorithm.
In the research of Hausknecht and Stone a soccer kick was learned on a
quadrupedal robot without a working policy using Vanilla Policy Gradient
[10]. The Vanilla Policy Gradient, Episodic Natural Actor Critic and Finite
Difference algorithms have been compared on a single degree of freedom
motor control task [15]. A comparison on a complex task like learning a
soccer kick has not yet been done. The second research question of this
thesis is therefore as follows. What algorithm is most effective for learning a
soccer kick?

Note that thoughout this thesis, the word approach is reserved for the set
of design choices that need to be made to develop a soccer kick and the word
algorithm is used to refer to a reinforcement learning algorithm.

1.3 Thesis overview

In Chapter 2 reinforcement learning and Markov decision process, an often
used framework for describing control tasks in, are introduced. Learning al-

5



gorithms used in the research of this thesis are also described in this section.
In Chapter 3 the problem setting is defined and details about the used policy
model are described as well as reward functions that were used. In Chap-
ter 4, experiments are discussed that compare the performance of the used
algorithms. Also, the experiments are discussed that test the approach de-
scribed in Chapter 3. Results are discussed and future research is suggested
in Chapter 5.
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Chapter 2

Background

In this chapter, the necessary theoretical background is described to under-
stand the approaches taken to learn a soccer kick described in Chapter 3.
First, the field of reinforcement learning is briefly introduced in Section 2.1
and the reinforcement learning algorithms that have been used in the re-
search of this thesis are described. Policy Gradient learning algorithms are
discussed in Section 2.2 and Genetic Algorithms in Section 2.3.

2.1 Reinforcement Learning

In this section, the concept of reinforcement learning is described. In rein-
forcement learning problems, an agent is typically learning to perform some
task. This is often described as a Markov Decision Process. At each timestep,
the agent observes the current state x from all possible states X and takes an
action u, a real valued vector, from all possible actions U . It then receives a
reward signal r from R according to reward function f which maps state x to
a real value. A transition function maps the state and action to a probability
distribution from which the state of the next time step is drawn. The process
is illustrated in Figure 2.1.

A finite horizon is used, which means that the process is stopped after a
constant finite number of steps. It is the agent’s goal to maximize the return
which is the sum of the rewards, received until the horizon H, which marks
the end of the task. The agent has a policy πθ(x,u) which is a mapping
from the current state x, action u and the policy parameters θ to the prob-
ability of taking action u given state x and policy parameters θ. The goal

7



World

Agent

Action uState xReward r

Figure 2.1: Markov Decision Process. The agent performs an
action after which the world generates a new state and reward
which are both observed by the agent.

of reinforcement learning is to find policy parameters for which the expected
return J is maximal. For a more detailed description of the Markov Decision
Process, see [5].

Note that the only feedback the agent receives is the reward. This is an
indirect form of feedback. It is indirect in the sense that the agent is never
given the actions it should have taken at each timestep. It is up to the agent
to analyze rewards and to deduce which actions were better than others.
The agent is also never given information about what actions specifically
caused it to receive a reward. All actions before receiving a reward might
have contributed to receiving it.

A distinction can be made between the ways how learning algorithms
collect data. When a current policy is used to perform rollouts and collect
data, this is called on-policy learning. An alternative for this is to generate
random states or to use data collected by performing rollouts with a different
policy. When the policy that is learned and the policy that is used for
collecting data is not the same, this is called off-policy learning [6]. In the
research of this thesis data needs to be collected by the robot itself. For
this reason, it is most practical to use the policy that is learned, to perform
rollouts with. This thesis focuses therefore on on-policy learning algorithms.

Traditionally, the field of reinforcement learning has focused on develop-
ing methods to learn tasks with discrete state and action spaces. This means
that a finite number of states and actions exist. Examples of such tasks are
games like chess, checkers and backgammon. On the other hand, tasks in
the field of robotics generally have continuous state and action spaces. This
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means that an infinite number of states and actions exist and a single state
is generally not encountered twice by an agent. In theory, every continuous
dimension can be discretized by dividing its values over a finite set of bins.
Choosing these bins can be problematic. Also, the number of bins needed to
accurately classify the state, grows exponentially with respect to the num-
ber of dimensions of the state space. For these reasons, many reinforcement
learning methods are not easily applied to tasks with continuous state and
action spaces.

Algorithms can be divided over three categories. In Value Iteration meth-
ods, an estimate of the value of each state is iteratively improved. An example
of such an algorithm is the widely used Q-Learning [29]. Policy Iteration,
also uses estimates the value of states to generate optimal policies given this
estimated value function. An example of this family is the SARSA [22] al-
gorithm. Both families of algorithms depend on learning a value function
and learning a transition function. Because of the high dimensial state and
action space associated with robotics with a humanoid robot, members of
these families of algorithms are difficult to apply. A family that can be
applied without difficulty to continuous state and action spaces with many
dimensions is the Policy Search family. These algorithms are model free and
no value function has to be learned [6]. The thesis focuses therefore on Policy
Search algorithms.

Two important Policy Search methods are the Policy Gradient algorithms
and Genetic Algorithms. Policy gradient methods are designed for continuous
state and action spaces, which makes them appropriate for the research in
this thesis. In fact, for Policy Gradient methods, continuous state spaces
have to be assumed. Other algorithms which have proven to be succesful
in continuous state and actions spaces are Genetic Algorithms. This thesis
focuses on the Policy Gradient family of algorithms which is discussed in
section 2.2 and Genetic Algorithms which are discussed in section 2.3.

2.2 Policy Gradient

In this section Policy Gradient methods, a specific family of algorithms used
for reinforcement learning tasks, are described. In section 2.2.1, the general
idea of policy gradients is explained. After that, three policy gradient algo-
rithms are discussed. The Finite Difference algorithm, which will serve as a
base method, is described in Section 2.2.2. In section 2.2.3 the Vanilla gra-
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dient algorithm is described. This algorithm forms the basis for the Episodic
Natural Actor Critic algorithm which is explained in section 2.2.4.

2.2.1 Base algorithm

The goal of policy gradient methods is to find the column vector of parameters
θ of a policy that maximizes the total expected reward J(θ) of an agent
applying the policy.

θ∗ = argmax
θ∈Θ

J(θ) (2.1)

The idea is to start with initial parameters θstart. Let us assume that
J(θ) is continuous over the set of all possible parameters Θ. For each element
of θ we could determine whether to increase or decrease it to improve the
policy. Similarly, we could calculate the gradient ∇θJ(θ). Because J(θ)
is continuous, a sufficiently small step into the direction of the gradient,
improves the expected reward J(θ). More formally, the update step can be
written

θt+1 = θt + α∇θJ(θt) (2.2)

where α is the step size, or learning rate, and t the timestep. The above
process is repeated until some predefined stopping criteria are met. The
algorithm is summarized in Algorithm 1.

Algorithm 1 Policy gradient

1: θ ← θstart

2: repeat
3: estimate ∇θJ(θt)
4: θ ← θt + α∇θJ(θt)
5: until stopping criteria are met
6: return θ

Stopping criteria can be convergence of the gradient or a fixed number of
iterations. Note that following the gradient until convergence does not guar-
antee to find the globally optimal parameters. It is possible to converge to,
or to get stuck at, a local optimum. The choice of the stepsize is also impor-
tant. While a small stepsize can result in slow learning, a too large stepsize
can cause the search to overshoot and not find the optimum. Whether the
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algorithm will find the global optimum depends on the stepsize, the shape of
J(θ) as well as the parameters with which the process initialized.

Now that just the main loop has been described, a way must be found
to get gradient ∇θJ(θ). This thesis focuses on three algorithms that esti-
mate this gradient. Finite Difference, Vanilla, and Episodic Natural Actor
Critic algorithms return gradients gFD, gGMDP and gNG respectively. These
gradients can be inserted as ∇θJ(θ) in the main policy gradient loop. In the
following sections, these three different algorithms for estimating gradient
∇θJ(θ) are described.

2.2.2 Finite Difference

The Finite Difference method is a simple way to estimate the gradient of the
expected return with respect to policy parameters, ∇θJ(θ). The method has
been known since the 1950s [15]. The task is performed by the agent, called
a rollout, n times. For each rollout the current parameters are perturbed. In
other words, for each rollout, a small random column vector, ∆θ, is added to
the current parameters. The total received reward in the rollout is considered
an estimator of the expected return Ĵ(θ + ∆θ).

