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Abstract
This thesis investigates the application of unsupervised semantic segmentation
for autonomous driving cars, focusing on the Self-Supervised Transformer with
Energy-based Graph Optimization (STEGO) algorithm. Semantic segmentation,
crucial for autonomous vehicles, assigns class labels to each pixel, enabling detailed
environmental understanding. The study employs the DINO model for feature ex-
traction, followed by feature correspondence computation, clustering, and refine-
ment using Conditional Random Fields (CRFs). Various methodologies, including
frame-by-frame and batch processing on both GPU and CPU, were explored to
achieve real-time segmentation. Despite significant performance improvements
through mixed precision and optimized memory management, achieving fully real-
time segmentation remains a challenge. The thesis concludes with reflections on
the current limitations and proposes future directions, including advanced initial-
ization techniques, refined loss functions, and enhanced data augmentation, to
improve segmentation quality and real-time processing capabilities.
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Chapter 1

Introduction

The development of autonomous vehicles has rapidly progressed, with signifi-
cant advancements in sensor technology, data processing capabilities, and ma-
chine learning algorithms. A critical component of autonomous driving systems
is the ability to accurately interpret and understand the surrounding environment
through semantic segmentation. This process involves classifying each pixel in
an image captured by vehicle-mounted cameras into predefined categories such as
roads, vehicles, pedestrians, and other relevant objects.

The progress in sensor technology, such as high-definition cameras, LiDAR, and
radar systems, has greatly enhanced the perception capabilities of autonomous
vehicles. These sensors provide a comprehensive understanding of the vehicle’s
surroundings, enabling the detection and classification of various objects in real-
time [16, 7]. The fusion of data from multiple sensors further improves the accuracy
and reliability of the perception system, allowing for more robust and efficient
autonomous driving [16].

One approach to semantic segmentation in autonomous vehicles is Bird’s Eye
View (BEV) semantic segmentation. BEV refers to a top-down view of the scene,
which provides a comprehensive perspective of the vehicle’s surroundings. This
technique transforms the captured images into a bird’s eye view, making it easier to
detect and classify objects accurately. BEV semantic segmentation is particularly
useful for understanding the spatial relationships between objects and navigating
complex environments, offering enhanced spatial context and facilitating better
decision-making for autonomous systems [9, 14].

Machine learning algorithms, particularly deep learning techniques, have also
played a crucial role in advancing autonomous vehicle technology. These algo-
rithms are capable of processing vast amounts of data to learn complex patterns
and make accurate predictions about the vehicle’s environment. Semantic seg-
mentation, powered by these advanced algorithms, is essential for identifying and
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understanding different elements in the driving scene, which is crucial for safe and
efficient navigation [16, 7].

This thesis focuses on implementing a segment neural network for self-driving
cars, leveraging the capabilities of the CARLA simulator and state-of-the-art seg-
mentation algorithms. The primary goal is to enhance the accuracy and reliability
of semantic segmentation in dynamic driving environments, such that in the fu-
ture video feed can be segmented in real-time will perform better than the current
alternatives.
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Chapter 2

Related Work

2.1 Competitors

2.1.1 Learning by Cheating (LBC)

Learning by Cheating (LBC) is a method that utilizes a privileged agent (teacher)
with access to BEV semantic segmentation images to train a sensorimotor agent
(student) using standard RGB images. This approach separates the learning pro-
cess into learning to act and learning to perceive, leveraging privileged information
during training to simplify and improve the learning process.

Methodology

LBC employs a teacher-student architecture:

• Privileged Agent (Teacher): Has access to BEV semantic segmentation
images and learns to act based on this privileged information.

• Sensorimotor Agent (Student): Trained to imitate the teacher’s actions
using only forward-facing RGB images, without needing privileged informa-
tion during deployment.

The teacher agent learns from a dataset of expert trajectories, and the student
agent is trained under the supervision of the teacher, learning an end-to-end policy
from the privileged actions.

Performance

LBC significantly reduced traffic light infractions and collisions compared to state-
of-the-art methods, demonstrating superior performance in autonomous driving
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tasks. This approach provided a robust framework for training autonomous driving
agents using privileged information.

2.1.2 World on Rails (WoR)

World on Rails (WoR) is a model-based reinforcement learning method developed
for autonomous driving. WoR simplifies the autonomous driving problem by as-
suming a static environment, known as the "world-on-rails" assumption. This
method decouples the agent’s actions from the world’s reactions, allowing for a
more straightforward learning process.

Methodology

WoR employs a model-based approach where:

• Ego-Vehicle Model: A model of the vehicle is trained to predict its next
state based on its current state and action, enabling the simulation of the
vehicle’s behavior without actual environmental interaction.

• World Model: The environment’s states are pre-determined, independent
of the agent’s actions. This model generates a sequence of world states that
are not influenced by the vehicle’s actions.

The Q-values, representing the expected reward of actions, are computed using
a predefined reward function. This function rewards lane-keeping and penalizes
collisions and traffic infractions. Dynamic programming and backward induction
are used to compute Q-values for all possible states and actions, which are then
used to train the visuomotor policy.

Performance

WoR demonstrated significant improvements in autonomous driving benchmarks,
achieving a 25% higher driving score on the CARLA leaderboard using 40 times
less data compared to other methods. It showed excellent performance on the
NoCrash benchmark and generalized well across different environments using the
ProcGen platform.

2.1.3 Cheating by Segmentation (CBS)

Cheating by Segmentation (CBS) is an approach that adapts the Learning by
Cheating (LBC) method for more practical applications by using forward-facing
camera images instead of bird’s-eye view (BEV) images. This adaptation aims
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to make the training process more applicable to real-world scenarios by utilizing
readily available sensory inputs.

Methodology

CBS employs a teacher-student architecture:

• Teacher: A privileged agent with access to ground truth BEV semantic
segmentation images, which predicts waypoints based on this data.

• Student: An agent trained to use forward-facing RGB images to mimic
the teacher’s predictions, enabling the student to operate without privileged
BEV information.

The teacher agent learns optimal actions from expert trajectories, while the stu-
dent agent learns to predict these actions using only RGB images. This method
leverages the practical availability of forward-facing cameras to train robust au-
tonomous driving agents.

Performance

CBS demonstrated improved practicality by utilizing forward-facing cameras while
maintaining the core advantage of using privileged information for training. This
approach effectively bridged the gap between theoretical models and real-world
applications.

2.1.4 Cheating by Segmentation 2 (CBS2)

CBS2 is an extension of the original Cheating by Segmentation (CBS) approach,
designed to train autonomous driving agents using forward-facing cameras instead
of bird’s-eye view (BEV) images. The primary aim is to leverage large existing
datasets like Waymo without needing costly and hard-to-obtain BEV images.

Methodology:

CBS2 employs a teacher-student architecture:

• Teacher: A privileged agent with access to ground truth BEV semantic
segmentation images, which predicts waypoints based on this data.

• Student: An agent trained to use forward-facing RGB images to mimic
the teacher’s predictions, enabling the student to operate without privileged
BEV information.
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The training involves the teacher learning optimal actions from expert trajec-
tories and the student learning to predict these actions using only RGB images.
CBS2 was evaluated using the CARLA simulator, with different student model
versions (e.g., Pyramid Pooling Modules (PPM) or Feature Pyramid Networks
(FPN)) tested to improve perception and reduce infractions.

Performance:

CBS2 outperformed previous methods like Learning by Cheating (LBC) and World
on Rails (WoR) in lane-keeping and collision rates. However, it still faced chal-
lenges in accurately predicting braking actions, leading to more collisions and
traffic light infractions than LBC on the NoCrash benchmark.

2.1.5 Contribution to This Work

In this thesis, CBS2, WoR, LBC, and CBS provided foundational methodolo-
gies for data collection and model training. CBS2’s approach for optimizing data
collection parameters, such as the number of frames, steering noise, and traffic
light detection distance, was instrumental in creating a realistic and challenging
dataset. WoR’s static environment assumption simplified the learning process, al-
lowing for efficient policy training using pre-recorded driving logs. LBC and CBS’s
teacher-student architecture informed the design of this segmentation framework,
leveraging privileged information to enhance the accuracy and reliability of seman-
tic segmentation in dynamic driving environments. For a clear visualization and
overview of all the related work and their relation to this work see appendix A.3.

2.2 Related Theory

2.2.1 Sensor Fusion and Data Collection

The effectiveness of semantic segmentation in autonomous vehicles is significantly
enhanced by sensor fusion, which combines data from multiple sensors to provide
a comprehensive understanding of the environment. Sensors such as cameras,
LiDAR, and radar each have unique strengths and limitations. By integrating data
from these sensors, the system can achieve a more robust and accurate perception
of its surroundings [2, 15].

In the context of this project, the CARLA simulator is used for data collection.
CARLA provides a realistic simulation environment that replicates urban driving
scenarios, allowing for the collection of high-quality, labeled data necessary for

6



training segmentation models. The simulator supports various sensor configura-
tions, enabling the generation of diverse datasets that reflect real-world conditions
[2].

2.2.2 Model Training and Evaluation

Training semantic segmentation models involves using large datasets to learn the
mapping from input images to pixel-wise class labels. The training process typ-
ically includes data augmentation techniques to enhance the model’s robustness
and generalization capabilities. Evaluation metrics such as Intersection over Union
(IoU) and mean IoU are commonly used to assess the performance of segmentation
models [2, 15].

2.2.3 Dino

DINO stands for Self-Distillation with No Labels. It is a self-supervised learning
approach that leverages Vision Transformers (ViT) to generate feature represen-
tations without the need for labeled data. The key aspects of DINO that make it
suitable for this task are [1]:

Figure 2.1: DINO Overview
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Self-supervised Learning

DINO uses self-supervised learning techniques to train Vision Transformers. Self-
supervised learning allows the model to learn from the inherent structure of the
data itself, without the need for manual annotations. This makes DINO highly
versatile and capable of generalizing across different types of visual data.

Vision Transformers (ViT)

Vision Transformers apply the transformer architecture, which is known for its abil-
ity to capture long-range dependencies, to images. This makes them particularly
effective for tasks like semantic segmentation, where understanding the context
and global information within the image is important.

Figure 2.2: ViT transformer example

High-quality Feature Representations

DINO has been shown to produce high-quality feature representations that are
semantically meaningful. These features are crucial for the STEGO framework,
as they provide a solid foundation for the clustering and segmentation tasks that
follow.

DINO has demonstrated state-of-the-art performance in various vision tasks,
making it a reliable choice for the feature extraction step in the STEGO framework.[12]

2.2.4 CRFs

Conditional Random Fields (CRFs) are a type of probabilistic graphical model used
to model structured relationships in data. Unlike simpler models that treat each
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data point independently, CRFs consider the relationships between neighboring
data points, making them powerful for tasks where context and dependencies are
important, such as image segmentation or natural language processing.

A CRF is an undirected graph where each node represents a random variable,
and edges represent dependencies between these variables. In the context of image
segmentation, each node could represent the label of a pixel, and edges represent
the relationships between neighboring pixels.

The goal of a CRF is to predict a label for each node (pixel) by considering
both the local information (e.g., the intensity of a pixel) and the contextual infor-
mation from neighboring nodes (pixels). See figure 2.3

Figure 2.3: CRF Visualization
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Chapter 3

Theoretic Approach

3.1 Semantic Segmentation in Autonomous Vehi-
cles

Semantic segmentation is a pivotal component in the field of computer vision,
particularly for autonomous driving systems. It involves assigning a class label to
each pixel in an image, thus enabling the vehicle to perceive and understand its
environment. This granular level of understanding is essential for the vehicle to
navigate safely and efficiently through complex and dynamic environments.

