Making a robot stop a
penalty

Using (Q Learning and Transfer Learning
by Ruben van Heusden

base_left 0

Supervisor

dhr. dr. A. Visser

UNIVERSITY OF AMSTERDAM
X

University of Amsterdam
Faculty of Science
Science Park 904

1098 XH Amsterdam

June 29th, 2018

Making a robot stop a penalty

Using Q Learning and Transfer Learning

Ruben van Heusden
11022000

Bachelor thesis
Credits: 18 EC

Bachelor Opleiding Kunstmatige Intelligentie

University of Amsterdam
Faculty of Science
Science Park 904

1098 XH Amsterdam

Supervisor
dhr. dr. A. Visser

Informatics Institute
Faculty of Science
University of Amsterdam
Science Park 904
1098 XH Amsterdam

June 29th, 2018

Acknowledgements

I would like to sincerely thank my supervisor Arnoud Visser, who has been a
great support in supplying constructive feedback on the project and giving me
advice about the approach best taken.

Abstract

This thesis addresses the problem of decision making for an autonomous goal-
keeping robot in a penalty shootout. A solution to this problem would be
an advancement in the ability of autonomous decision making and learning in
robots, and would contribute to the goal of having robot soccer players outper-
form human soccer players by 2050. The problem is complex as the amount of
information the goalkeeper has is limited and the goalkeeper only has a limited
time frame within it has to make a decision. Previous approaches often involved
a human coding complex behavioral rules for the robots, which is very inflex-
ible and the process of constructing behavioral rules and discovering the right
parameters can be very time consuming. By using reinforcement learning, the
goalkeeper in this thesis was able to stop a penalty without hand coded rules,
learning from its own experience. The approach presented in this thesis uses
Q learning combined with a deep neural network applied to discrete state and
actions spaces and transfer learning to learn a behavioral policy. With interme-
diate rewards the algorithm is able to successfully stop a penalty in approx. 96%
of the trials, with an average training length of 813 trials. Without intermediate
rewards and using transfer learning, the agent was able to stop a penalty with
an accuracy of approx. 64.5% after an average of 7476 trials.

Contents

1__Introductionl 5
2 Theoretical Background| 7
2.1 Reinforcement Learning| 7
2.1.1 On-Policy Vs. Oft-Policy] 7

2.2 Reinforcement Learning with Neural Networks| 8
2.3 Deep Q Learning| 0 0oL, 9
3T Experience Replay| oo 9

2.3.2 Target Network|. 9

3 Methodl 10
B.1 State Space] 10
B2 Rewardsl o oo o 10
8.3 Network Architecturel 12
B4 Traming] 12
3.5 Simulation Environment] 13
BET Actond . - -« v vt 13

8.6 Transfter Learning. o000 14
BEI Phased o 14

B7 Evaluationl. . . . o v v v v v 14
[4_Results] 16
4.1 Learning with Intermediate Rewards| 16
4.2 Learning without Intermediate Rewards| 17
2.1 justments To Transfer Learning| 17

-3 Comparison between Intermediate Rewards and No intermediate |

[Rewards| 19
[6_Conclusionl 20
[6_Discussion 20
61 Related Workl 20
6.2 Applicability on the Nao Robot| 21
6.3 Transfer Learning. o000 21
6.4 5ize of The Neural Network| 21

[z _Future Workl 22

1 Introduction

In recent years, major advancements in the field of reinforcement learning ap-
plied to robotics have been made (Kober et al. (2013); Duguleana and Mogan|
(2016); Martinez-Tenor et al| (2017)). These advancements have sparked new
research initiatives in the field of robotics and teaching complex behavior to
robots. One such initiative is the RoboCup. In 1997 the first RoboCup was
held, a competitive platform in which teams of robots are programmed to au-
tonomously compete against each other in a game of soccer (Noda et al.| (1998)).
The aim of the RoboCup is to be able to create robots that are able to outper-
form human players by the year 205(13

The RoboCup is an important part of Al research, as a complex task such
as playing soccer imposes many different challenges for robots, such as using
computer vision to detect the ball and the goals, team tactics and localization
techniques to maintain track of the robot’s position on the ﬁeld
[Steinbauer| (2016))). Learning to overcome those challenges and finding solu-
tions to such problems will not only help robots improve at playing soccer, but
acquired knowledge can also be readily applied to many other applications of
Artificial Intelligence.