To estimate the gradient, the system can be treated as a linear regression
problem. This results in:

[gTFDĴ(θ)]T = (∆ΘT∆Θ)∆ΘT Ĵ (2.3)

where gFD is the estimated gradient by the finite difference algorithm, Ĵ(θ)
is the estimation of the expected total reward using current parameters, Ĵ is
the vector of the expected total reward per rollout, and

∆Θ =

[
∆θ1 ... ∆θn

1 ... 1

]T
(2.4)

where n is the total number of rollouts. The row of ones is appended to
the matrix to both find the gradient gFD as well as the estimated expected
reward for the current parameters Jref . The gradient gFD is an estimate of
∇θJ(θt) and can be inserted into the base algorithm in Section 2.2.2. The
algorithm is shown in Algorithm 2.

Note that the random vectors ∆θ need to be sufficiently small to ensure
that all rollouts are performed in the same neighborhood of the parameter
space as the current parameters θ. The reason for this is that the gradient
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Algorithm 2 Finite Difference

1: ∆θ1...∆θn ← generate random vectors
2: for i=1 to n do
3: perform rollout and obtain Ĵ(θ + ∆θi)
4: end for

5: ∆Θ←
[
∆θ1 ... ∆θn

1 ... 1

]T
6: [gTFDĴ(θ)]T ← (∆ΘT∆Θ)∆ΘT Ĵ
7: return gFD

∇θJ(θ) needs to be constant by approximation in this region. If the vectors
∆θ are too large, the gradient ∇θJ(θ+ ∆θ) is different for each rollout and
it will be unlikely that a linear solution approximates the actual gradient
∇θJ(θ).

This section described a relatively simple algorithm for estimating the
gradient ∇θJ(θ). However, two aspects of the information are not used.
The first is the known mapping of the parameters to the actions and its
gradient ∇θπ(x,u), and the second is the specific time a reward was given
in the rollout. In section 2.2.3, a gradient estimator is described that uses
this information to make learning more efficient.

2.2.3 Vanilla

In this section the Vanilla [16] gradient estimator will be described. First
it is explained how the known gradient of the policy with respect to policy
parameters ∇θπ(x,u) can be used in order to estimate the gradient of the
expected return with respect to the parameters ∇θJ(θ).

To find ∇θJ(θ), the expected return J(θ) can be written as

J(θ) =

∫
T

p(τ |θ)R(τ )dτ (2.5)

where τ is a single trajectory out of the set of all possible trajectories T and
R is a function that maps trajectories to a return. Using the chain rule and
the derivative of the logarithm,

d log(x)

dx
=

1

x
(2.6)
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the gradient that needs to be known can now be written as follows.

∇θJ(θ) = ∇θ
∫
T

p(τ |θ)R(τ )dτ (2.7)

=

∫
T

p(τ |θ)∇θ log p(τ |θ)R(τ )dτ (2.8)

= E{∇θ log p(τ |θ)R(τ )} (2.9)

The probability of following a trajectory, p(τ |θ), is not known. This is
because p(τ |θ) contains two components. One component consists of the
probabilities of taking given actions in given states. These probabilities de-
fine the policy which is known. The other component consists of the state
transition probabilities which are not known. By expanding and rewriting,
these components can be split.

∇θ log p(τ |θ) = ∇θ log

(
p(x0)

H∏
k=0

p(xk+1|xk,uk)πθ(xk,uk)

)
(2.10)

= ∇θ

(
log p(x0) +

H∑
k=0

log p(xk+1|xk,uk) + log πθ(xk,uk)

)

= ∇θ
H∑
k=0

log πθ(xk,uk) (2.11)

The resulting expression does no longer contain state transition probabilities
and is known. Filling in this result in Equation 2.9 yields the following.

∇θJ(θ) = E{∇θ
H∑
k=0

log πθ(xk,uk)R(τ )} (2.12)

To minimize the variance of the estimator, an arbitrary constant baseline
can be subtracted. Subtracting a constant bias would result in subtracting
the following component from ∇θJ(θ)

E{∇θ log pθ(τ )b} = b

∫
T

p(τ )∇θ log p(τ |θ)dτ (2.13)

= b∇θ1 (2.14)

= 0 (2.15)
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Therefore, subtracting a constant baseline, b, does not introduce a bias to
the gradient estimator.

This results in the gradient estimator

∇θJ(θ) = E{∇θ
H∑
k=0

log πθ(xk,uk)(
H∑
l=0

alrl − b)} (2.16)

where al is the weight of receiving a reward rl at timestep l.
This estimator is called the REINFORCE algorithm and was first de-

scribed by Williams in 1992 [30]. The Vanilla gradient is an extension on
this estimator [15]. To minimize variance further, the insight is used that
the received reward cannot be altered by future actions. In other words, al-
though it is not sure which actions have caused the agent to receive a certain
reward, it is sure that actions performed after receiving the reward cannot
have caused it. This means that, when estimating the policy gradient, actions
can only be dependant on future rewards.

This results in the gradient estimator by Baxter and Barlett [3],

gGMDP = E{∇θ
H∑
l=0

l∑
k=0

log πθ(xk,uk)(alrl − b)} (2.17)

The optimal baseline b for each element of the gradient estimator mini-
mizes the variance of the estimator. Solving for this constraint results in

bhk =
〈(
∑k

κ=0 log πθ(xk,uk))
2akrk〉

〈(
∑k

κ=0 log πθ(xk,uk))2〉
(2.18)

A similar estimator, policy gradient, was published by Sutton et al. [26].
For more information about the relation between these two similar gradient
estimators, or for details regarding above derivations, see Peters and Schaal
[15]. The algorithm is summarized in Algorithm 3. Note that the origi-
nal algorithm calculates gGMDP and b within the loop while here it is done
afterwards because a fixed number of rollouts is used to estimate gGMDP.

Both Finite Difference and the Vanilla gradient described above are de-
pendant on the used units of the parameters. As the unit of each parameter
is arbitrary, it is not optimal for the gradient to be dependant of the unit.
This problem is as well as a solution for this problem is further described in
section 2.2.4.
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Algorithm 3 Vanilla gradient

1: for i=1 to n do
2: perform rollout and obtain r, x and u foreach step
3: end for
4: gGMDP = E{∇θ

∑H
l=0

∑l
k=0 log πθ(uk|xk)(alrl − b)}

5: where bhk =
〈(
∑k
κ=0 log πθ(uk|xk))2akrk〉
〈(
∑k
κ=0 log πθ(xk,uk))2〉

6: return gGMDP

2.2.4 Episodic Natural Actor Critic

Policy gradient using the Vanilla gradient estimator can be slow due to
plateaus of the expected return in the parameter space. These are areas of
the parameter space where the gradient of the expected return is close to zero
and where often the direction of the gradient is hard to measure. A distinc-
tion between two kinds of plateaus must be made. A plateau can be formed
because change in parameters does not significantly change the behavior,
the distribution over trajectories. Therefore there is no change in expected
return. In the other kind of plateau, changes in parameters do change the
behavior. The changed behavior however, does not cause a change in the
expected return. The problem of the first kind of plateau could be solved by
taking steps in the parameter space of variable size, with the restriction that
each step causes the same change in distribution over trajectories. This way,
each learning step causes an equal change in behavior.

Another difficulty using the Vanilla gradient estimator lies in the param-
eterization. Even linear transformations on the parameters can change the
gradient in such a way that it changes the path of the search through param-
eter space when the gradient is followed. This means that the policy that
will be found is dependant on such a transformation. Following the natural
gradient instead of the conventional gradient solves this issue.

The parameter space in general is not orthonormal. This can easily be
seen because the units in which components of the policy parameters are
measured can each be chosen arbitrarily and do not necessarily have any re-
lationship to each other. This can cause the problem that a chosen learning
rate, or stepsize, is too small for effective learning on one dimension and si-
multaneously too large for another. Similarly, taking a step in one dimension
can result in a smaller change in trajectory as taking a step of the same size
in another dimension of the parameter space. It would be desirable to do a
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gradient descent where each step results in an equal change of distribution
of trajectories p(τ ). To be able to do this, first a metric must be found that
measures the divergence between two distributions. This divergence can be
measured using different metrics. According to Peters and Schaal [15], many
of these metrics, such as the Kullback-Leibler divergence, share the same
second order Taylor expansion,

dKL(p(τ θ)||p(τ θ+∆θ)) ≈
1

2
∆θTF θ∆θ (2.19)

where F θ is the Fischer information matrix,

F θ = 〈∇ log pθ(τ ) log pθ(τ )T 〉 (2.20)

which can be estimated by

F θ = 〈
H∑
l=0

al∇θ log π(xl,ul)∇θ log π(xl,ul)
T 〉 (2.21)

See Peters and Schaal [15] for the derivation.
The optimal step ∆θ under the constraint that the step results in a change

of trajectory distribution of a fixed size ε can be found by solving

max
∆θ

(Jθ + ∆θ) ≈ max
∆θ

J(θ) + ∆θT∇J(θ) (2.22)

under the constraint

dKL(p(τ θ)||p(τ θ+∆θ)) ≈
1

2
∆θTF θ∆θ = ε (2.23)