The theoretical foundation of semantic segmentation lies in deep learning,
specifically convolutional neural networks (CNNs). CNNs are highly effective at
capturing spatial hierarchies in images, making them suitable for tasks that require
detailed spatial analysis, such as segmentation [8, 11]. State-of-the-art models for
semantic segmentation include Fully Convolutional Networks (FCNs), U-Net, and
DeepLab, each designed to improve the accuracy and efficiency of segmentation
tasks by utilizing various architectural innovations [8, 5].

3.2 Self-Supervised Transformer with Energy-based
Graph Optimization

Self-Supervised Transformer with Energy-based Graph Optimization (STEGO),
introduced in 2022, aims to discover and localize semantically meaningful cate-
gories within image corpora without any form of annotation.[6] STEGO is par-
ticularly well-suited for real-time segmentation of video data from simulators like
Carla, thanks to its unsupervised learning capabilities. Below are the core steps
of the algorithm denoted.
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1. Feature Extraction with Frozen Backbone

The first step in the STEGO (Self-supervised Transformer with Energy-based
Graph Optimization) algorithm involves extracting dense features from input
images using a pre-trained unsupervised model. The choice of the model
is critical, as the quality and relevance of the extracted features directly
influence the subsequent steps of the algorithm.

STEGO utilizes the DINO (Self-Distillation with No Labels) model, a visual
transformer known for its ability to produce high-quality and semantically
consistent features. These features are extracted from intermediate layers of
the model, which capture detailed and spatially dense information about the
input images. The use of dense feature maps allows for a granular representa-
tion of image content, which is essential for effective semantic segmentation.
See the global overview of this step below in figure 3.1

Input Image DINO Model (Frozen Weights) Dense Feature Maps

Figure 3.1: Feature Extraction with Frozen Backbone

Detailed Process

(a) Pre-trained Model Selection: The algorithm employs a pre-trained
DINOmodel, chosen for its state-of-the-art performance in self-supervised
learning tasks. DINO’s ability to generate semantically meaningful fea-
tures without labels makes it an ideal candidate for unsupervised seg-
mentation [6].

(b) Feature Extraction: Input images x are fed into the pre-trained
DINO model to obtain dense feature maps. Let f represent the fea-
ture tensor extracted from an input image. The feature tensor f has
dimensions RC×H×W , where C is the number of feature channels, and
H and W are the height and width of the feature map, respectively.

f = N(x) (3.1)

Here, N : RC′×H′×W ′ → RC×H×W is the mapping function of the frozen
backbone. C ′, H ′, and W ′ are the dimensions of the input image, and
C, H, and W are the dimensions of the output feature tensor [6].
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(c) Freezing the Backbone: The weights of the pre-trained DINO model
are kept frozen during the entire training process of STEGO. This means
that the feature extraction model is not fine-tuned or updated; it re-
mains static. Freezing the backbone ensures that the feature represen-
tations are consistent and stable, allowing the segmentation head to
focus on learning how to cluster and refine these features [?].

(d) Semantic Consistency: The extracted features are noted for their
semantic consistency. This means that similar features across different
images or different regions within the same image represent similar se-
mantic content, a property that is crucial for the success of the STEGO
algorithm [6].

2. Compute Feature Correspondence

After extracting dense features using a pre-trained model like DINO, the next
crucial step in the STEGO algorithm is to compute feature correspondences.
This step forms the foundation for understanding the relationships between
different parts of the image or between different images, which is essential
for semantic clustering.

The computation of feature correspondences involves calculating the cosine
similarity between features of different images or different regions within the
same image. This similarity is captured in the form of a feature correspon-
dence tensor. For clarification see figure 3.2

Detailed Process

(a) Feature Correspondence Calculation: For each pair of feature ten-
sors f and g extracted from two different images (or different regions
within the same image), the cosine similarity between the features is
computed. This is formalized as the feature correspondence tensor F .

Fhwij :=
∑
c

fchw
|fhw|

gcij
|gij|

(3.2)

Here, f and g represent the feature tensors for two different images,
where C is the number of channels, and H,W, I, J are the spatial di-
mensions. The entries of F represent the cosine similarity between the
feature at spatial position (h,w) of tensor f and position (i, j) of tensor
g[6].

(b) Utilizing Correlation Volumes: The correlation volume approach,
especially for convolutional or transformer architectures, is particularly
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Dense Feature Maps
from Image 1 (f)

Dense Feature Maps
from Image 2 (g)

Compute Cosine
Similarity for Each
Pair of Features

Compute Cosine
Similarity for Each
Pair of Features

Feature Correspondence Tensor (F)
(A 4D tensor representing simi-
larity between features at differ-

ent spatial positions in the images)

Figure 3.2: Compute Feature Correspondence

useful. Dense feature maps from specific layers are used as the activation
map. Although Q, K, or V matrices in transformers can also serve as
candidate features, they are found to be less effective in practice.

(c) Special Case of Self-Correspondence: When f = g, the feature cor-
respondence tensor measures the similarity between two regions within
the same image. This self-correspondence is crucial for understanding
intra-image feature relationships, which can be used to enhance seg-
mentation accuracy.

(d) Visualization and Interpretation: By examining slices of the cor-
respondence tensor F , it is possible to visualize how different images
or regions relate according to the feature extractor. This visualization
helps in understanding the semantic consistency of features across the
image corpus. This method acts as a higher-order generalization of
Class Activation Maps for contrastive architectures and visual search
engines.

3. Distill Correspondences

Once feature correspondences are computed, the next step in the STEGO
algorithm is to distill these correspondences into discrete semantic labels.
This process involves refining the raw correspondences into a more structured
form that can be effectively used for segmentation.
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Distilling correspondences is achieved using a contrastive loss function, which
encourages the formation of compact clusters in the feature space while pre-
serving the semantic relationships between features. Graph optimization
techniques are integral to this process, ensuring that the feature correspon-
dences are refined into meaningful and discrete clusters. See the details below
in figure 3.3

Feature Correspondence Tensor (F)

Contrastive Loss Calculation

Graph Optimization

Refined Correspondence Clusters

Figure 3.3: Distill Correspondences

Detailed Process

(a) Segmentation Feature Mapping: For each pair of feature tensors f
and g from two images x and y, respectively, these features are mapped
into a lower-dimensional space using a segmentation head S. The result-
ing segmentation features are s := S(f) ∈ RCHW and t := S(g) ∈ RCIJ .

(b) Feature Correlation Tensor: Using the previously computed feature
correspondence tensor F and the newly obtained segmentation features
s and t, a segmentation correlation tensor S is constructed. This tensor
is computed by element-wise multiplication of F and the segmentation
features.

(c) Contrastive Loss Function: The core of this distillation process is a
contrastive loss function designed to push similar features together and
dissimilar features apart. The loss function is defined as:

Lsimple−corr(x, y, b) := −
∑
hwij

(Fhwij − b)Shwij (3.3)

Here, b is a hyper-parameter that adds uniform negative pressure to the
equation to prevent collapse. This loss function encourages the elements
of S to be large when elements of F − b are positive and small when
they are negative [?].
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(d) Graph Optimization: The loss function incorporates graph optimiza-
tion techniques to ensure that the feature correspondences are refined
into discrete clusters. This involves optimizing the segmentation fea-
tures to form compact clusters, leveraging the structure of the feature
correlation tensor.

(e) Optimization and Stability: To ensure stable optimization, weakly-
correlated segmentation features are optimized to be orthogonal, which
can be efficiently achieved by clamping the segmentation correspon-
dence S at 0. This step dramatically improves optimization stability.

(f) Spatial Centering: To balance the learning signal for small objects
with concentrated correlation patterns, a spatial centering operation is
applied on the feature correspondences:

FSChwij := Fhwij −
1

IJ

∑
i′j′

Fhwi′j′ (3.4)

This modification ensures a more balanced optimization process, leading
to better segmentation results.

(g) Final Correlation Loss: The final correlation loss function, incorpo-
rating the above modifications, is defined as:

Lcorr(x, y, b) := −
∑
hwij

(FSChwij − b)max(Shwij, 0) (3.5)

4. Train Segmentation Head

Following the distillation of feature correspondences, the next step in the
STEGO algorithm is to train the segmentation head. The purpose of this step
is to project the distilled feature correspondences into a lower-dimensional
embedding space, where they can form distinct clusters that correspond to
different semantic regions in the image. Training the segmentation head is
crucial as it refines the feature relationships and ensures that the clusters
formed are both compact and semantically meaningful. The segmentation
head is trained using a combination of correspondence losses to optimize its
performance. See figure 3.4a

The segmentation head is a lightweight feed-forward network with ReLU
activations. This network maps the high-dimensional feature space into a
lower-dimensional code space where K < C, with K being the dimensions
of the code space and C being the number of channels in the feature tensor.
The training process involves using three types of correspondence losses: self-
correspondence loss, K-Nearest Neighbors (KNN) correspondence loss, and
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random image correspondence loss. The self-correspondence loss measures
the correspondence between an image and itself, providing a positive, at-
tractive signal. The KNN correspondence loss measures the correspondence
between an image and its KNNs, primarily providing a positive, attractive
signal. The random image correspondence loss measures the correspondence
between an image and random other images, providing a negative, repulsive
signal.
The combined loss function for training the segmentation head is given by:

L = λselfLcorr(x, x, bself) + λknnLcorr(x, xknn, bknn) + λrandLcorr(x, xrand, brand)
(3.6)

Here, λ terms control the balance of the learning signals, and b terms con-
trol the ratio of positive to negative pressure [?]. The optimization process
involves adjusting the parameters of the segmentation head to minimize the
combined loss function. This ensures that the segmentation features form
compact and semantically meaningful clusters.
Each training minibatch consists of a collection of random images, their
KNNs, and random other images. Five-crop augmentation is applied to
enhance the training process, allowing the network to look at closer details
of the images. This multi-faceted approach to loss calculation and the use
of a lightweight segmentation head ensures that the segmentation model
can accurately project the distilled feature correspondences into distinct,
meaningful clusters that are critical for effective semantic segmentation.

5. Cluster Formation

Following the training of the segmentation head, the next step in the STEGO
algorithm is cluster formation. This step is critical as it involves using the
low-dimensional embeddings produced by the segmentation head to create
distinct semantic clusters. The formation of clusters from these embeddings
is essential for translating the continuous feature space into discrete semantic
labels that can be used for segmentation.
The clustering process leverages a cosine distance-based K-Means algorithm
to form the initial clusters. See figure 3.4b. The choice of K-Means is mo-
tivated by its effectiveness in handling high-dimensional data and its ability
to form compact and well-separated clusters. The algorithm works by itera-
tively assigning data points to the nearest cluster centroid and then updating
the centroids based on the mean of the assigned points. This process con-
tinues until the cluster assignments no longer change significantly.
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Figure 3.4: (a) Cluster Formation Process in STEGO (b) Training the Segmenta-
tion Head

The specific steps involved in the clustering process are as follows:

First, the low-dimensional embeddings s ∈ RK×H×W produced by the seg-
mentation head are collected. These embeddings represent the distilled fea-
ture correspondences in a lower-dimensional space. The cosine distance be-
tween the embeddings is then computed to determine their similarity. The
cosine distance is chosen because it measures the cosine of the angle be-
tween two non-zero vectors, providing a measure of orientation rather than
magnitude.