As stated in the RoboCup rulebookﬂ the robot that is taking the penalty is
only allowed to contact the ball once and has to score a goal within 30 seconds.
If the kicker does not score within the time limit, the ball is stopped or the ball
does not reach the goal, this will count in favor of the goalkeeper.

Figure 1: A penalty situation in the RoboCup SPL

:=====
B FEE
L]

—

(a) Picture taken from https : //naoteamhtwk.blogspot.com/2017/07/

For the construction of the goalkeeper behavior, multiple approaches exist.
One option that is still quite common is to code complex rules by hand that
dictate how the robot should behave in different situations based on hard-coded
parameters. For example, the robot should approach the ball if it is within a
certain distance or dive towards the ball if the ball has a certain speed and
angle relative to the robot. The problem with these approaches however, is

Thttp://www.robocup.org/objective
2http://spl.robocup.org/wp-content/uploads/2018/04/SPL-Rules_small.pdf

http://www.robocup.org/objective
http://spl.robocup.org/wp-content/uploads/2018/04/SPL-Rules_small.pdf

that they are very inflexible and the making of these rules and the tweaking of
the parameters is time-consuming. For this reason, a preferred method would
be to let the robot learn the optimal behavior from its own experience in the
environment using a learning algorithm. A class of learning algorithms that has
proven to be quite successful in learning complex tasks is reinforcement learning
(Sutton and Barto| (1998))).

The principle of reinforcement learning is an agent interacting with an en-
vironment, e.g. taking actions and experiencing the results of those actions in
the form of rewards or penalties. Traditionally, reinforcement learning has had
difficulties in the field of robotics, where the state spaces are often very large or
continuous.

However, recent research has shown that if reinforcement learning is com-
bined with deep neural networks, impressive results can be obtained even in the
cases of very large or continuous state spaces, for example by (Hausknecht&Stone,
2015) who used reinforcement learning combined with a neural network to train
a robot penalty kicker to reliable score a goal against an hand-coded expert
goalkeeper (Hausknecht and Stone| (2015)).

The research question of this thesis is : can reinforcement learning be used
as a method of training a goalkeeper to stop a penalty in the RoboCup? This
research question is subdivided into two main parts, namely : is it possible for
a goalkeeper to stop a penalty with reinforcement learning with intermediate re-
wards? and is it possible for a goalkeeper to stop a penalty with reinforcement
learning without intermediate rewards using transfer learning?.

In Section 2, the theoretical background that is needed to understand the
method that is used in this thesis sn introduced. In Section 3, the method that
is used to answer the research question is formulated, along with specification
of the used software. In Section 4 the results of this thesis are presented and
analyzed. In Section 5 the conclusion of this thesis will be presented, and in
Section 6 the related work, applicability of the developed method on the Nao
Robot and some problems with the method used will be discussed. In Section
7 some suggestions for future work are made.

2 Theoretical Background

2.1 Reinforcement Learning

In reinforcement learning, the task that is to be solved by an agent is often
represented by a Markov Decision Process (MDP)(Sutton and Barto| (1998))).
In this experiment, this is also an appropriate representation as it satisfies the
Markov Property, meaning that a future state is only dependent on the current
state and the current actions and not of the preceding sequence of events. An
MDP consists of states s — S, actions a — A and rewards r — R.

In this setting, the optimal policy for an agent to follow is considered to be
the policy that maximizes the sum of the agent’s future (discounted) rewards,
where 7 is a parameter that weights the value of the reward based on how far
in the future it occurs, up to a planning horizon 7.

T
R(t) = Z'Ykrt+k+1 (1)
k=0

With this equation, the Q value of a state-action pair i.e. the ’quality’ can
be calculated, based on the current state and the action selected by the agent
based on the current policy .