Solving this system can be done using Lagrange multipliers. For a detailed
description of this method in general, see [2]. For a description of application
of the method in the current context, see Appendix A. The result shows that
gradient descent using this metric can be done by changing parameters

θn+1 = θn + αnF
−1
θn
∇J(θn) (2.24)

where the learning rate is
α = λ−1 (2.25)

and

λ =

√
∆θTFθ∆θ

2ε
(2.26)
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Algorithm 4 Episodic Natural Actor Critic gradient

1: for i=1 to n do
2: perform rollout and obtain r, x and u for each step
3: end for
4: Policy derivatives ψk = ∇θ log πθ(uk|xk)
5: Fisher matrix F θ = 〈

∑H
k=0 (

∑k
l=0ψl)ψ

T
k 〉

6: Vanilla gradient g = 〈
∑H

k=0 (
∑k

l=0ψl)akrk〉
7: Eligibility matrix Φ = [φ1, ...,φK ]

where φh = 〈
∑h

k=0ψk〉
8: Average reward vector r = [r1, ..., rK ]

where rh = 〈ahrh〉
9: Baseline b = Q(r−ΦTF−1

θ g)
where Q = M−1(IK + ΦT (MF θ −ΦΦT )−1Φ)

10: Natural gradient gNG = F−1
θ (g −Φb)

11: return gNG

A different learning rate can be used because doing so only changes the
stepsize and does not change the direction of the search.

The algorithm in matrix form can be derived by solving the standard
regression form, in which the sum of squared residuals is minimized,

β∗ = argmin
β

(Y −Xβ)T (Y −Xβ) (2.27)

where β∗T =
[
wT b

]
and

XT =

[
φ1

1 φ1
2 . . . φ1

n φ2
1 . . . φmn

e1 e2 . . . en e1 . . . en

]
(2.28)

where φjn =
∑n

t=1∇θ log π(ujt |x
j
t) for the j-th rollout and ei is the i-th unit

vector basis function with length n. The rewards are in

Y =
[
r1

1 r1
2 . . . r1

n r2
1 . . . rmn

]
(2.29)

The complete algorithm is summarized in Algorithm 4. Eligibility matrix
Φ contains the average gradients of the logarithm of probabilities of taking
the same actions as have been done in the rollouts. Column k of the eli-
gibility matrix is the gradient of taking the same actions untill timestep k,
disregarding all actions taken after k. Note that lines 4 to 10 are originally
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executed within the loop. Because a fixed number of rollouts is used to es-
timate gNG, this calculation is could be taken out of the loop in this thesis.
A derivation of the algorithm is described in Appendix B. More information
about this algorithm can be found in [15] and [17].

2.3 Genetic Algorithm

In this section Genetic Algorithms are described. These algorithms are in-
spired by the process of natural selection as is seen in nature. There are many
variants of Genetic Algorithms. This section discusses the implementation
used in the research of this thesis. In this kind of algorithms, a population
of individuals is maintained. In the case of learning policy parameters in a
reinforcement learning, each individual is a set of policy parameters θ. The
algorithm contains two steps that are performed repeatedly.

In the first step, the fitness of each individual is determined by a fitness
function. In this case, exp Ĵ(θ) was used. Selecting individuals is done by
roulette wheel selection. This means that the probability for each individual
to be represented in the next generation, either as a parent or as itself, is
proportional to this fitness. Therefore, the fitness cannot be negative. This
is the reason that the exp operator was used in the fitness function.

In the second step, a new population is created through several different
mechanisms. First, individuals can be transferred directly from the previous
generation to the new, current population. This mechanism is often referred
to as eliteness. Second, individuals can be transferred from the previous pop-
ulation after being mutated by a mutation function. This mutation function
permutates a single element of θ by adding a random, normally distributed,
value. A third mechanism is the crossover function that takes two individuals
from the previous generation and combines them to form a new individual.
It involves taking a random set of elements from parameters θi from one
individual i, and the rest from parameters θj of the other individual j. The
new generation of individuals is filled with using each mechanism for each
available position in the population.

For each of the mechanisms to produce an individual for the new popula-
tion, one or two individuals from the previous population need to be selected.
Each individual’s probability of being selected is proportional to its fitness.
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The probability that a single individual i is selected is therefore

pi =
exp Ĵ(θi)∑n
j=1 exp Ĵ(θi)

(2.30)

where n is the number of individuals in the population from which an indi-
vidual is selected.

In order for the algorithm to search effectively, the population needs to
be diverse. Because elements of fit individuals are being overrepresented in
the next population with respect to individuals that are less fit, individuals
of a population can easily come to occupy the same region of the parameter
space. To prevent this from happening, similar individuals can be made to
share their fitness. The shared fitness fs for an individual i is

fs(i) =
exp Ĵ(θi)∑n
j=1 sh(i, j)

(2.31)

where sh is a function that is 1 for individuals that are similar to each other
and 0 for individuals that are not. In the case of parameters θ the Euclidian
distance can be used as a measure of similarity which would result in

sh(i, j) =

{
1, if |θi − θj| < t

0, otherwise
(2.32)

where t is some predefined threshold. See Stanley and Miikkulainen [25] for
a more information about shared fitness.

Genetic Algorithms can be applied in various fields. In this section, it
was described how it is applied as a reinforcement learning algorithm. In this
case the algorithm is a policy search algorithm in the sense that a group of
policies is selected, and new policies are derived from the more valuable ones,
while others are thrown away. For a more detailed overview of evolutionary
algorithms see Beasley, Bull and Martin [4].

This chapter has described theoretical background required for the re-
search of this thesis. In the next chapter, which builds on this background,
the problem of learning a soccer kick is formalized and the approaches to
solve it are described.
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Chapter 3

Solution Approaches and
Problem Setting

This chapter defines the problem setting of learning a kicking motion and
discusses design choices for finding a solution. Section 3.2 discusses the policy,
the mapping from policy parameters to actions. Section 3.3 describes the
policy parameters that were used to start the learning process with. Section
3.4 describes the reward functions that were used and Section 3.5 discusses
how these reward functions are combined to shape the complex behaviour of
a soccer kick.

3.1 Problem setting

The aim of this study is to find a policy for a robot to kick a ball. The
exact conditions are described, after which a description of measurements of
success are given.

Before each trial, the ball is placed on a flat surface. The robot is placed
in front of the ball. Because the humanoid robot needs to kick with one leg
and stand on the other, the robot is placed in such a way that the ball is in
front of the left foot. This means that the robot is placed 5 cm to the right
of the center. In Figure 3.1 the situation is illustrated.

There are two aspects of the success of a policy. The aim is to find a
powerful kick. Therefore the first aspect is the mean distance the ball is
kicked over a number of trials. Falling is dangerous to both robot and the
environment. It also prevents the robot from performing other tasks after
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Figure 3.1: The initial position of the robot in the SimSpark
simulator. The ball is placed in front of the left foot of the NAO.

a kick. For these reasons, the second aspect of the success is the portion of
kicks in which the robot manages to keep its balance and ends the kick in a
standing position over a number of trials.

3.2 Policy

The policy is the mapping from policy parameters and state to actions taken
by the agent. The different aspects of this process are described here. In
Section 3.2.1 the outline of this mapping is discussed. In Section 3.2.2 the
way exploration was implemented is described. In section 3.2.3, cubic inter-
polation is described that is part of the process of mapping to actions. In
Section 3.2.4, estimating the gradient of the policy with respect to policy
parameters is discussed which is necessary information for using Vanilla and
Episodic Natural Actor Critic algorithms.

3.2.1 Parameterization

Analogous to the policy used in Hausknecht and Stone [10], the parame-
terization was composed of a number of poses. At each pose, the desired
angle of each joint of the robot was defined. The model of the robot that
was used, the NAO, has 20 degrees of freedom in the Simspark simulator.
See section 4.1 for considerations about using the simulator. The degrees of
freedom of the real NAO that are missing in the used model represent the
joints in the neck and hands, which are not relevant when learning to kick
a ball. The model of the NAO has a different hip joint than the real NAO.
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To keep learning on the model as close as possible to learning on the real
NAO, the hip joints of the model were fixed. This results in a total of 18
joints. Therefore, each pose consists of 18 parameters, indicating the posi-
tion of each joint. Contrary to Hausknecht and Stone’s research, the time
the robot needs to take to move from one pose to the next was equal for
all poses. This way no time variables need to be optimized. Therefore all
parameters resemble an angle so the unit each parameter is measured in is
the same. Episodic Natural Actor Critic is designed to be able to effectively
learn parameters whose units differ from parameter to parameter. For the
other algorithms, however, parameters measured in different units can cause
problems. Because 4 poses were used, the parameters θ consist of a total of
18× 4 = 72 parameters. A fixed stable standing pose was added before and
after the movement so every possible motion would both start and end in the
same position. The exact pose that was used for this is discussed in Section
3.3. By choosing the parametrization this way, many different motions can
be modeled. Also, when given some arbitrary existing motion, like a kicking
motion from a RoboCup team, it is relatively easy to transform it to key
poses and ultimately to policy parameters.