Next, a minibatch K-Means algorithm is applied to the embeddings. The
algorithm initializes with a set of random cluster centroids. Each embedding
is then assigned to the nearest centroid based on the cosine distance. The
centroids are updated by calculating the mean of the embeddings assigned
to each cluster. This assignment and update process is repeated iteratively
until the cluster assignments stabilize.

The clustering process results in a set of discrete clusters, each representing
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a different semantic region in the image. These clusters form the basis for
the initial segmentation labels. The use of K-Means ensures that the clus-
ters are compact and well-separated, providing a robust foundation for the
subsequent refinement step.

6. Refinement

After the initial clusters are formed using the K-Means algorithm, the next
step in the STEGO algorithm is to refine these clusters to improve their spa-
tial coherence and accuracy. This refinement step is critical for ensuring that
the segmentation results are smooth and adhere closely to the boundaries of
objects within the image. The refinement process leverages Conditional Ran-
dom Fields (CRF) to achieve this goal.
First, the initial clusters obtained from the K-Means algorithm are used as
input to the CRF, as can be seen in figure 3.5. The CRF model considers
the pairwise relationships between neighboring pixels to refine the cluster
assignments. This is achieved by optimizing an energy function that com-
bines both unary and pairwise potentials. The unary potential represents
the likelihood of a pixel belonging to a particular cluster based on the ini-
tial clustering results. The pairwise potential, on the other hand, encodes
the relationship between neighboring pixels, encouraging pixels with similar
features to be assigned the same cluster.
The energy function for the CRF is defined as follows:

E(x) =
∑
i

ψu(xi) +
∑
i,j

ψp(xi, xj) (3.7)

Here, ψu(xi) is the unary potential, and ψp(xi, xj) is the pairwise potential.
The unary potential is derived from the initial cluster assignments, while the
pairwise potential is typically defined based on the spatial and color similarity
between neighboring pixels. The optimization of this energy function results
in refined cluster assignments that are spatially coherent.
To further enhance the refinement process, the CRF model may be aug-
mented with additional features such as color, texture, and edge information.
This allows the model to better capture the boundaries of objects within the
image, leading to more accurate segmentation results. The refinement pro-
cess iterates over the entire image, updating the cluster assignments until
convergence is achieved.

7. Output Segmentation
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Figure 3.6: Output Segmentation Process

The final step in the STEGO algorithm is to produce the output segmen-
tation maps. After refining the clusters using Conditional Random Fields
(CRF), the algorithm maps these refined clusters back to the original image
space, resulting in detailed and accurate segmentation maps. For the specific
step see figure 3.6 and for the complete overview see figure 3.7

The output segmentation step is crucial as it translates the refined feature
clusters into concrete class assignments for each pixel in the image. This
process involves mapping the low-dimensional embeddings and refined clus-
ters back to the original high-resolution image space, ensuring that the final
segmentation adheres closely to the object boundaries and semantic regions
within the image.

First, the refined clusters obtained from the CRF process are used to gen-
erate the final segmentation labels. Each pixel in the image is assigned to
a specific cluster based on the refined feature correspondences. This assign-
ment ensures that pixels with similar features and spatial relationships are
grouped together into meaningful semantic categories.

Next, the algorithm projects these cluster assignments back to the original
image resolution. This step is essential for maintaining the high spatial
resolution and detail required for accurate segmentation. The projection
involves mapping the low-dimensional embeddings and cluster assignments
from the feature space to the pixel space of the original image.

The final segmentation map is produced by assigning each pixel to the seman-
tic category represented by its corresponding cluster. This mapping ensures
that the segmentation labels are consistent with the refined clusters and ad-
here to the boundaries of objects within the image. The output segmentation
map is a high-resolution representation of the semantic regions within the
image, providing a detailed and accurate segmentation of the visual content.
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Figure 3.7: Stego Architecture Overview
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Chapter 4

Methodology

In this thesis, I aim to enhance the accuracy and efficiency of real-time semantic
segmentation using the CARLA simulator for autonomous driving applications.
The primary focus is on improving the data collection process, refining segmenta-
tion algorithms, and evaluating their performance under various conditions. WoR
[3], LBC [4], and CBS [10] laid the foundation where CBS2 [13] fine-tuned the
CARLA environment and data collection phase. CBS2 improved upon CBS by
optimizing the parameters used for data collection, such as the number of frames,
the steering noise, and the traffic light detection distance. These enhancements
allowed for a more realistic and challenging dataset, crucial for training robust
segmentation models. This approach leverages these advancements to implement
a segmentation network that can perform efficiently in diverse driving scenarios,
with an emphasis on real-time processing and accuracy in varied environmental
conditions.

The STEGO network is trained using a dataset collected in a simulated envi-
ronment that closely mimics real-world driving conditions. The dataset includes
a variety of weather conditions, traffic densities, and pedestrian interactions, en-
suring comprehensive coverage of potential real-world scenarios and objects. This
training process is designed to refine the network’s ability to discern and segment
different objects and road features accurately, enhancing the overall performance
of autonomous driving systems.

4.1 Carla Simulator
The Carla Simulator provides various towns and maps, each with a distinct layout,
possible scenarios, and routes. Additionally, a wide range of weather and traffic
conditions can be simulated, ensuring a driving environment as realistic as possible.
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4.2 Data Collection
In the context of unsupervised learning, a critical challenge is the evaluation of
the eventual output. Fortunately, the Carla Simulator is equipped with multiple
sensors, one of which is a semantic segmentation feed. This feed can provide the
necessary ground truth data for comparing the model’s results, enabling a com-
prehensive evaluation. The data collection was executed in two phases: training
and testing, each with a distinct approach.

4.2.1 Phase 1: Training Data Collection

In the context of unsupervised learning, a critical challenge is the evaluation of
the eventual output. Fortunately, the Carla Simulator is equipped with multiple
sensors, one of which is a semantic segmentation feed. This feed can provide the
necessary ground truth data for comparing the model’s results, enabling a com-
prehensive evaluation. The data collection was executed in two phases: training
and testing, each with a distinct approach. Evaluating driving episodes based on
resolution and accuracy was challenging due to the lack of direct feedback during
data collection. To address this, a logging function was implemented to record
each episode of a data collection run. This approach saved significant time, as it
was later discovered that CBS2 had left augmentation settings in the video feed,
resulting in faulty data. For details on these augmentations and image errors,
please refer to Appendix A.6.

Scenarios & Routes

The approach for the training phase was to use a town that could provide a variety
of environmental factors to enrich the collected data with the noted settings. After
some consideration, Town 04 of Carla showed considerable promise as it boasts
highway, urban, and outdoor scenes, in addition to ample scenarios and routes
provided by CBS2 (see Figure 4.1 ). For visualization there is a example route
provided in figure 4.2. Due to the fact that these waypoints had to be drawn with
manual offset they do not perfectly match the roads in the shown map.

Data Preparation

The collected data was stored in LMDB format, which is optimized for efficiency
but not directly usable by the STEGOmodel. To prepare the data, it was necessary
to read and convert it into a specific format. The LMDB contained both RGB and
semantic segmentation channels. To ensure the process was both fast and memory-
efficient, a function was implemented using CBS2-related data loader classes. This
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Figure 4.1: Map of Town 04 in
CARLA.

Figure 4.2: Visualization of a route for Town
04

function extracted each frame from a driving episode, saving RGB frames as JPEGs
and segmentation frames as PNGs, as required by STEGO, see figure 4.3. It is
important to note that the labels here are only needed for evaluation purposes,
not for training, due to the unsupervised nature of the model.

To streamline the image processing workflow, parallel processing jobs are ini-
tiated based on the provided dataset size. For larger datasets, parallel processing
is employed to speed up the execution by utilizing multiple CPU cores. Addition-
ally, garbage collection is triggered periodically to clear unused memory, preventing
memory leaks and optimizing resource usage. However, for smaller datasets, paral-
lel processing is avoided. This is because the overhead of initializing and managing
parallel tasks can outweigh the benefits when the dataset is small. The overhead
includes the time required to start multiple processes, distribute tasks, and gather
results, which can be significant compared to the time spent on actual process-
ing. As a result, processing small datasets sequentially is more efficient, reducing
the complexity and resource contention that might occur with parallel processing.
Furthermore, error handling mechanisms are implemented to ensure robust pro-
cessing, particularly for test datasets where parallel processing might occasionally
fail. In such cases, the script falls back to sequential processing, ensuring that all
images are processed without interruption

4.2.2 Phase 2: Testing Data Collection

Next to the first data collection with a semi-high resolution, to ensure the training
phase would be accurate enough while still being reasonably fast, there was also a
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Figure 4.3: STEGO directory format for dataset

second data collection that had higher resolution to use for the test segmentation.
Whereas, the resolution for the testing phase was set to 1120 and 560, respec-
tively. The decision for these values is critical as it represents a multiple of the
patch size (and cropping resolution) used in the STEGO model. See the STEGO
methodology for elaboration.

Scenarios & Routes

Where town 4 consists of a variety of routes, conditions, and scenarios, town 10HD
had a simpler layout but offered a high-definition video feed. This meant there
were no predefined scenarios or routes present in the CBS2 assets. Constructing
a scenario and route for a sound driving episode involved leveraging several aspects:

• Weather Conditions: The weather parameters were set to create consistent
and clear environmental conditions to ensure reliable data collection. The
chosen settings (e.g., no cloudiness, precipitation, or fog) provided optimal
visibility and minimal environmental noise.

• Waypoints: A series of waypoints were defined to create a comprehensive
route through Town10HD. These waypoints guided the vehicle along the de-
sired path, covering various areas within the town to capture diverse driving
scenarios. Figure 4.4 visualizes the route by overlaying the waypoints on the
town map.
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• Ego Vehicle: The main vehicle used in the scenario is a Lincoln MKZ 2017,
which starts at specific coordinates and is not on autopilot. This allows for
controlled testing and data collection.

• Other Actors: The scenario includes other vehicles, such as an Audi TT and
a Tesla Model 3, both set on autopilot. These vehicles introduce dynamic
elements to the scenario, simulating realistic traffic conditions.

<?xml version="1.0" encoding="UTF-8"?>
<routes>
<route id="0" town="Town10HD">

<weather
cloudiness="0"
precipitation="0"
precipitation_deposits="0"
wind_intensity="0"
sun_azimuth_angle="0"
sun_altitude_angle="70"
fog_density="0"
fog_distance="0"
wetness="0"

/>
<waypoint pitch="0.0" roll="0.0" x="338.7" y="226.75" yaw="270.0" z="0.0" />
<waypoint pitch="0.0" roll="0.0" x="321.98" y="194.67" yaw="180.0" z="0.0" />
<waypoint pitch="0.0" roll="0.0" x="283.69" y="194.78" yaw="180.0" z="0.0" />
<waypoint pitch="0.0" roll="0.0" x="108.05" y="195.29" yaw="180.0" z="0.0" />
<waypoint pitch="0.0" roll="0.0" x="88.40" y="210.57" yaw="90.0" z="0.0" />
<waypoint pitch="0.0" roll="0.0" x="88.41" y="309.63" yaw="90.0" z="0.0" />
<waypoint pitch="0.0" roll="0.0" x="75.58" y="326.30" yaw="180.0" z="0.0" />
<waypoint pitch="0.0" roll="0.0" x="14.33" y="326.26" yaw="180.0" z="0.0" />
<waypoint pitch="0.0" roll="0.0" x="1.87" y="299.43" yaw="270.0" z="0.0" />
<waypoint pitch="0.0" roll="0.0" x="1.61" y="170.71" yaw="270.0" z="0.0" />
<waypoint pitch="0.0" roll="0.0" x="1.36" y="47.93" yaw="270.0" z="0.0" />

</route>
</routes>

By carefully defining these scenarios, including the specific positions and be-
haviors of each vehicle, it was ensured that the simulation provided a realistic and
controlled environment for data collection. The high-definition video feed from
Town 10HD, combined with the dynamic interaction of multiple vehicles, created
a rich dataset for training and evaluating the stego model.
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Figure 4.4: Route defined by waypoints overlaying Town 10HD map.

4.3 STEGO
The STEGO repository provided models trained on common datasets such as
COCO-Stuff, Cityscapes, and Potsdam, all of which consist of urban environ-
ments. This alignment with urban settings made STEGO a compelling choice
for the chosen dataset. Utilizing these pre-trained models was a beneficial starting
point to understand the model’s mechanics and evaluate its performance in similar
environments.

Although the STEGO repository included a module for training on custom
datasets, it was basic and required significant adjustments to fit the Carla data.
Many sections were either missing or incorrect, necessitating extensive revisions
of the dataset loader, cropping, and training scripts. These modifications were
essential to ensure compatibility and optimal performance with the Carla dataset

4.3.1 Configurations

Before one could start on the dataloading or -cropping, the corresponding config
yaml file needed to be set. The main points to focus on are:

Listing 4.1: Configuration YAML file for STEGO model
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output_root : ’ l ogs ’
pytorch_data_dir : ’/ path/ to /your/data / ’
experiment_name : "custom_experiment_1"
log_dir : " s tego_logs "
azureml_logging : Fa l se
submitting_to_aml : Fa l se

# Loader parameters
num_workers : 32
max_steps : 15000
batch_size : 64

num_neighbors : 7
dataset_name : " d i r e c t o r y "

Used i f dataset_name i s " d i r e c t o r y "
dir_dataset_name : " directory_five_crop_0 .5"
dir_dataset_n_classes : 20

has_labe l s : Fa l se
crop_type : " f i v e "
crop_rat io : 0 . 5
r e s : 200
loader_crop_type : " cent e r "

This configuration file outlines the settings needed for the STEGO model to
process the Carla dataset. Key parameters include the output directory, the num-
ber of workers, the maximum steps, the batch size, and specific details related to
the dataset and cropping methods. Setting these parameters correctly is crucial
for efficient data loading and training processes. Incorrect configurations can lead
to errors that are not always easy to diagnose.

4.3.2 Cropping Utility

The cropping utility provided by the STEGO repository offers a variety of tools
to augment the dataset and improve spatial resolution. These tools are crucial for
enhancing the model’s ability to generalize across different scenarios by providing
diverse and representative data samples. However, working with a custom dataset
introduced specific challenges related to image dimensions and shapes, necessi-
tating modifications to the cropping script to ensure compatibility and optimal
performance.
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Five Crop Utility

The Five Crop utility in the STEGO repository is designed to create augmented
versions of images by generating five distinct crops: four from the corners and one
from the center. This method is particularly useful for increasing the diversity of
the training data without requiring additional raw data. The five crops ensure
that the model is exposed to various parts of the image, helping it to learn more
robust features. Here’s a brief overview of how the Five Crop utility works. For a
visualization see figure 4.5:

• Corner Crops: The utility extracts four smaller images from the corners
of the original image.

• Center Crop: In addition to the corner crops, a crop is taken from the
center of the image.

• Maintaining Aspect Ratio: The crops maintain the aspect ratio of the
original image, which helps in preserving the spatial relationships within the
image.

Figure 4.5: Visualization of the Five Crop utility

Modifications for Custom Dataset

Using the Five Crop utility with the Carla dataset presented unique challenges
due to the specific dimensions and shapes of the images in this dataset. The
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original cropping script in the STEGO repository was designed with standard
datasets in mind, which often have consistent image dimensions and formats. The
Carla dataset, however, had images with different dimensions and formats, leading
to errors and inefficiencies when using the default cropping utility. These issues
included:

• Dimension Mismatches: The Carla images did not always match the
expected input dimensions for the Five Crop utility, resulting in errors during
the cropping process.

• Shape Inconsistencies: Some images had additional channels or metadata
that were not handled by the default script.

To address these issues, significant modifications were made to the cropping
script. The main changes included:

• Dynamic Dimension Handling: The script was updated to dynamically
adjust to the dimensions of the input images, ensuring that the cropping
operations could proceed without errors.

• Shape Normalization: Additional preprocessing steps were introduced to
normalize the shapes of the images, stripping out any unnecessary channels
or metadata and converting the images into a consistent format suitable for
cropping.

Information Loss

While cropping can lead to potential information loss, the Five Crop utility and the
modifications made ensure that diverse and crucial parts of the image are preserved
and utilized. By exposing the model to various perspectives within each image,
the training data becomes more robust. Additionally, the use of larger datasets
and various augmentation techniques further mitigate the risks associated with
information loss, making the approach effective for custom data like the Carla
dataset.

Here the CARLA_COLOR_TO_CLASS is a custom conversion dictionary
that is based on the semantic segmentation label colors provided by the Carla
Documentation. Each color is associated with an object:

Listing 4.2: Carla color conversion
CARLA_COLOR_TO_CLASS = {

(0 , 0 , 0) : 0 , # Unlabe led
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(70 , 70 , 70) : 1 , # Bui ld ing
(100 , 40 , 40) : 2 , # Fence
(55 , 90 , 80) : 3 , # Other
(220 , 20 , 60) : 4 , # Pedes t r ian
(153 , 153 , 153) : 5 , # Pole
(157 , 234 , 50) : 6 , # RoadLine
(128 , 64 , 128) : 7 , # Road
(244 , 35 , 232) : 8 , # Sidewalk
(107 , 142 , 35) : 9 , # Vegeta t ion
(0 , 0 , 142) : 10 , # Vehic l e
(102 , 102 , 156) : 11 , # Wall
(220 , 220 , 0) : 12 , # Tra f f i cS i gn
(70 , 130 , 180) : 13 , # Sky
(81 , 0 , 81) : 14 , # Ground
(150 , 100 , 100) : 15 , # Bridge
(230 , 150 , 140) : 16 , # RailTrack
(180 , 165 , 180) : 17 , # GuardRail
(250 , 170 , 30) : 18 , # Tra f f i cL i g h t
(110 , 190 , 160) : 19 , # S t a t i c
(170 , 120 , 50) : 20 , # Dynamic
(45 , 60 , 150) : 21 , # Water
(145 , 170 , 100) : 22 # Terrain

}

The modification ensures that label images are converted to class colors only
when the ‘cropping‘ flag is set to ‘False‘. This allows the cropping process to work
with the original label images, avoiding potential errors and maintaining label
integrity during cropping. After cropping, adjust the configuration YAML file to
set the dataset path to the cropped dataset before proceeding to the next step(s).

4.3.3 Precompute KNN indices

The STEGO algorithm leverages the concept of k-nearest neighbors (k-NNs) to
enhance the feature consistency and efficiency of the model. The precomputation of
k-NNs is an essential step that significantly contributes to the overall performance
of the segmentation model. This process is detailed in the STEGO repository
within the precompute_knns.py script.

Purpose and Importance

The k-NN precomputation serves several critical purposes:
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• Feature Consistency: Precomputing k-NNs ensures that similar features
are grouped together, facilitating the learning of robust feature representa-
tions. This is vital for achieving high-quality segmentation results.

• Efficiency: Calculating k-NNs for all features on-the-fly during training
or inference would be computationally prohibitive. By precomputing these
neighbors, the algorithm can perform more efficiently, as the necessary data
is readily available.

• Graph Construction: The k-NNs are used to construct a feature graph,
where nodes represent different image regions and edges denote the similarity
between these regions. This graph structure is crucial for the energy-based
optimization process that STEGO employs.

Implementation

The precompute_knns.py script in the STEGO repository handles this precom-
putation. The script follows these steps:

1. Feature Extraction: Using a pre-trained model like DINO, the script ex-
tracts normalized feature vectors from the input images.

2. k-NN Computation: It calculates the pairwise similarities between these
feature vectors using dot products. The top-k nearest neighbors for each
vector are identified and stored.

3. Data Handling: The script supports various datasets and crop types, en-
suring that the k-NNs are computed and cached appropriately for future use.
This caching significantly speeds up the subsequent training and inference
stages.

4.3.4 Training Phase

The training phase in STEGO involves several steps to ensure that the model
learns to segment images effectively. Below is a detailed breakdown of the key
steps and parameters involved:

The training script, train_segmentation.py, orchestrates the training pro-
cess. Here’s a breakdown of its main components and functions:

• Data Loading: The script utilizes the ContrastiveSegDataset class to
load the training and validation datasets. This class supports various aug-
mentations to enhance the training data.
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Model Params Feature Contrastive Params Weights
extra_clusters: 0 pointwise: True neg_inter_weight: 0.75
use_true_labels: False feature_samples: 30 pos_inter_weight: 0.35
use_recalibrator: False neg_samples: 10 pos_intra_weight: 0.75
model_type: "vit_small" aug_alignment_weight: 0.0 neg_inter_shift: 0.30
arch: "dino" correspondence_weight: 1.2 pos_inter_shift: 0.10
use_fit_model: True CRF Params pos_intra_shift: 0.15
dino_feat_type: "feat" crf_weight: 0.0 rec_weight: 0.1
projection_type: "nonlinear" alpha: 0.5 repulsion_weight: 0.05
dino_patch_size: 8 beta: 0.15
granularity: 1 gamma: 0.05
continuous: True w1: 10.0
dim: 64 w2: 3.0
dropout: True shift: 0.00
zero_clamp: True crf_samples: 1000

color_space: "rgb"

Table 4.1: Model Parameters, Feature Contrastive Parameters, and Weights

• Model Initialization: The LitUnsupervisedSegmenter class initializes
the segmentation model. Depending on the architecture specified in the
configuration (e.g., DINO), different feature extraction and segmentation
strategies are used.

• Loss Functions: Several loss functions are employed to guide the training:

– Contrastive Loss: Ensures that similar features are closer together in
the feature space.

– CRF Loss: (if enabled) Enhances the segmentation boundaries using
Conditional Random Fields.

– Reconstruction Loss: Ensures the features can be reconstructed from
the latent space effectively.

• Training Loop: The training loop iterates over the dataset, computing the
losses and updating the model weights using the specified optimizers. It also
logs metrics and checkpoints the model periodically.

• Validation: The model’s performance is evaluated on the validation set at
regular intervals to monitor overfitting and ensure generalization.
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4.4 Evaluation

4.4.1 Metrics

During the training and evaluation of the STEGOmodel, several metrics are logged
to monitor the performance and progress of the model. These metrics are crucial
for understanding how well the model is learning and how effectively it is segment-
ing the images. In the appendix A.1 are the key evaluation metrics denoted, along
with explanations of how they work and what the ideal values would be. By log-
ging and monitoring these metrics, I can gain a comprehensive understanding of
the model’s performance and identify areas that may need improvement. Ideally,
as training progresses, the losses should decrease, and the accuracy and distance
metrics should show favorable trends, indicating that the model is learning effec-
tively and segmenting the images accurately. For the results for these metrics refer
to chapter 5 Results.