To calculate the trajectory, cubic interpolation over the poses was done.
A single element of the pose, that resembles the angle of a single joint, is
called a via point. For each joint independently, a curve through all via
points was calculated. This means that the set of via points for a single joint
i contained one point from each pose. A smooth function, called a spline,
Si through these via points was then calculated. Calculating the spline is
discussed in section 3.2.3. The derivative of this spline Si(t) with respect
to the time t is the angular velocity with which the joint i should move in
order to stay on the trajectory. The element u∗i of the action u∗ for joint i is
therefore

u∗i =
dSi(t)

dt
(3.1)

Because of friction in the movements of the robot, the joint position
might drift from the trajectory. To reduce this drift, instead of using all the
via points for a joint, only the via points in the future were used for the
interpolation. The robots sensors were used to measure the current position
of each joint. This position was then used as a starting point of the spline.
This is illustrated in Figure 3.2.
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Figure 3.2: The optimal trajectory given the viapoints and the
trajectory given a drifted current position.

3.2.2 Exploration

To find better policies, exploration is needed. This was done in two seperate
ways for two different kinds of algorithms used in the research of this thesis.
The Genetic Algorithm and the Finite Difference gradient estimator make
small random changes in the policy parameters θ to do exploration. The
Vanilla and Episodic Natural Actor Critic algorithms on the other hand,
work under the assumption that exploration is part of a stochastic policy.
Exploration was implemented as follows.

The action that is taken at each time step was the sum of the optimal
action u∗ described above, and an exploration term ε. Exploration vector ε
was drawn from a normal distribution with zero mean. For each dimension, or
joint, of the action, the same variance σ2 was applied. This σ2 is a predefined
constant. This means that the covariation matrix was of the form

Σ = σ2In (3.2)

where n is the dimensionality of the action u. One constant was chosen for
all dimensions of action u because all dimensions represent angular velocities
of a single joint and are therefore measured in the same units. The many
small variations can cancel eachother out resulting in very little variation in
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the movement as a whole. For this reason, analogous to [15], the same error
term was used for multiple timesteps before a new error term was drawn.
The number of times that the same error term was used, was drawn from a
uniform probability distribution over the range of 1 to 200 timesteps. Because
there were 50 timesteps per second, the mean time that the same error term
was used, was 2 seconds.

3.2.3 Cubic interpolation

A spline is a function that is formed by segments described by polynomial
functions. For this purpose, cubic polynomials was used because this method
is often used in trajectory calculations. Each via point is connected to two
segments with the exception of the first and the last via point. This means
that for n via points (including start and end points) n − 1 segments are
to be calculated. For each segment si of spline S(t), a polynomial function
needs to be calculated of the form

si(t) = ai + bit+ cit
2 + dit

3 (3.3)

Where a, b, c, and d are the variables that need to be determined for each
segment i to be able to fully describe the spline. For n via points, a total of
n− 1 segments times 4 variables per segment, results in 4(n− 1) variables of
which the value needs to be determined to know the spline. Conditions for
these variables are as follows:

1. The spline needs to go through each via point (including start and end
points)

2. At each via point (excluding the start and end points) the first and
second derivative of the spline with respect to the time needs to be
continuous.

3. At the end point, the first and second derivative need to be zero.

Condition 1 results in two constraints for each segment as its start and end
are fixed. Condition 2 yields two constraints for each segment that is not the
end segment. Condition 3 yields two constraints for the end segment. This
results in a total of 4(n− 1) constraints. With as many constraints as there
are variables to be solved, a single exact solution can be calculated. This
results in a description of the full spline.
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For both the Vanilla and Episodic Natural Actor Critic algorithms, the
gradient of the policy with respect to its parameters ∇θπ(x,u) needs to be
known, where x is the state and u is the action. Using the chain rule, the
derivative with respect to each element i of θ is

∂p(u|x)

∂θi
=
∂pdf(u|u∗,Σ)

∂θi
=
∂pdf(u|u∗,Σ)

∂u∗
∂u∗

∂θi
(3.4)

where pdf(u|µ,Σ) is the probability density function of the normal distribu-
tion with mean µ and covariance matrix Σ at u.

To be able to calculate ∂u∗

∂θi
, an implementation of cubic spline interpola-

tion was needed that could calculate the derivative with respect to via points.
Because no standard package was found with this feature, an implementation
had to be created.

To obtain spline S(t), equations following the constraints discussed above
had to be solved. For this purpose, the system was expressed in an augmented
matrix. Because derivatives of the resulting spline with respect to the via
points were needed, matrix entries could either be constants or expressions
containing variables. Gauss elimination was used to solve the system. This
method is known to be computationally efficient [8].

In Figure 3.3 the performance of the implementation is shown. As can be
seen in the figure, the time it takes to solve a matrix with variables increases
exponentially when the size n, of the n×n matrix, increases. Solving a 6×6
matrix takes around 2 minutes to solve. The figure also shows that solving
a matrix without variables, only containing constants, is much quicker. In
practice, each row contains at least one variable, as a row without a variable
does not represent a constraint on any variables and is therefore useless. For
this reason the figure also shows time to solve a matrix with one variable
on each row a lower bound on the time that would be needed when using
this implementation for calculating a spline. In the current policy, a spline
through 5 via points needs to be calculated. This means that the spline is
formed out of 4 segments. To calculate each 4 variables of each segment, a
matrix of 16×16 needs to be solved. Based on the data in Figure 3.3 time to
solve a matrix of that size would take around 1011 seconds (over 3000 years).
For this reason, this implementation to calculate splines could not be used.
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Figure 3.3: Time taken to solve an n × n matrix with respect
to n. Solving matrices containing variables instead of constants
takes considerably more time.

3.2.4 Estimating the gradient of the policy

Because standard software packages had to be used to calculate splines, cal-
culating the exact derivatives of the policy with respect to policy parameters
was not possible. Vanilla and Episodic Natural Actor Critic, however, de-
pend on this information. An alternative had to be found to be able to use
these algorithms. An alternative for calculating the exact derivatives of the
policy is to estimate it,

∂p(u|x, θi)
∂θi

≈ p(u|x, θi + ∆θi)− p(u|x, θi)
∆θi

(3.5)

where ∆θi is a small constant. Although estimating the gradient solves
the performance issue discussed above, it raises the problem of having to
select an appropriate ∆θi. Choosing too small a ∆θi results in underflow
as p(u|x, θi + ∆θi) − p(u|x, θi) can be too small to store accurately in the
computer’s memory. To decrease the risk of losing valuable information due
to underflow, instead of estimating the derivative of p(u|x, θi), the derivative
of the logarithm of p(u|x, θi) can be estimated directly:
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∂ log p(u|x, θi)
∂θi

≈ log p(u|x, θi + ∆θi)− log p(u|x, θi)
∆θi

(3.6)

This way, p(u|x, θi + ∆θi)− p(u|x, θi) never has to be evaluated.
Underflow problems when calculating probability densities of the normal

distribution were not expected. However, the logarithm of these probabilities
was also calculated directly to be sure such problems would not occur.

log pdf(x|µ, σ2) = log

(
1√

2πσ2
exp−(x− µ)2

2σ2

)
(3.7)

= −(x− µ)2

2σ2
− log

√
2πσ2 (3.8)

Choosing too large a ∆θi can also result in an inaccurate estimate when
the derivative at θi + ∆θi is no longer approximately equal to the derivative
at θi. It is dependant on the specific problem what too large means in this
context. A ∆θi of 0.01 was chosen as the elements of θ represent joint angles
measured in degrees. It was assumed that the derivative does not change
significantly at this small scale.

While exact derivatives of the policy with respect to policy parameters
could not be calculated, the Vanilla and Episodic Natural Actor Critic algo-
rithms could still be by using this estimation of the gradient.