4.4.2 Suggested Approaches

Early on, there were issues regarding cluster loss and its accompanying metrics:
e.g., starting below zero, inverse trends, etc. To address these issues, several
approaches were implemented. Although there was no significant change in the
results, the details of these approaches are provided in appendix A.2. For their
reasoning, see Chapter 6.

4.4.3 Real-Time Segmentation

To achieve real-time segmentation of video feeds using the STEGO algorithm,
several approaches and optimizations were explored. This section outlines the
steps taken, the rationale behind each method, and the challenges encountered.

Initial Setup

The STEGO model trained in the previous step was loaded from a checkpoint.
The model was initially configured to run on a GPU to exploit faster computation
times.

# Paths and model loading
dir = "path/to/trained/model"
sav_model = "saved_model.ckpt"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Load the PyTorch model
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model = LitUnsupervisedSegmenter.load_from_checkpoint(join(dir, sav_model)) \
.to(device).eval().half()

Sequential Approaches

For a more elaborate depiction of the code implemented for this section see ap-
pendix.

1. Frame-by-Frame Processing on GPU

• Goal: Utilize GPU for faster processing by handling each video frame
individually.

• Method: Each frame was processed sequentially using the GPU.

• Issue: Encountered CUDA out of memory errors due to the high mem-
ory demand of processing high-resolution video frames individually.

2. Frame-by-Frame Processing on CPU

• Goal: Circumvent GPU memory limitations by processing frames on
the CPU.

• Method: The model and frame processing were moved to the CPU.

• Issue: Processing on the CPU was significantly slower than on the
GPU, rendering real-time performance unfeasible.

3. Batch Processing on GPU

• Goal: Improve memory management and reduce overhead by process-
ing multiple frames in batches.

• Method: Frames were collected into batches and processed collectively
on the GPU.

• Issue: Continued to experience CUDA out of memory errors, indicating
that the batch size was still too large for the available GPU memory.

4. Mixed Precision and Smaller Batch Size

• Goal: Reduce memory usage further and fit within GPU memory con-
straints.

• Method:

– Implemented mixed precision using torch.cuda.amp.
– Reduced the batch size.
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• Tools: torch.cuda.amp for mixed precision.

• Outcome: Improved memory management and reduced CUDA out of
memory errors, but adjustments were necessary based on the GPU’s
memory capacity.

5. Final Implementation

• Approach: The final implementation combined batch processing with
mixed precision and efficient memory management techniques. Specific
adjustments included:

– Path and Model Loading: The model was loaded on the GPU
and configured to run in half precision.
device = torch.device("cuda" if torch.cuda.is_available() \
else "cpu")

model = LitUnsupervisedSegmenter.load_from_checkpoint(join(dir, \
sav_model)).to(device).eval().half()

– Batch Processing: Frames were processed in batches with a re-
duced batch size of 4.
BATCH_SIZE = 4
def process_batch_with_stego(frames, model, use_linear_probe=True):

# Batch processing implementation
...

– Real-Time Display: Processed frames were displayed side-by-
side with the original frames for real-time visualization.
def display_segmented_frames():

while True:
frame_pair = segmented_frame_queue.get()
if frame_pair is None:

break
original_frame, segmented_frame = frame_pair
combined_frame = np.hstack((original_frame, \
segmented_frame)).astype(np.uint8)

cv2.imshow(’Segmented Frame’, combined_frame)
if cv2.waitKey(1) & 0xFF == ord(’q’):

break
cv2.destroyAllWindows()
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– Queue Management: Utilized queues to manage frames effi-
ciently between reading, processing, and displaying stages.
frame_queue = Queue(maxsize=100)
segmented_frame_queue = Queue(maxsize=100)

def read_frames():
# Reading frames from video
...

def process_frames():
# Processing frames in batches
...

Steps to Monitor and Manage GPU Resources

• Use nvidia-smi: Monitor GPU usage in real-time to understand memory
usage and identify bottlenecks.

• Reduce Batch Size: Adjust batch size to fit within the available GPU
memory.

• Mixed Precision: Ensure mixed precision is correctly enabled to utilize
the reduced memory usage.

Testing Video

For the segmented test video please refer to the repository corresponding to this
thesis. For a snippet see appendix the example segmented video on the repository
of this thesis.
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Chapter 5

Results

The results of the training phase, and the corresponding evaluation metrics, the
segmented testing video and the real-time segmentation are presented here.

5.1 Training Losses
The provided images and graphs from the evaluation process include the following:

5.1.1 Segmentation with Labels

The images in figure 5.1 show the original frames, ground truth labels, linear probe
predictions, and cluster probe predictions.

Visual inspection of these images reveals that STEGO can segment different
objects and scenes somewhat accurately. However, the linear probe classification
yields better results than the cluster probe classification, as indicated by the more
accurate color and label designations in the linear probe. The cluster probe, on
the other hand, shows some incorrect color/label assignments. It is important
to note that these images are snapshots representing intermittent progress at a
specific epoch/step. The overall segmentation quality is more visually coherent in
the full test segmentation video, where the distinctions between segmented objects
(in one image/frame) are clearer. To paint a better picture a segmented (whole)
image is shown in figure 5.2 and 5.3. The former showing remarkable performance
in segmenting the objects in an image while also classifying them correctly using
the linear classifier (lower left: linear probe, upper right: cluster probe). You can
clearly see the cars with proper outline as well as correct color label. While the
cluster probe segments in a similar fashion, the (in)ability to correctly assign the
color label to these segments is a concern that should be looked into for future
work. See section 6 for tried methods and evaluation. The latter figure depicts that
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Figure 5.1: Segmented Training snippet with labels

Figure 5.2: Zoomed in Segmented snippet close by

after a few ’meter’ in front of the car the model loses segmentation performance.
A possible bottleneck could be the resolution, as fewer pixels present means less
distinction.
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Figure 5.3: Zoomed in Segmented snippet

5.1.2 Loss Metrics

The loss graphs illustrate the training and evaluation loss over iterations for various
components, providing insight into the model’s optimization process.

• loss/cluster: This loss behaves as expected for a loss function, generally
decreasing over time. However, it starts below zero, which is unusual and
might indicate an initial misconfiguration in the cluster center settings or
the normalization process.

• loss/linear: The linear loss shows a decreasing trend but with significant
oscillations. These oscillations suggest that the model parameters are un-
dergoing substantial adjustments, which might be a result of high learning
rates or the complexity of the data.

• loss/neg_inter: This loss component spikes initially but gradually de-
creases over time. The initial spike might be due to the model adjusting
to the inter-class variance, and the subsequent decrease indicates improved
separation between different classes.

• loss/pos_inter: The positive inter-class loss decreases over time but with
heavy oscillations. Starting below zero, this behavior might again point to
initial configuration issues or challenges in maintaining inter-class compact-
ness.

• loss/pos_intra: Starting below zero and exhibiting slight decreases with
heavy oscillations, this loss suggests difficulties in achieving intra-class com-
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(a) Cluster loss, Linear loss, Negative
Inter-class (neg_inter) loss, and Posi-
tive Inter-class (pos_inter) loss.

(b) Positive Intra-class (pos_intra) loss,
Reconstruction (Rec) loss, and Total
loss.

Figure 5.4: Loss Metrics showing the training and evaluation loss over iterations
for different loss components.

pactness. The heavy oscillations could be due to the variability in how
different instances of the same class are being clustered.

• loss/rec: The reconstruction loss starts below zero but follows a typical
decreasing trend. This indicates that the model is progressively better at
reconstructing the input data, despite the unusual initial negative values.

• loss/total: The total loss is a combination of all the above components, inte-
grating their behaviors. It reflects the overall optimization process, showing
how the model is balancing various aspects of the segmentation task.

The presence of losses starting below zero could suggest an issue with the initial
setup of the model, such as incorrect initialization of cluster centers or improper
normalization. Addressing these initial settings might lead to more stable and
expected loss behaviors throughout the training process.

5.1.3 Compactness Deviation (CD) Metrics

The CD metrics for negative inter-class, positive inter-class, and positive intra-class
deviations show the variance in compactness of the feature clusters.

The observed trends are as follows:

• cd/neg_inter: This metric shows an initial spike up, followed by a quick
decrease over time with some oscillation. The initial spike indicates a large
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Figure 5.5: Compactness Deviation (CD) Metrics showing the variance in feature
cluster compactness.

variance in the inter-class distances early in the training process. The sub-
sequent decrease suggests that the model is becoming better at separating
different classes as training progresses. The minor oscillations indicate on-
going adjustments in cluster separation.

• cd/pos_inter: This metric increases over time with a decreasing rate. Ide-
ally, one would expect this value to decrease, indicating that features within
the same class are becoming more compact and distinct from each other. The
observed increase suggests that features within the same class are becoming
more spread out, which is not desirable for effective clustering.

• cd/pos_intra: Similar to the positive inter-class deviation, this metric
also increases over time with a decreasing rate. Again, this is not a desirable
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trend as it indicates that features within the same class are becoming less
compact. This can lead to poor intra-class compactness and potentially
worse segmentation performance.

The increasing trends in cd/pos_inter and cd/pos_intra are particularly
concerning as they suggest that the model is not effectively clustering features
within the same class. This could be due to several factors, including improper
initialization, inadequate feature learning, or issues with the loss function’s ability
to enforce compactness. Addressing these issues might involve re-evaluating the
initialization of cluster centers, modifying the training process, or adjusting the
loss functions to better enforce intra-class compactness.

Figure 5.6: Test Metrics showing accuracy and mean Intersection over Union
(mIoU) for cluster and linear probes.
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5.1.4 Test Metrics

Accuracy and mean Intersection over Union (mIoU) for both cluster and linear
probes are presented in the test metrics.

The test metrics provide valuable insights into the model’s performance during
training. The observed trends for each metric are as follows:

• cluster/accuracy: This metric shows a peak around 1,000 steps, after
which it decreases quickly to an all-time low of 48%. It then rises to 53%
at step 5,000, followed by another decrease to 50% at step 6,000. After this,
the accuracy slowly increases. This fluctuation indicates instability in the
model’s performance in terms of cluster accuracy, possibly due to changes in
cluster assignments and adjustments during training.

• cluster/mIoU: The mean Intersection over Union (mIoU) for clusters slowly
increases over time, with occasional significant dips. It stabilizes around a
value of 19 towards the end of the training. The overall increasing trend is
positive, indicating improved segmentation performance, but the dips suggest
intermittent issues with cluster assignments.

• linear/accuracy: The linear accuracy increases with a decreasing rate until
step 5,000, reaching 86%. After this peak, it decreases slightly to 85.8% and
then oscillates around this value for the remainder of the training. This
behavior indicates that the linear probe achieves stable and high accuracy
relatively early in the training process, with minor fluctuations around a high
value.

• linear/mIoU: The mean Intersection over Union (mIoU) for the linear
probe follows a similar trend to the linear accuracy, peaking at a value of
34.2. The trend shows an initial increase with a decreasing rate, indicat-
ing that the linear probe effectively learns to segment the images with high
precision early on, with some minor fluctuations.