3.3 Starting parameters

Before learning can start, some set of policy parameters has to be taken
as an initial policy. Two different initial policies were used in the various
experiments in Section 4 of this thesis. One policy was designed to be an
already working kick that could be optimized. Designing the movement
manually would have been time consuming. Instead, the kicking motion
of the RoboCanes team [1] of 2010 was used. This kick was chosen out of
the kicks for which the code was available, because the way movement was
defined was the most compatible with the policy used in the research of this
thesis. RoboCanes had defined the joint angles of all joints of the NAO 50
times per second. Mere subsampling resulted in four poses that could be used
as policy parameters for the used policy in the research of this thesis. Note
that by subsampling, most of the information of the actual kicking motion
had been lost asthis is similar to using a low-pass filter. The result was a
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motion that was leaning to right and lifted its left foot but did not touch the
ball. This is probably because the moment the ball is kicked, the lower leg is
moved forwards abruptly. Information about abrupt movements is lost the
most when subsampling. The policy was therefore tweaked by hand untill
the robot softly kicked the ball.

The second initial policy was designed to keep the robot standing still.
One option would be to use the default position of the NAO in the simulator
where all joint poses are set to 0. This however represents a completely
upright pose which is not very stable and not a realistic pose for a robot
soccer player. The starting pose of the RoboCanes kick is a more stable pose.
Therefore, as the standing still policy, this pose was used at all timesteps.

3.4 Reward functions

Different reward functions were needed for different tasks. This section de-
scribes each reward function used in the experiments in Section 4.

To learn the agent to kick the ball as far as possible, a reward function
could be used that rewards the agent the kicked distance in meters. Such a
reward function would require each rollout to end after the ball had stopped
moving. This often takes several seconds in which the agent has finished
its movement and is waiting for the rollout to end without taking any more
actions. Because of the great number of rollouts needed for the learning
process, having to wait several seconds each rollout is infeasible. The distance
the ball is going to travel can be predicted by measuring the velocity of the
ball after it has been kicked. For this reason, fmax ball velocity rewards the
agent the maximum velocity, in meters per second, the ball has had in the
forward direction during the rollout. This way, the rollout can be stopped
before the ball has stopped rolling. The timestep this reward is given, is the
time the maximum velocity was measured. Note that the maximum velocity
can only be determined after the rollout. This means that the reward can
only be given after the rollout has ended so the agent can only be given the
height and time of receiving the reward after the rollout is ended. Because
the learning algorithms used are learning offline, meaning that no changes
are made to the policy during the rollout, this does not form a problem.

For test purposes, 10 policies were trained using fmax ball velocity. As ex-
pected, all resulting policies resulted in a fall, after the ball was kicked,
everytime the kick was executed. The agent had to be taught to keep the
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robot in balance. For this purpose, the accelerometer of the NAO was used
to estimate the body position. This was done because the absolute angular
position was not easily accessible in the simulator. Also using the same sen-
sors that are available on the real NAO simulates learning on the real NAO
more closely. Similarly to the fmax ball velocity reward function, waiting long
enough to ensure that the robot had fallen or was keeping its balance would
take a lot of time. To be able to keep rollouts short, a prediction for falling
was needed. A large deviation of the vertical position of the torso at the end
of the rollout implies that the robot is falling over. This can be used to make
a prediction of whether the robot will fall. By penalizing the agent based on
this prediction, there is no need to continue the rollout after this prediction
is done. The ftorso angle is based on this idea. This reward penalizes the agent
at the final timestep of the rollout. Because greater angles however would
increase the chances of falling over, a continuous reward signal was used,
as opposed to a discrete one. For this reason the reward function returns
a negative reward the size of the difference between the vertical component
of the acceleration measured az, and the vertical acceration which would be
measured had the robot been standing still in a vertical position. Vertical
acceleration az is the vertical component, relative to the torso, of the mea-
sured acceration of the torso. When standing still in a vertical position, the
acceleration measured would be the gravitation acceleration g. The reward
function yields some negative reward for every position other than vertical re-
sults, while deviating from the vertical position by only a small angle results
in only small negative rewards. This results in

fbody position(az, t) =

{
g− az, if t = tend

0, otherwise
(3.9)

where t is the time. Note that this reward function takes az and t as ar-
guments instead of the state x. Although this leads to confusion in the
formulation, in practice this is not a problem as both az and t are both
components of the state x.

To teach a policy to kick a ball while not falling over, the weighted sum
of ftorso angle and fmax ball velocity might be used as a combined reward func-
tion. Doing this would result in the following problem. Consider learning the
complete kicking motion from a standing still policy. In the first stage of the
learning process, little or no reward would be received from the fmax ball velocity

while any attempt to explore policy variations would result in increased like-
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liness to fall and to receive a negative reward from the ftorso angle component.
If the latter component is too large, the agent would be discouraged from
exploring which is needed to ever kick a ball. If the penalty component is
too small, exploration would be possible and a kick would be learned. In this
case a problem arises in the later stages of the learning process. The agent
would have learned how to receive large rewards from the fmax ball velocity com-
ponent. This would result in the ftorso angle component being relatively small
and it could be ignored by the agent. For this reason, to be able to learn
effectively in both the start as well as later stages of the learning process, the
penalty for falling over should be proportional to the reward for the kicking
distance. The resulting reward function is

fproportional(x) = fmax ball velocity(x)(1 + wftorso angle(x)) (3.10)

where w is a weighting contstant.

To learn a policy to stand on one leg, the ffoot pressure was used. This
function uses the information from the pressure sensors of both feet of the
robot. For the right foot, a positive reward is given proportional to the
measured pressure because standing on one leg means that all the robot’s
weight is must be on this foot. For the left foot, a negative reward is given
proportional to the measured pressure. The robot starts each rollout with
its weight evenly distributed over both feet. To start transferring weight to
the right foot, an effective strategy would be to push its weight away by
applying extra pressure to the left foot. To make sure that such a strategy
would not be discouraged, ffoot pressure only assigns above rewards between 1
and 1.5 seconds in the rollout. Outside this interval, zero reward is given.
The resulting reward function is

ffoot pressure(pl, pr, t) =

{
pr − pl, if 1.0 < t < 1.5

0, otherwise
(3.11)

where pl is the pressure on the left foot, pr the pressure on the right foot and
t the time past since the start of the rollout.

This section described the reward functions that were used in the research
of this thesis. Section 3.5 describes how reward functions can be combined
in order to learn more effectively.
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3.5 Shaping a kick

Some learning tasks can be learned directly using a single reward function.
More complex tasks can be learned more effectively when shaping is used,
and sometimes cannot be learned without it [18, 9]. It was hypothesized that
learning to kick the ball starting with a policy of just standing still could
benefit from shaping. This is because while gradually changing a policy of
standing still to something that looks like a soccer kick, the learner would
have to pass policies that do not seem promising. In other words, the Policy
Gradient algorithms try to find the local maximum and can not pass a valley
in the fitness landscape. Using shaping, the agent is trained before it is given
the task of ultimate interest. This way, the agent has gained experience
before it starts learning that task. Erez and Smart [7] have enumerated
methods for gaining this experience. Methods that are applicable to the task
of the research of this thesis are discussed below.

The dynamics of the task can be modified. The robot could for instance
be suspended so it cannot fall. It would be easier for the robot to learn to
kick the ball this way. It would however learn a kick that does not take the
possibility of falling into account. It was hypothesized that a soccer kick that
does take falling into account would differ significantly from a kick from a
suspended position. The experience gained would therefore not be useful.

The algorithm parameters could be modified. A sensible modification
would be to decrease exploration rates or learning step sizes when a relatively
good policy has been learned and the current policy needs to be fine tuned.
To apply this method, rules need to be invented that dictate the exploration
rate or learning step size at each point in the learning process. Because such
rules are not trivial to define, it was chosen to use a different shaping method.

The action space could be modified. Some joints of the robot could be
fixed. For this to work, it would be necessary to decide which joints would
not contribute much and could therefore stay fixed initially.

Finally, the reward function could be modified. Rewards can be given for
behavior that seems promising, even though the ball might not have been
kicked at all. Because this is the most intuitive method in the context of the
research of this thesis, this method was applied.

Two learning stages were used. In the first stage, the learner is rewarded
the sum of the ffoot pressure and the ftorso angle. In this stage a policy is being
learned that results in the robot standing on one foot. The resulting policy
serves as the starting policy for the second stage. In the second stage, the
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agent is rewarded for the rolling distance of the ball and for keeping balance
according to fproportional. It is tested if using these two stages to learn a policy
results in a more efficient kick.

In this section, the approach of the research of this thesis has been de-
scribed. In Section 4 experiments are described to test the validity of the
approach.
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Chapter 4

Experiments

Experiments were done to compare the performance of algorithms discussed
in Section 2 and to test the discussed approach. The experiments were done
using a simulator. Section 4.1 discusses considerations for choosing the sim-
ulator, Section 4.2 discusses experiments that compare the learning using
the discussed algorithms, and Section 4.3 discusses experiments that test the
discussed approach.