The observed trends suggest that while the linear probe demonstrates more
stable and higher performance in terms of both accuracy and mIoU, the cluster
probe experiences more variability and lower overall performance. The initial
peak and subsequent fluctuations in cluster accuracy might be due to the dynamic
nature of clustering during training, where cluster centers are adjusted frequently,
leading to temporary instability. In contrast, the linear probe benefits from a
more straightforward supervised learning approach, resulting in more consistent
performance.
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5.2 Summary of Findings
In summary, the evaluation of the segmentation method yields the following key
insights:

• Visual Segmentation Quality: The visual inspections indicate that the
linear probe classification consistently provides more accurate and reliable
segmentation results compared to the cluster probe. The linear probe’s color
and label assignments are more precise, highlighting its effectiveness in seg-
menting and classifying objects correctly.

• Training Losses: The analysis of the loss metrics shows expected decreasing
trends for most components, though some losses start below zero, indicating
potential issues with initial model setup or normalization processes. Oscil-
lations in the linear and inter-class losses suggest adjustments in the model
parameters, possibly due to high learning rates or complex data.

• Compactness Deviation Metrics: The CD metrics reveal that the model
struggles with achieving intra-class compactness and inter-class separation,
as indicated by the increasing trends in cd/pos_inter and cd/pos_intra.
These trends suggest potential issues with feature clustering that require
further investigation and adjustment. The cluster loss issues present also
affect these metrics.

• Test Metrics: The test metrics show that while the linear probe achieves
high and stable performance in terms of accuracy and mIoU, the cluster
probe exhibits more variability and lower overall performance. The initial
fluctuations in cluster accuracy highlight the dynamic nature of clustering
during training.

5.2.1 Overall Effectiveness:

The results indicate that the method, particularly the linear probe, is effective in
segmenting and classifying objects in images with high accuracy and reliability.
The linear probe’s performance demonstrates the method’s potential for practi-
cal applications, despite the noted issues with the cluster probe and certain loss
metrics. Addressing the identified challenges could further enhance the method’s
stability and effectiveness.
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5.3 Real-Time Segmentation
While the STEGO algorithm demonstrates impressive results in unsupervised se-
mantic segmentation, achieving real-time performance remains challenging due to
its computational intensity, post-processing requirements, and hardware limita-
tions. Further optimizations, both algorithmic and hardware-based, are necessary
to bridge the gap towards real-time applications.

The implementation of real-time video segmentation using the STEGO algo-
rithm yielded significant insights and performance improvements through various
approaches. The results from each method are summarized below.

Frame-by-Frame Processing on GPU

• Performance: Initial attempts to process each video frame sequentially on
the GPU demonstrated fast processing times for individual frames.

• Issue: However, this approach encountered CUDA out of memory errors
due to the high memory demand when processing high-resolution frames.

Frame-by-Frame Processing on CPU

• Performance: Shifting the processing to the CPU circumvented GPU mem-
ory limitations but resulted in significantly slower processing times.

• Issue: This method was not feasible for real-time performance, as the CPU
could not handle the computational load efficiently.

Batch Processing on GPU

• Performance: Processing frames in batches aimed to improve memory man-
agement and reduce overhead.

• Issue: Despite this, CUDA out of memory errors persisted, indicating the
batch size was too large for the available GPU memory.

Mixed Precision and Smaller Batch Size

• Performance: Implementing mixed precision with torch.cuda.amp and
reducing the batch size improved memory management.

• Outcome: This approach successfully reduced CUDA out of memory errors,
though careful adjustments were necessary based on the GPU’s memory
capacity.
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Final Implementation

• Batch Processing with Mixed Precision: The final implementation uti-
lized batch processing combined with mixed precision and efficient memory
management techniques to achieve stable performance without memory is-
sues.

• Real-Time Display: Processed frames were displayed side-by-side with the
original frames, enabling real-time visualization and verification of segmen-
tation results.

• Queue Management: Queues were employed to efficiently manage frames
between reading, processing, and displaying stages, ensuring smooth real-
time processing.

• Performance: This approach improved segmentation performance and han-
dled the video feed more efficiently with the available GPU resources, but
real-time segmentation was not fully achieved.
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Chapter 6

Discussion/Future Work

This chapter provides a comprehensive discussion of the results presented in the
previous sections, reflecting on the effectiveness of the methodology and offer-
ing insights into potential improvements. The primary focus is on evaluating
the performance of the STEGO algorithm for real-time semantic segmentation
in autonomous driving scenarios simulated using the CARLA environment. Key
aspects include data collection, training outcomes, and real-time segmentation
performance.

6.1 Data Collection and Preparation
The data collection process was crucial in ensuring the robustness of the STEGO
network. By leveraging the CARLA simulator, we were able to generate diverse
datasets that mimic real-world driving conditions. The use of Town 04 for training
provided a rich variety of environments, including urban, highway, and outdoor
scenes, which were instrumental in training a model capable of handling diverse
driving scenarios. However, issues with augmentation settings in the initial data
collection led to faulty data, necessitating a meticulous logging function to ensure
the integrity of the dataset.

The transition from LMDB format to the specific format required by the
STEGO model posed significant challenges. The implementation of a function to
convert and preprocess the data, along with parallel processing for larger datasets,
proved effective in managing computational resources. This process included dy-
namically adjusting to image dimensions, normalizing shapes, and ensuring effi-
cient memory usage through garbage collection and error handling mechanisms.
These steps ensured the integrity and usability of the data, but highlight an area
for potential improvement, particularly in automating and optimizing data con-
version processes.
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6.2 Training Outcomes
The training phase of the STEGO network revealed several key insights:

• Loss Metrics: The loss metrics provided a detailed view of the model’s
optimization process. While most loss components behaved as expected,
starting below zero for several metrics (e.g., cluster loss, positive inter-class
loss) suggested issues with initial settings or normalization processes. These
anomalies need to be addressed to stabilize the training process from the
outset. Possbible issues could also orginate from the precompute of the knn
indices, where the label color classes are incorrect handled.

• Compactness Deviation (CD) Metrics: The CD metrics showed trends
that were not entirely favorable. While negative inter-class deviation de-
creased over time, both positive inter-class and intra-class deviations in-
creased, indicating that features within the same class became more spread
out over time. This spread suggests that the model struggled to maintain
compact clusters, affecting segmentation performance. Future work could in-
volve refining the initialization of cluster centers and enhancing loss functions
to enforce better intra-class compactness.

• Test Metrics: The test metrics revealed a clear disparity between the clus-
ter and linear probes. The linear probe demonstrated higher and more stable
performance in both accuracy and mIoU, while the cluster probe performed
poorly, indicating significant room for improvement in the clustering ap-
proach. This suggests that the clustering method requires further refinement
and possibly the integration of more sophisticated clustering techniques.

6.3 Approaches for Cluster Issues

Several approaches were attempted to address the issues with the cluster
loss, but they did not result in significant improvements. Here, I discuss the
impact and interpretation of each approach, explained in appendix A.2.

6.3.1 L2 Regularization

L2 regularization was applied to prevent overfitting by adding a penalty to
the loss function proportional to the sum of the squared values of the model
parameters. While L2 regularization is a standard technique to prevent over-
fitting, in this case, it did not yield significant improvements in the cluster
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loss. This could be due to the specific nature of the clustering problem where
the regularization strength might need further tuning. Additionally, the reg-
ularization may not address the core issues of clustering dynamics in the
feature space.

6.3.2 Warm-Up Stage for Cluster Loss

A warm-up stage was implemented to gradually increase the influence of the
cluster loss during the initial training steps. This was expected to stabi-
lize the training process by allowing the model to learn robust features first.
However, the warm-up approach did not lead to significant improvements,
suggesting that the problem might lie in the inherent difficulty of the clus-
tering task or the specific implementation of the cluster loss. Future work
could explore different warm-up durations or more gradual increases in the
cluster loss weight.

6.3.3 Cluster Initialization Methods

Different initialization strategies, including Xavier and uniform initialization,
were tested for the cluster centroids. These methods aimed to find a better
starting point for the clustering process. Despite these efforts, no significant
improvement was observed, indicating that the initialization method alone
may not be sufficient to enhance clustering performance. This suggests the
need for more sophisticated initialization strategies or adaptive methods that
can dynamically adjust cluster centers during training.

6.3.4 Positive Offset in Cluster Loss

Adding a positive offset to the cluster loss was intended to prevent initial loss
values from being too small, thereby promoting better gradient flow. Despite
this adjustment, the results did not improve significantly. This might be due
to the offset not being large enough to make a meaningful impact, or because
the issue lies deeper in the loss function’s formulation, knn precomputation
or the clustering mechanism itself. Further experimentation with different
offset values or alternative formulations could be beneficial.
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6.3.5 Entropy-Based Loss Function

An entropy-based loss function was implemented to encourage a more uni-
form distribution of cluster assignments, preventing collapse to a few clusters.
Although theoretically sound, this approach initially resulted in NaN values
for the cluster loss, indicating numerical instability or implementation is-
sues. This highlights the challenge of implementing entropy-based methods
in practice. Future work should focus on stabilizing this loss function, po-
tentially through techniques like gradient clipping, regularization, or better
numerical handling.

6.3.6 Future Application

To improve clustering performance and overall segmentation quality, future
work should consider the following areas:

– Refinement of Loss Functions: Further refinement and testing of
loss functions, particularly entropy-based and other advanced loss for-
mulations, to achieve more stable and effective training.

– Advanced Initialization Techniques: Exploring more advanced ini-
tialization techniques, potentially leveraging pre-trained models or data-
driven initialization strategies.

– Enhanced Data Augmentation: Improving data augmentation tech-
niques to ensure better feature learning and generalization.

– Regularization and Optimization: Tuning regularization parame-
ters and optimization techniques to better suit the specific challenges
of clustering in semantic segmentation.

– Integration of Sophisticated Clustering Methods: Integrating
more sophisticated clustering methods, such as spectral clustering or
graph-based clustering approaches, to enhance cluster quality.

By addressing these areas, future iterations of the STEGO algorithm can
achieve better clustering performance and overall improvements in semantic
segmentation tasks.

6.4 Real-Time Segmentation Performance
Achieving real-time segmentation was a critical, although secondary, goal of this
research. The initial goal was to achieve a somewhat accurate unsupervised seg-
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mentation. Several approaches were tested, each with its own set of challenges and
outcomes:

• Frame-by-Frame Processing: Both GPU and CPU approaches for pro-
cessing frames individually faced significant limitations. The GPU approach
was hindered by memory constraints, leading to CUDA out of memory er-
rors, while the CPU approach was too slow for real-time applications.

• Batch Processing: Batch processing on the GPU showed promise in man-
aging memory more effectively, but still encountered memory limitations with
larger batch sizes. The introduction of mixed precision processing helped
mitigate some of these issues by reducing memory usage, but required care-
ful management of batch sizes to avoid memory overflows.

• Final Implementation: Despite efforts to combine batch processing, mixed
precision, and efficient queue management, the desired real-time segmenta-
tion performance was not achieved. This persistent challenge suggests that
the bottleneck could also lie elsewhere, possibly in the algorithm’s inherent
complexity or in the need for further optimization at the hardware level, or
the constraints opencv places on the system.

6.5 Reflections and Improvements
• Initialization and Normalization: Addressing the initial negative values

in loss metrics through better initialization and normalization techniques
could stabilize the training process and improve convergence rates.

• Cluster Compactness: Enhancing the clustering approach to maintain
tighter intra-class compactness and better inter-class separation is critical.
This could involve exploring alternative clustering algorithms or incorporat-
ing additional constraints in the loss functions to enforce compactness.

• Real-Time Processing: The failure to achieve real-time performance indi-
cates a need for developing more efficient algorithms that inherently reduce
computational and memory overhead. Future work could focus on advanced
parallel processing techniques or hardware acceleration to meet the stringent
requirements of real-time applications.

• Data Augmentation: Ensuring the integrity and diversity of training data
is essential. Automating the data collection and preprocessing pipeline to
handle different environments and scenarios more efficiently could enhance
the model’s robustness and generalization capabilities.

51



• Algorithmic Refinements: Exploring newer architectures and methodolo-
gies that balance accuracy and efficiency better than the current implemen-
tation could lead to more robust real-time segmentation models. Techniques
such as lightweight neural networks, model pruning, and quantization could
be investigated to reduce computational demands.

6.6 Future Work
The methodology and results presented in this thesis lay a strong foundation for
real-time semantic segmentation in autonomous driving applications. Although
the current implementation shows promising results, further refinements and op-
timizations are essential to fully harness the potential of these technologies in
real-world scenarios. The insights gained from this research open avenues for fu-
ture advancements, contributing to the development of more accurate, efficient,
and reliable autonomous driving systems. One potential direction for future work
is to implement and compare a different segmentation model. An initial setup
for an alternative model was explored, but time constraints prevented achieving
a workable outcome. Details of this explored unsupervised segmentation model
can be found in the readme section in the appendix ?? and on the repository.
While there is an initial implementation, no tests or results have been conducted
yet. Another direction could be to further fine-tune the current approach and then
train the driving agent to evaluate improvements in the self-driving environment
with that implementation. This was beyond the scope of this thesis, but if given
the opportunity, I would like to continue working on this approach.
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Chapter 7

Conclusion

In this thesis, the application of unsupervised semantic segmentation for au-
tonomous driving cars was explored, specifically focusing on leveraging the CARLA
simulator and state-of-the-art segmentation algorithms. This approach integrated
techniques from existing methods like Learning by Cheating (LBC), World on Rails
(WoR), and Cheating by Segmentation (CBS), with enhancements for real-time
performance and improved accuracy.

This research demonstrated the feasibility of using unsupervised learning tech-
niques for semantic segmentation in dynamic driving environments. The imple-
mentation of the Self-Supervised Transformer with Energy-based Graph Optimiza-
tion (STEGO) showed promising results, particularly when combined with ad-
vanced data collection and preprocessing strategies. However, achieving real-time
performance remains a significant challenge due to the computational intensity of
the algorithm and the need for further optimization.
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Appendix A

Appendix A

A.1 Methodology Metrics

A.1.1 Loss Components

• Total Loss: The sum of all individual losses. It represents the overall objec-
tive that the model is optimizing. A lower total loss indicates better overall
performance. Ideally, this value should decrease and stabilize as training
progresses.

• Linear Probe Loss: This loss measures how well the features can predict
the actual labels using a linear classifier. It is computed using a cross-
entropy loss function. A lower linear probe loss indicates better predictive
performance of the linear probe. Ideally, this value should decrease steadily.

• Cluster Loss: This loss measures the effectiveness of the clustering probe
in grouping similar features together. A lower cluster loss indicates better
clustering performance. Ideally, this value should decrease and stabilize.

• Contrastive Correlation Losses:

– Positive Intra-cluster Loss: Measures the distance between features
within the same cluster. Lower values indicate that the features within
the same cluster are closer together.

– Positive Inter-cluster Loss: Measures the distance between features
in different clusters. Higher values indicate that the features in different
clusters are well-separated.

– Negative Inter-cluster Loss: Measures the distance between nega-
tive pairs (features that should not be close). Lower values indicate
better separation of negative pairs.
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A.1.2 Accuracy Metrics

• Mean Intersection over Union (mIoU): mIoU is a common evaluation
metric for image segmentation tasks. It calculates the intersection over union
for each class and then averages it. A higher mIoU indicates better segmen-
tation performance. Ideally, this value should increase as training progresses.

• Pixel Accuracy: The ratio of correctly classified pixels to the total number
of pixels. A higher pixel accuracy indicates better segmentation performance.
Ideally, this value should also increase as training progresses.

• Cluster Accuracy: The accuracy of the clustering probe in assigning the
correct labels to the features. A higher cluster accuracy indicates better clus-
tering performance. Ideally, this value should increase as training progresses.

A.1.3 Distance Metrics

• Intra-cluster Distance (cd/pos_intra): Measures the average distance
between features within the same cluster. Lower values indicate tighter clus-
tering of similar features. Ideally, this value should decrease and stabilize.

• Inter-cluster Distance (cd/pos_inter): Measures the average distance
between features in different clusters. Higher values indicate better sep-
aration between different clusters. Ideally, this value should increase and
stabilize.

• Negative Inter-cluster Distance (cd/neg_inter): Measures the aver-
age distance between negative pairs. Lower values indicate better separation
of negative pairs. Ideally, this value should decrease and stabilize.

A.1.4 Visual Metrics

• Label Frequency Histogram: A visual representation of the frequency of
each predicted label. It helps in understanding the distribution of labels and
identifying any imbalances.

• Confusion Matrix: A heatmap showing the true labels versus the predicted
labels. It helps in understanding which classes are being confused with each
other.
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A.2 Approaches Solving CLuster Loss Problem

A.2.1 Regularization Techniques

a L2 regularization was employed to prevent overfitting by adding a penalty to the
loss function proportional to the sum of the squared values of the model parame-
ters. This technique helps in discouraging the model from learning overly complex
or large weights.

Figure A.1: L1- and L2-regularization

A.2.2 Warm-Up Stage for Cluster Loss

A warm-up stage was used for the cluster loss to gradually increase its influence
over the initial training steps, stabilizing the training process. This method aims
to allow the model to learn more robust features before applying the full cluster
loss.

Listing A.1: Warm-Up Stage for Cluster Loss
s e l f . warmup_steps = 1000

i f s e l f . g loba l_step < s e l f . warmup_steps :
warmup_factor = s e l f . g loba l_step / s e l f . warmup_steps

else :
warmup_factor = 1 .0

c l u s t e r_ lo s s , c lus te r_probs = s e l f . c luster_probe ( detached_code , None )
c l u s t e r_ l o s s ∗= warmup_factor
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A.2.3 Cluster Initialization Methods

Different initialization strategies for the cluster centroids were tested, including
Xavier and uniform initialization. These strategies were implemented to explore
different initial conditions for the clusters, aiming for better convergence.

Listing A.2: Cluster Initialization Methods
i f s e l f . init_method == ’ xav i e r ’ :

x av i e r_ in i t = torch . empty ( s e l f . n_classes , s e l f . dim)
torch . nn . i n i t . xavier_uniform_ ( xav i e r_ in i t )
s e l f . c l u s t e r s . copy_( xav i e r_ in i t )

e l i f s e l f . init_method == ’ uniform ’ :
uni form_init = torch . rand ( s e l f . n_classes , s e l f . dim ) . uniform_(−1 , 1)
s e l f . c l u s t e r s . copy_( uni form_init )

A.2.4 Positive Offset in Cluster Loss

A positive offset was added to the cluster loss to ensure that the initial loss values
were not too small, promoting better gradient flow during the initial training
phase. This approach aims to prevent the cluster loss from starting too low and
not contributing effectively to the optimization process.

Listing A.3: Positive Offset in Cluster Loss
c l u s t e r_ lo s s , c lus te r_probs = s e l f . c luster_probe ( detached_code , None )
c l u s t e r_ l o s s += 1e−3 # Pos i t i v e o f f s e t

A.2.5 Entropy-Based Loss Function

A problem issued on the STEGO repo page was about the cluster loss calculation
and how it should actually follow the entropy loss function. See Figure A.2. An
entropy-based loss function is used to encourage a more uniform distribution of
cluster assignments, preventing collapse to a few clusters. This loss function aims
to distribute the assignments more evenly across clusters, improving clustering
quality.

Listing A.4: Entropy-Based Loss Function
def entropy_loss ( c lus te r_probs ) :

return −torch .mean( torch .sum( c lus te r_probs ∗ torch . l og ( c lus te r_probs + 1e−10) , dim=1))

c l u s t e r_ lo s s , c lus te r_probs = s e l f . c luster_probe ( detached_code , None )
c lus te r_entropy_los s = entropy_loss ( c lus te r_probs )
l o s s += clus te r_entropy_loss
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Figure A.2: Entropy Loss problem issued by user

A.3 Competition and Contribution to this work
LBC
|-- Privileged Agent (Teacher)
| |-- Access to BEV semantic segmentation images
| |-- Learns optimal actions
| |-- Predicts waypoints
|
|-- Sensorimotor Agent (Student)

|-- Access to forward-facing RGB images
|-- Learns to imitate the teacher
|-- Operates without privileged BEV information

CBS
|-- Adaptation of LBC
| |-- Uses forward-facing camera images instead of BEV images
| |-- Practical for real-world scenarios
|
|-- Teacher-Student Architecture
| |-- Teacher with BEV semantic segmentation
| |-- Student with forward-facing RGB images
|
|-- Performance

|-- Maintains LBC advantages with practical sensory inputs
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CBS2
|-- Extension of CBS
| |-- Optimized data collection parameters
| | |-- Number of frames
| | |-- Steering noise
| | |-- Traffic light detection distance
| |-- Advanced perception modules
| |-- Pyramid Pooling Module (PPM)
| |-- Feature Pyramid Network (FPN)
|
|-- Teacher-Student Architecture
| |-- Teacher with BEV semantic segmentation
| |-- Student with forward-facing RGB images
|
|-- Performance

|-- Improved lane-keeping and reduced infractions

WoR
|-- Model-Based Reinforcement Learning
| |-- Ego-Vehicle Model
| | |-- Predicts next state based on current state and action
| | |-- Simulates vehicle behavior without environmental interaction
| |-- World Model
| |-- Pre-determined environment states
| |-- Independent of the agent’s actions
|
|-- Q-Values
| |-- Computed using predefined reward function
| |-- Rewards lane-keeping
| |-- Penalizes collisions and traffic infractions
|
|-- Performance

|-- Higher driving score on CARLA leaderboard
|-- Less data usage
|-- Excellent performance on NoCrash benchmark

Your Thesis
|-- Builds on LBC
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| |-- Uses teacher-student architecture
| |-- Introduces semantic segmentation to the student agent
|
|-- Advances CBS and CBS2
| |-- Optimized data collection
| |-- Advanced perception techniques
| |-- Real-time segmentation
|
|-- Incorporates WoR’s Efficiency

|-- Model-based insights
|-- Efficient data handling and training

A.4 Real-Time Segmentation Code

import cv2
import torch
import torch . nn . f un c t i o n a l as F
import numpy as np
import thread ing
from queue import Queue
from tra in_segmentat ion import LitUnsupervisedSegmenter
from u t i l s import get_transform
from c r f import dense_crf
from os . path import j o i n
from PIL import Image

# Paths and model l oad ing
dir = "path/ to /model/ d i r e c t o r y /"
sav_model = "saved_model . ckpt "
dev i ce = torch . dev i c e ( "cuda" i f torch . cuda . i s_ava i l ab l e ( ) else "cpu" )