4.1 Simulator

Because experiments involve many iterations of the robot interacting with
the world, it is infeasible to work with a real robot. It was therefore chosen
to use a physics simulator. There are various simulators that can be used for
simulating a robot in a physical environment. The most relevant simulators
are listed here.

The simulator that is used often in research is the commercial simulator
WeBots [11]. Robots can be modeled from scratch using components like
servos that can be programmed to move toward some desired position with
a given maximum torque. For WeBots a set of complete models of robots
including the NAO are available. Physics are handled by the ODE physics
engine. The simulator also includes important features like a programmable
supervisor and an option to simulate scenarios with accelerated time. These
two features are both valuable when it comes to machine learning experi-
ments. This simulator however is costly and was for this reason not available
for the research of this thesis.
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USARSim (Urban Search and Rescue Simulator) was designed for simu-
lating search and rescue scenarios. It was based on an Unreal Tournament
game engine. Both graphics and physics are used from this engine. Because
of these graphics, the simulator is suitable for experiments with computer
vision. During the research of this thesis, a model was created for the NAO
robot [28]. It was however not yet available for the research of this thesis.

A simulator specifically designed to simulate the NAO robot is NAOSim-
Pro by Cogmation Robotics. It will work closely with the Aldebaran Chore-
graph tool that comes with the NAO robot. This simulator however, was not
yet available as it was still under development.

Another simulator specifically designed for the NAO, but can simulate
other models as well, is SimRobot [21]. This simulator is part of software
written by a RoboCup team called the GermanTeam and further devel-
oped by the BHuman team. The software contains the simulator, as well
as the complete decision making software used by the team during RoboCup
matches, and debugging tools for this software. It’s implementation is com-
pletely done in C++.

The simulator that is used for official simulated RoboCup matches is
Simspark. Besides being used for simulated soccer matches, Simspark has
also been used for research [27]. Earlier versions of this simulator simulated
a simple 2-Dimensional enviroment to be able to let users focus on soccer
teamplay. Since 2006 it was upgraded to simulate 3-Dimensional environ-
ments. In 2008 a model, which is currently used in matches, of the NAO
robot was included in the simulator. Note that this model differs one degree
of freedom with the real NAO robot. This extra degree of freedom makes
the hip in the simulated NAO more flexible than that of the real NAO [31].
The simulator is split into components that can be run seperately and on
different computers to be able to distribute the load of the complete simu-
lation. The server simulates the physics using the ODE physics engine and
provides perceptions on request to agents that can set effectors in joints for
example that simulate servos. Agents can be implemented in any language
as long as they are able to communicate with the server via sockets or as a
plugin. This makes it possible to develop agents more efficiently using higher
level programming languages like Python. While repeated experiments can
be done using this simulator, it cannot do them in accelerated time.

The most suitable simulators for the research of this thesis are SimRobot
and SimSpark as they both include a NAO model and were available. Because
of its status as simulator for official RoboCup matches, and because of the
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accesible way agents can be developed for it, the research of this thesis was
done using SimSpark.

The total time running the simulator for experiments discussed in Sections
4.2 and 4.3 was over 50 days. Because of this, the use of a supercomputer was
considered to run both simulator and agent. The used simulator however,
uses sockets to connect agent and simulator programs which could form a
problem configuring properly when multiple instances of the programs were
run simultaneously. For this reason, configuration on a supercomputer was
believed to take more time than would be gained by using it. Therefore,
experiments were run on two PCs.

4.2 Comparative experiments

In this section learning using the four algorithms in section 2 are compared.
Learning the complete set of policy parameters described in Section 3.2 ex-
periments is time consuming. Therefore only a subset of parameters was
learned using all four algorithms. The results are described in section 4.2.1.
Using the two best performing learning algorithms, another experiment was
done in which the full set of parameters is learned. This is described in
Section 4.2.2.

4.2.1 Learning a subset of parameters using all algo-
rithms

To explore which learning algorithm can most efficiently learn a soccer kick in
the current setting a subset of the policy parameters was optimized. In this
experiment as a initial policy, the Robocanes based soccer kick described in
Section 3.3 was used. The eight parameters that were needed to be optimized
resembled the position of the left knee, and forward-backward degree of free-
dom of the hip, at four poses. These parameters were chosen as the knee
and hip joints play a key role in kick the ball and therefore improvements
can be made by optimizing only this small subset of eight parameters. The
other parameters were kept fixed at the initial policy. The reward function
used was fproportional which is described in Section 3.4. The same number of
rollouts per Policy Gradient iteration, 20 rollouts, was used as the size of the
population in the Genetic Algorithm. The same number of Policy Gradient
iterations was used as the number of generations. This way the same num-
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ber of rollouts were done when using the Policy Gradient methods as when
using the Genetic Algorithm. Each run was repeated 10 times. The resulting
means, with error bars representing twice the standard error, are shown in
Figure 4.1.

Figure 4.1: Mean return versus rollouts. Finite Difference and
Genetic Algorithm manage to increase return while Vanilla and
ENAC perform below expectations.

The results show that both Finite Difference and the Genetic Algorithm
have increased return significantly. Using Episodic Natural Actor Critic and
Vanilla gradients, no improvements were made at all. This result was not
expected considering earlier research [15]. One hypothesis is that current
implementations of these algorithms are not correct. Another hypothesis
is that the gradient of the policy with respect to the policy parameters,
∇θπθ(x,u), was not estimated accurately. As discussed in Section 3.2.4 this
gradient could not be calculated as was done in research in the literature
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[15] and had to be estimated. A problem with this estimation could explain
the results above because only Vanilla and ENAC algorithms use ∇θπθ(x,u)
to estimate the gradient of the return ∇θJ(θ) while the Finite Difference
and Genetic Algorithm do not use ∇θπθ(x,u). To test these hypotheses two
experiments were done.

To investigate the first hypothesis that current implementations of Vanilla
and ENAC are not correct, these algorithms were tried to learn a simpler
task. This task is unrelated to learning a soccer kick or robotics in general.
The task is as follows. Each rollout has only one timestep. The action is
returning a single real number. The reward function is

fsimple(u) =
1

1 + abs(u− c)
(4.1)

where u is the scalar action and c a constant value, in this case 0. The highest
possible reward 1 is returned when u = c = 0. The policy for this task is
defined as follows. Each action is drawn from a normal distribution with its
mean and standard deviation being the only policy parameters. Parameters
are optimal when both mean and standard deviation are zero, which results
in consistantly drawing u = 0 which results in the highest possible reward.
Result of two single runs are shown in Figure 4.2.

Results show, as expected, a difference in way the optimal parameters,
zero mean and zero standard variation, are found. It can be seen that the
size of the natural gradient estimated with the Episodic Natural Actor Critic
algorithm decreases when parameters are near optimal. These results show
that implementations work as expected when applied to a very simple learn-
ing task.

To investigate the second hypothesis that the gradient of the policy with
respect to the policy parameters, ∇θπθ(x,u), was not estimated accurately,
algorithms were applied to another simple task. This task however, involved
the model of the NAO in the SimSpark simulater used in earlier experiments.
The same policy was used as described in Section 3.2. However, only one
parameter was learned, which represented a single pose of backward-forward
degree of freedom of the left hip joint. A simple reward function was used.
At each timestep, the current position of the left hip joint, in degrees, was
given as a reward. Increasing the parameter will increase the position of the
joint and therefore increase reward. To decrease variance, the torso position
of the robot in the simulator was fixed some distance in the air so the robot
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(a) Vanilla reward (b) Vanilla parameters

(c) ENAC reward (d) ENAC parameters

Figure 4.2: Return at simple task. Both Vanilla and ENAC
algorithms perform as expected.

could not fall or touch the ground. Per policy gradient, 20 rollouts were done.
Results are shown in Figure 4.3.

The results show a slight increase of return with respect to policy gradient
iterations. The actual gradient of this single-dimensional space is positive
everywhere and no significant noise in the return is present in this controlled
setting. Decreasing the return can therefore only be a result of decreasing the
parameter while an increase in return can only be the result of an increase
of the parameter. Going back and forth in the parameter space indicates
that the algorithm cannot reliably estimate the gradient. Analysis shows
that 54 out of 100 estimated gradients had the correct sign when Vanilla
was used. When using ENAC, 50 out of 100 estimated gradients, had the
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(a) Vanilla (b) ENAC

Figure 4.3: Return on the simple increase joint pose task. Both
methods show some increased return although not as much as was
expected.

correct sign. This is remarkable given that the task is simple and only single-
dimensional policy parameters are to be optimized. Because performance was
worse than expected, it might be the case that the estimation of ∇θπθ(x,u)
using this method is accurate enough to result in some improvement during
learning, but not accurate enough to result in effective learning when used
with Episodic Natural Actor Critic and Vanilla gradient estimators in higher
dimensional parameter spaces.