# Load the PyTorch model
model = LitUnsupervisedSegmenter . load_from_checkpoint ( j o i n (dir , sav_model ) ) . to ( dev i ce ) . eval ( ) . h a l f ( )

vid_path = " . . / . . / t e s t ing_v ideos /"
video = "vid_town10HD_small_crash .mp4"
video_path = j o i n ( vid_path , v ideo )

# Frame queue f o r rea l−t ime proce s s ing
frame_queue = Queue ( maxsize=100)
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segmented_frame_queue = Queue ( maxsize=100)

# Batch s i z e f o r p roce s s ing frames
BATCH_SIZE = 4
r e s i z e_r e s = 448

def process_batch_with_stego ( frames , model , use_linear_probe=True ) :
o r i g ina l_he ight , or ig ina l_width = frames [ 0 ] . shape [ : 2 ]

# Resize and transform frames f o r segmentat ion
res i zed_frames = [ cv2 . r e s i z e ( frame , ( r e s i z e_re s , r e s i z e_r e s ) , i n t e r p o l a t i o n=cv2 .INTER_NEAREST) for frame in f rames ]
trans form = get_transform ( r e s i z e_re s , False , " c en t e r " )
imgs = torch . s tack ( [ t rans form ( Image . fromarray ( res ized_frame ) ) . to ( dev i c e ) . h a l f ( ) for res ized_frame in res i zed_frames ] )

with torch . no_grad ( ) :
codes = model ( imgs )
codes_f l ipped = model ( imgs . f l i p ( dims = [3 ] ) )
codes = ( codes + codes_f l ipped . f l i p ( dims = [3 ] ) ) / 2
codes = F. i n t e r p o l a t e ( codes , imgs . shape [ −2 : ] , mode=’ b i l i n e a r ’ , a l i gn_corner s=False )

segmented_frames = [ ]
for img , code in zip ( imgs , codes ) :

i f use_linear_probe :
l inear_probs = torch . log_softmax (model . l inear_probe ( code . unsqueeze ( 0 ) ) , dim=1). cpu ( )
seg_pred = dense_crf ( img . cpu ( ) . f loat ( ) , l inear_probs [ 0 ] . f loat ( ) ) . argmax (0)

else :
c lus te r_probs = model . c luster_probe ( code . unsqueeze ( 0 ) , 2 , log_probs=True ) . cpu ( )
seg_pred = dense_crf ( img . cpu ( ) . f loat ( ) , c lus te r_probs [ 0 ] . f loat ( ) ) . argmax (0)

segmented_frame = model . label_cmap [ seg_pred ] . astype (np . u int8 )
segmented_frame = cv2 . cvtColor ( segmented_frame , cv2 .COLOR_BGR2RGB)
segmented_frame = cv2 . r e s i z e ( segmented_frame , ( or ig ina l_width , o r i g i na l_he i gh t ) , i n t e r p o l a t i o n=cv2 .INTER_NEAREST)
segmented_frames . append ( segmented_frame )

return segmented_frames

def read_frames ( ) :
cap = cv2 . VideoCapture ( video_path )
while True :

ret , frame = cap . read ( )

63



i f not r e t :
frame_queue . put (None )
break

frame_queue . put ( frame )
cap . r e l e a s e ( )

def process_frames ( ) :
while True :

batch_frames = [ ]
while len ( batch_frames ) < BATCH_SIZE:

frame = frame_queue . get ( )
i f frame i s None :

break
batch_frames . append ( frame )

i f not batch_frames :
segmented_frame_queue . put (None )
break

segmented_frames = process_batch_with_stego ( batch_frames , model )
for or ig ina l_frame , segmented_frame in zip ( batch_frames , segmented_frames ) :

segmented_frame_queue . put ( ( or ig ina l_frame , segmented_frame ) )

def display_segmented_frames ( ) :
while True :

frame_pair = segmented_frame_queue . get ( )
i f frame_pair i s None :

break
or ig ina l_frame , segmented_frame = frame_pair
combined_frame = np . hstack ( ( or ig ina l_frame , segmented_frame ) ) . astype (np . u int8 )
cv2 . imshow( ’ Segmented␣Frame ’ , combined_frame )
i f cv2 . waitKey (1 ) & 0xFF == ord ( ’ q ’ ) :

break
cv2 . destroyAllWindows ( )

reader_thread = thread ing . Thread ( t a r g e t=read_frames )
processor_thread = thread ing . Thread ( t a r g e t=process_frames )
disp lay_thread = thread ing . Thread ( t a r g e t=display_segmented_frames )

reader_thread . s t a r t ( )
processor_thread . s t a r t ( )
d isp lay_thread . s t a r t ( )
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reader_thread . j o i n ( )
processor_thread . j o i n ( )
disp lay_thread . j o i n ( )

print ( "Real−time␣ video ␣ segmentat ion ␣ completed . " )

A.5 README
This repository contains the implementation of an unsupervised segmentation
model specifically designed for autonomous driving applications. The goal of this
project is to develop a robust segmentation algorithm that can operate without
labeled data, providing a scalable solution for real-world autonomous driving sce-
narios.

The project consists of multiple key sections in order to perform the semantic
segmentation. Below you see the general steps outlined to get a rough idea:

1. Data Collection

2. Data Processing To Desired Format

3. Cropping Utility To Improve Spatial Resolution

4. Precomputation of KNN indices

5. Training of Model

6. Evaluation

7. Real-Time Segmentation or Video/Image Segmentation

A.5.1 Code Source

This repository contains code from other sources:

• Modified:

– Cheating by Segmentation 2 (branch: cbs2)

– STEGO

• Not modified/implemented:

– DriveAndSegment
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A.5.2 Installing Carla

Install Carla in the desired location:

wget https://carla-releases.s3.eu-west-3.amazonaws.com/Linux/CARLA_0.9.10.1.tar.gz
tar -xvzf CARLA_0.9.10.1.tar.gz -C carla09101

Clone USAD repository in desired location:

# Clone the repository
git clone https://github.com/flixtkc/Unsupervised-Segmentation-for-Autonomous-Driving-Cars.git

# Navigate into the project directory
cd Unsupervised-Segmentation-for-Autonomous-Driving-Cars

For this project, there are two distinct environments you need to create. If not
already done, install conda.

cd CBS2
conda env create -f docs/cbs2.yml
conda activate cbs2

Once tested to see if the environment is set up correctly, continue with the
second environment (first go back to the main directory).

cd ..
cd STEGO
conda env create -f environment.yml
conda activate stego

Add the following environment variables to ~/.bashrc:

export CARLA_ROOT=<your_path>/carla09101
export CBS2_ROOT=<your_path>/CBS2
export LEADERBOARD_ROOT=${CBS2_ROOT}/leaderboard
export SCENARIO_RUNNER_ROOT=${CBS2_ROOT}/scenario_runner
export PYTHONPATH=${PYTHONPATH}:"${CARLA_ROOT}/PythonAPI/carla/":"${SCENARIO_RUNNER_ROOT}":"${LEADERBOARD_ROOT}":"${CARLA_ROOT}/PythonAPI/carla/dist/carla-0.9.10-py3.7-linux-x86_64.egg"

Verify the setup by launching Carla (with cbs2 virtual environment activated):

source ~/.bashrc
$CBS2_ROOT/scripts/launch_carla.sh 1 2000
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A.5.3 Setup Configurations

To set up configurations for the data collection, there are several files to consider.
Open any text editor of your choice and inspect the following files:

CBS2/autoagents/collector_agents/config_data_collection.yaml
CBS2/autoagents/collector_agents/collector.py
CBS2/rails/data_phase1.py
CBS2/assets/

config_data_collection.yaml

This file contains all the settings that define the data collection phase. Especially
the resolution settings are key in determining how well the segmentation model
will perform.

collector.py

This file specifies all the collector functions. It also includes configurations for
logging to Weights & Biases (wandb), which is set to False by default.

data_phase1.py

The former denotes all the settings that define the data collection phase. The
second one specifies all the collector functions, where also the logging to wandb
can be found (default False). The latter contains the settings to set the driving
episode-specific config.

assets/ directory

Here you can find the routes and scenarios for each town, which are needed to
run any data collection successfully. You need to specify which one to use in
data_phase1.py.

A.5.4 Data Collection

Make sure to start Carla in one terminal, then boot up a second screen/terminal,
go to the CBS2 subdirectory there, and run the data collection script:

# Terminal 1:
$CBS2_ROOT/scripts/launch_carla.sh <num_runners> <port>

# Terminal 2:
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cd CBS2
python rails/data_phase1.py --port <port> --num-runner=<num_runners>

Note: if there are multiple runners, <port> is also the increment between them.

A.5.5 Data Processing To Desired Format

After you have verified the collected data and are content with the results, you can
continue to the data conversion step. Where the saved data has to be processed
before the STEGO model can effectively train with it. Go back to the main direc-
tory where you can find the lmdb_to_STEGO_dataset converter script. Inspect
the possible arguments passed to the functions before running this script. Note:
the dataset input path and output path need to be specified.

Switch Environments

After this step, it is important to deactivate cbs2 and activate the stego environ-
ment, as the next steps will need that adjustment.

A.5.6 Configurations for STEGO

Inspect the configuration for the STEGO related script in:

cd STEGO/src/
vi configs/train_config.yml

Specify the dataset path, which is identical to the output path used in the
previous step. For the next step, you need to adjust the hyperparameters related
to the cropping as these heavily influence memory-related errors.

A.5.7 Cropping Utility

has_labels: False
crop_type: "five"
crop_ratio: .5
res: 200
loader_crop_type: "center"

The crop_type determines whether it takes 5 crops one from each corner and
then one in the middle, or, random crops from the input image(s). Now the
crop_ratio determines how big/small the resulting crops will be compared to the
input dimensions of the image. Tweak until you have favorable settings. After
cropping, please adjust the dataset path in the config file to point to the newly
created cropped dataset directory.

68



A.5.8 Precomputation KNN Indices

To speed up training steps, it is crucial to run a precomputation of KNN indices:

python precompute_knns.py

A.5.9 Train STEGO Model

Now all that is left is to run a training script on your custom data to see the
segmentation results of the STEGO model on the collected Carla simulator data.
Please specify in the config file the logs directory:

python train_segmentation.py

During training, you can monitor the entire phase by running a tensorboard
session in the specified logs directory to see some intermittent progress:

# Example
tensorboard --logdir logs/logs/five_crop_0.5/directory_new_crop_date_Jul25_02-25-32/default/version_0/

A.5.10 Evaluation and Testing

To evaluate and compare your training results, you can monitor tensorboard logs
of course where you can see various metrics over time, but you can also run a real-
time segmentation script to see a real-life application. As discussed in the thesis,
this resulted in no real-time application but will be improved upon in the future.
Additionally, there is also a script that takes a normal video and segments it for
you given the specified model, and then saves the video. You can uncomment the
image or video segmenter, whichever one you prefer. For an example please see
the testing_videos/ directory!

cd STEGO/src/
python STEGO_create_segmented_video_or_image.py
python STEGO_real_time_segmenter.py
# See
cd ../../testing_videos/

A.5.11 Extra Tests

Additionally, there are several scripts to test your system’s batch size, number of
workers, and ssh X11 forwarding in case you run into errors.

A.6 Augmentation Bloopers
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Figure A.3: Blooper 1

Figure A.4: Blooper 2
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Figure A.5: Blooper 3

Figure A.6: Blooper 4
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Figure A.7: Blooper 5

Figure A.8: Blooper 6
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Figure A.9: Blooper 7

Figure A.10: Blooper 8
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