It can be concluded that both finite difference policy gradient and the
genetic algorithm perform best. Therefore a full scale run was done using
these two algorithms.

4.2.2 Learning all parameters using only finite differ-
ence and genetic algorithm

Using the two best performing algorithms, the Robocanes based soccer kick
was optimized using all policy parameters described in Section 3.2. The
reward function fproportional was used. The number of rollouts per Policy
Gradient iteration and size of population was both 200. The number of
iterations and generations was both 200. Figure 4.4 shows the mean learning
curves of 10 runs with bars indicating twice the standard error.

The results show similar mean learning curves when using both algo-
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Figure 4.4: Mean return versus the number of rollouts during
the optimization of the Robocanes based policy.

rithms. While the mean learning curve when using the Genetic Algorithm
seems to end higher than when using Finite Difference, the difference be-
tween the two is smaller than the standard error of the Genetic Algorithm
curve. Note the high variance in results when using the Genetic Algorithm.
High variance in return within a single generation was also observed where
the exploration of the Finite Difference method resulted in similar looking,
predictable movements. For these reasons, the Finite Difference algorithm
was used in method validaton experiments.

4.3 Approach validation experiments

To answer the question of what would be a good approach for learning a
soccer kick, a kick was learned using three different approaches. The first
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approach was by providing no working initial policy, in the sense that the
ball is never kicked, and by using a single reward function, fproportional. The
initial policy is the standing still initial policy. The second approach was
using the same, not working, policy and using shaping over two learning
stages as described in Section 3.5. The third approach was by optimizing an
already working policy using the reward function fproportional. The setup of
this approach is identical to the one in Section 4.2.2. Those results for this
approach are therefore reused here. The number of rollouts per Policy Gradi-
ent iteration was 200 and the number of iterations was 200. Mean results of
10 runs for each method with error bars indicating twice the standard error
are shown in Figure 4.5.

Figure 4.5: Mean return versus Policy Gradient iterations

Note that the first 25 iterations of the learning curve when using shaping
has a zero return. This is because the first 25 iterations, a different reward
function was used. The reward shown here is fproportional. The height of the
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mean return of ffoot pressure during the first 25 iterations is shown in a different
graph, Figure 4.6, to avoid confusion. Also note that the mean returns of
the first iterations are zero of the learning curve where no working initial
policy or shaping is used. This is because the learning process has not yet

Figure 4.6: Mean return versus Policy Gradient iterations dur-
ing first shaping stage. The return shown is that of the same
reward function as was used for learning.

reached a policy that results in a movement that moves the ball. During
these iterations, the robot received no non-zero reward signal at all because
it did not manage to touch the ball. The search was therefore unguided and
it is only by chance that a movement that touched the ball was developed.

Results show that the mean return at the last Policy Gradient iterations
was a bit higher when shaping was not used. The highest mean return was
received when a working kick was used as initial policy.

These three methods resulted each in 10 optimized policies. Each policy
was executed 10 times to measure both the actual mean rolling distance
of the ball, as well as how often the robot falls when performing the kick.
Results of the methods are in the first three rows of Table 4.1.

The policy learned with the Robocanes based initial policy results in the
kick with the greatest mean distance. However, the movement is the most
unstable because the robot falls in 87% of the times it is performed.

Because the method that resulted in the greatest kicking distance was not
stable, an attempt was made to correct this. It was hypothesized that the
reason for being able to learn such an unstable kick was that falling did not
generate enough negative reward for the agent. The used reward function
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Method Distance Fall ratio
Mean Std

No example or shaping 3.0 0.7 0.66
No example with shaping 2.8 0.9 0.27
Robocanes based initial policy 3.7 1.0 0.87
Stabilized Robocanes based initial policy 3.8 0.7 0.30

Table 4.1: Mean kicking distance by method

Figure 4.7: One of the final resulting kicks. This motion was
learned by stabilizing a kick that was the result of optimizing the
Robocanes based initial policy.

makes a prediction on whether the robot will fall over so each rollout can
be stopped without waiting to see if the robot would keep its balance (see
Section 3.4). It is possible that this prediction was not accurate enough.
For this reason, 25 additional policy gradient iterations were done, with a
longer rollout of 4 seconds. Reward function and rollouts per iteration were
unchanged. The resulting policies had a mean kicking distance of 3.8 with a
standard deviation of 0.7 and had a combined fall ratio of 0.30. Note that
one out of the ten resulting policies fell every time, which meant a fall ratio
of 1.0. Without this outlier, the combined fall ratio of the remaining nine
kicks was 0.22.
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Figure 4.7 illustrates the kick that was learned with the Robocanes based
initial policy and stabilized as described above. The complete motion is
performed in under two seconds. Most of this time is spent preparing for
the actual kick and returning to a stable stance afterwards. All kicks that
were trained using this same approach appear similar and are in fact hard to
distinguish from each other.
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Chapter 5

Discussion and Future Work

In Sections 5.1 and 5.2 research questions introduced in the Section 1.2 are
answered. Future research is suggested in Section 5.3 after which this thesis
is concluded in Section 5.4.

5.1 What algorithm is most effective for learn-

ing a soccer kick?

It was unexpected that learning with using Vanilla and Episodic Natural
Actor Critic algorithms during the comparative experiments would result
in such poor results. Extra experiments showed that learning a single-
dimensional parameter in a simple task was possible using the implemen-
tations for this thesis. It was also shown that a one-dimensional parameter
in the SimSpark simulator could be learned while using the estimated gra-
dient of the policy with respect to policy parameters. This learning process
however was slow, and learning eight parameters, to optimize the existing
kicking motion was unsuccesful. The literature shows that for a similar pol-
icy, also using poses and splines, 66 parameters can be learned using Vanilla
[10]. Also, the Episodic Natural Actor Critic algorithm had been used to
learn to hit a ball with a baseball bat on a robot arm with seven degrees of
freedom using motor primitives [16]. Both these experiments had calculated
the gradient of the policy with respect to the parameters instead of estimat-
ing it like was done in this thesis. This suggests that poor performance was
due to the estimation of the policy with respect to policy parameters, instead
of the algorithms themselves. This gradient might not have been estimated
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accurately enough to facilitate learning in the eight-dimensional parameter
space, while it did suffice for learning a one-dimensional parameter.

The best learning performance was achieved using Finite Difference Pol-
icy Gradient and Genetic Algorithm methods. While both methods had
similar performance in terms of learning speed and resulting policy, the Fi-
nite Difference method is more suitable for robotics because the parameter
variations that are tried during the learning process are relatively similar and
predictable. When using the Genetic Algorithm, although the end result was
a good policy, the variations that were tried during the learning process were
unpredictable and sometimes violent. This increases chances on damaging
the robot when learning on a real robot is done.

A concern when using Policy Gradient methods is that the search can
get stuck in a local optimum. Repeating the same experiment multiple times
has given some insight about this problem in the current context. If the
found policies would have been very diverse, this would have been some
evidence that the searches had all got stuck in different local optima, and
therefore a global optimum, at least in most cases, had not been found.
However, kicks that were learned using the same, most successful, approach
using Policy Gradient appeared were hard to distinguish from each other
purely by looking at the motion. Although no evidence of getting stuck in
a local optimum was found, it cannot be concluded that the searches had
all led to a global optimum as all searches might have found the same local
optimum.

When learning this number of parameters using Finite Difference or Ge-
netic algorithms, many rollouts were needed to learn a good policy. When
using a real robot to learn a soccer kick, it would be necessary to put the
robot and ball in the starting position hundreds of thousands of times. It
would therefore be infeasible to use either of these algorithms to learn a
movement like kicking a ball with this many parameters on a real robot.
Optimizing another task however, like walking fast for example, might be
feasible. When walking, the ending position of one rollout can be used as
a starting position for the next as long as the robot does not fall, and an
already working policy is used. Note that in this case, the distributions over
start states would change after each learning iteration. If variations are tried
out in random order, variation in the start state can be treated like any other
noise and is not likely to form a problem. Walking variations could even be
tried out without having to stop the walking motion after each variation has
been tried. This way, the robot could easily optimize its walk while doing
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other tasks. Optimizing a policy while performing other tasks is only feasi-
ble when using a learning algorithm that changes policy parameters smoothly
like Policy Gradient methods do.

5.2 What is a good approach for learning a

soccer kick on a humanoid robot using

reinforcement learning?

The result that the strongest kick was learned using an example as a starting
policy was expected. Because the starting policy was already a working kick,
all learning iterations could be used to optimize the performance of this kick.
Learning with shaping did not result in a more powerful kick than learning
without it. By using two different reward functions for two different stages
in the learning process, the knowledge was used that, for kicking, the robot
would have to stand on one leg. The idea is to facilitate learning by moving
the search into a part of the parameter space in the first stage, from which it
is easier to find a good policy in the second stage. This comes at the cost of
spending learning iterations optimizing with respect to a reward function in
the first stage that does not represent the final goal of the learning process.
Choosing an unsuitable reward function for the first stage can lead to a
detour in the parameter space. This seems to have happened in this thesis
when it comes to learning a powerful kick.

Learning with shaping resulted in a more stable kick than learning with-
out it. This was an expected result. Unexpected, however, was that learning
using an example resulted in the least stable kick. One possible reason for this
unexpected result is that falling was not observed directly during learning,
but was predicted. This made it possible for unstable policies to be learned
while the agent did not receive negative rewards for it. When learning with a
working kick as a starting policy, all iterations were used to search in a good
part of the parameter space. It is possible that, because of this, policies could
be developed that exploited the reward function in this unintentional way.

Shaping has not improved learning on each criterion. The kick with the
best properties was created by using an example as an initial policy. To
make this kick stable, episode length had to be extended to make sure that
the agent would receive a negative reward for falling. Changing the length of
the episode, effectively changed the expected return for a policy. So this also
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is a form of shaping. The same resulting kick might have been learned when
the extended episode length was used during the complete learning process
instead of just the final stage. This would, however, have resulted in twice
the time needed to perform all rollouts.

5.3 Future research

Future research can focus on applying the techniques used in the research of
this thesis on a real robot. A great number of rollouts is required to learn
a kick without a good initial policy. By learning mainly in simulation and
only optimize a transferred policy on the real robot, this difficulty could be
dealt with.

Defining a policy by defining key poses like was done in this thesis and
earlier by Hausknecht and Stone [10] has proven to be successful. In the
research of Hausknecht and Stone, the actions of the robot were only depen-
dent on the time in the rollout and not on the current position of the robot.
In this thesis, the current position was taken into account to calculate the
trajectory to ensure smooth movements. Stability might not have been a
problem in the research of Hausknecht and Stone because movements were
performed by a quadrupedal robot. In this thesis, where a humanoid robot
was used, the best learned policy for a soccer kick still results in falling in
one out of five tries. Stability can be improved by making the policy depen-
dent on the position and accelerometers of the robot. This way the robot
could learn to keep its balance. One way this could be done would be to
introduce an extra parameter ci for each joint i. After an action u∗i has been
calculated, like explained in Section 3.2, a correction can be added based
on the accelerometer. This correction could be a linear combination of ci
and a measure of how much the robot is leaning in one direction l. This
could be done to correct falling over to either side, x-direction, but also for
the forward-backward or y-direction. The components of the final action uf

would then be
ufi = u∗i + lxc

x
i + lyc

y
i (5.1)

This correction could be used when learning to kick, but also when learning
other tasks like walking.

In this thesis, criteria for the quality of a soccer kick were the stability
of the kick and the distance the ball had traveled, or the power of the kick.
Future research could use different criteria. Some important properties of a
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soccer kick that were not taken into account in the research of this thesis are
accuracy of the kick, and time it takes from deciding to kick to the actual
kicking of the ball.

5.4 Conclusion

Finite Difference Policy Gradient and Genetic Algorithms are effective for
finding good policies for humanoid robotics tasks. Although many iterations
are needed to learn, no gradient of the policy needs to be available which
makes these algorithms applicable to a wide range of situations. Shaping
can also be a helpful method. Not only can it help to find good policies in
specific situations, but can also be applied to reduce time needed to learn.
Future research has been suggested to improve learning approaches. These
methods will improve the ability to play soccer, but can also help make robots
better personal assistants in future.
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Appendix A

Finding the optimal step size
using Lagrangian multipliers

Gradient descent with step ∆θ under the constraint that the step results in
a change of trajectory distribution of a fixed size ε can be found by solving

max
∆θ

(Jθ + ∆θ) ≈ max
∆θ

J(θ) + ∆θT∇J(θ) (A.1)

under the constraint
1

2
∆θTF θ∆θ = ε (A.2)

The Lagrangian becomes

L(∆θ, λ) = ∆θJ(θ) + ∆θT∇J(θ) + λ(ε− 1

2
∆θTF θ∆θ) (A.3)

∂L(∆θ, λ)

∆θ
= ∇J(θ) +

1

2
λ∆θT (F θ + F T

θ ) (A.4)

Because F θ is symmetrical

∂L(∆θ, λ)

∆θ
= ∇J(θ) + λ∆θTF θ (A.5)

Setting the partial derivative to zero yields

∆θ = λ−1F−1
θ ∇J(θ) (A.6)

Filling this in into the partial derivative of the Lagrangian with respect to λ
and setting it to zero results in

∂L(∆θ, λ)

λ
= ε− 1

2
∆θTF θ∆θ = 0 (A.7)
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where

λ =

√
∆θTF θ∆θ

2ε
(A.8)
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Appendix B

Episodic Natural Actor Critic
Derivation

Compatible basis functions are

fw(ξj0:k) =

(
k∑
τ=0

∇ log π(ujτ |xjτ )

)T

w (B.1)

This can be brought to standard regression form, in which the sum of squared
residuals is minimized,

β∗ = argmin
β

(Y −Xβ)T (Y −Xβ) (B.2)

where XT =
[
X1 X2

]
and β∗T =

[
wT b

]
. Before plugging in the expres-

sions specific to current context the solution of this standard problem will be
described.

The solution of Equation B.2 is

β∗ =

[
w
b

]
= (XTX)−1XTY (B.3)

Let T = XT
1X1, U = XT

1X2 and W = XT
2X2. The Matrix Inversion

Theorem can then be applied which results in

(XTX)−1 =

[
T U
UT W

]−1

=

[
T−1 + T−1UQUTT−1 −T−1UQ

−QUTT−1 Q

]
(B.4)
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where Q−1 = W − UTT−1U . Applying Sherman-Morrison formula [14]
yields

Q = W−1 +W−1UT (T −UW−1UT )−1UW−1) (B.5)

Putting these results in Equation B.3 yields

w = T−1 + T−1UQUTT−1XT
1Y − T−1UQXT

2Y (B.6)

= T−1(XT
1Y −Ub) (B.7)

b = Q(XT
2Y −UTT−1XT

1Y ) (B.8)

Filling in the definitions of T , U and W results in

w = (XT
1X1)−1XT

1 (Y −X2b) (B.9)

b = QXT
2 (Y −X1(XT

1X1)−1XT
1Y ) (B.10)

where

Q = (XT
2X2)−1

+(XT
2X2)−1XT

2X1(XT
1X1−XT

1X2(XT
2X2)−1XT

2X1)−1XT
1X2(XT

2X2)−1

(B.11)

Now the solution to Equation B.2 is known, X1, X2 and Y need to be
defined for the current context.

XT =

[
φ1

1:1 φ1
1:2 . . . φ1

1:n φ2
1:1 . . . φm1:n

e1 e2 . . . en e1 . . . en

]
(B.12)

where φj1:n =
∑n

t=1∇θ log π(ujt |x
j
t) for the j-th rollout and ei is the i-th unit

vector basis function with length n.

Y =
[
r1

1 r1
2 . . . r1

n r2
1 . . . rmn

]
(B.13)

We insert Fischer information matrix XT
1X1 = F 2, Eligibility matrix

XT
1X2 = Φ and the Identity matrix XT

2X2 = mIn into Equations B.9, B.10
and B.11 which yields

w = F−1
2 g2 (B.14)

b = Q(r−Φ
T
F−1

2 g) (B.15)
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Q = (mIn)−1 + (mIn)−1Φ
T

(F 2 −Φ(mIn)−1Φ
T

)−1Φ(mIn)−1 (B.16)

= m−1(IK + Φ
T

(mF 2 −ΦΦ
T

)−1Φ) (B.17)

where

F 2 =
m∑
j=0

n∑
i=0

φj1:i(φ
j
1:i)

T (B.18)

Φ =
m∑
j=0

n∑
i=0

φj1:i(ei)
T (B.19)

r =
m∑
j=0

n∑
i=0

rji (ei)
T (B.20)

g2 =
m∑
j=0

n∑
i=0

(rji − bi)φ
j
1:i (B.21)

g =
m∑
j=0

n∑
i=0

rjiφ
j
1:i (B.22)

Note that, for better readability, symbols used in Algorithm 4 differ from
the symbols used here. The following relations apply. φk = m−1φj1:n, F θ =
m−2F 2 and Φ = m−1Φ.
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