Q7 (s,a) = Ex{R(t)|s; = s,a; = a} (2)

The goal is to find a policy that always selects the action that maximizes
the future return as formulated in equation

2.1.1 On-Policy Vs. Off-Policy

Multiple methods for finding the optimal policy exist and can be broadly clas-
sified into two categories, namely on-policy and off-policy algorithms. An on-
policy learning algorithm selects future actions based on the policy that the
agent is currently following. An example of such an on-policy algorithm is
SARSA (Sutton and Barto (1998)). The SARSA learning algorithm uses the
following formula to calculate a state-action value for a given state-action pair.

Q(s,a) « Q(s,a) + ax[r+vQ(s',d") — Q(s,a)] (3)

where 7y is a parameter for the weight of future rewards, and r is the height of
the received reward. As can be seen in Equation [3| the update rule depends on
Q(s',a’) which is the value of the state-action pair (s, a’) , selected by using the
current policy of the agent. An advantage of using on-policy learning is that,
if the agent has already found the optimal policy it will always choose actions
according to this policy, not choosing suboptimal actions. In contrast, off-policy
learning algorithms determine the value of a state-action pair independent of
the current policy. An example of such an algorithm is Q Learning. The update
rule for Q Learning is the following :

Q(Sﬂa) A Q(Sva) + ook [T+HE}XQ(SI76LI) 7@(570’)] (4)

As can be seen in the above formula, the update of the Q value for (s,a)
depends on max, Q(s’,a’). This means that Q learning selects a state Q(s’,a’)

based on the maximum of all the actions a’ in state s’. This means that it is
selected independent of the current policy the agent is following. The advantage
of Q learning is that actions are chosen independent of the policy that is followed,
meaning that exploration is built in to the algorithm, and alternative actions
will automatically be explored.

Traditionally, Q learning is used with a look up table to store all the state-
action pairs (s, a), resulting in a look up table of size num_states*num_actions.
This is problematic for very large state spaces, as the look-up table would quickly
become very large and take a large amount of memory to store, which is prob-
lematic in for example the Nao Robot, which has very limited memory resources.
A solution to this problem is to use a function approzimator. A function ap-
proximator is a structure that takes as input attempts to approximate the state-
action value of a state based on certain characteristics e.g. features of the state,
instead of storing a state-action value for every possible state-action pair in the
environment.

2.2 Reinforcement Learning with Neural Networks

In this thesis, a neural network is used as a function approximator for the Q
values of possible actions. Function approximators have the advantage that in
general, the algorithm is more memory efficient than a classic tabular based
approach. Moreover, the use of a function approximator makes it possible for
an agent to act in an environment with a continuous state space and still being
able to learn an optimal policy.

As explained above, a neural network is used as a function approximator for the
Q values of possible actions. The current state of the environment s is given
as an input to the network in vector form. The input passes through several
hidden layers, before an action value for every possible action is outputted.

Figure 2: Function Approximation with a neural network

The network is then updated according to a loss function e.g. the difference
between predicted the Q value and the target value. In this algorithm, the
target value is the Temporal Difference (TD) value :

Q(s,a) =r+7Q(s',a’) ()

where r is used to represent the reward the agent might receive, and ~ is a
discount factor weighing future states. In the neural network setting, the net-
work itself is used to output the value for Q(s’,a’). This leads to the following
equation for the loss function of the neural network :

Li(ei) = E((57 a, T, S/)) ~ U(D)[(T + 7man(s/, a; 7)) — Q(s, a; 9%))2] (6)

(a) as stated in (Mnih et al., 2015)

where 6 stands for the parameters of the Q network.
The use of the neural network function approximation has some drawbacks. One
of the disadvantages of using a neural network is that the Q value predictions
are approximations and therefore the predicted Q values do not represent the Q
values exactly and might be incorrect. This has theoretical implications, as it
is no longer guaranteed to converge to the optimal policy (Mnih et al.|(2015)).
This is problematic and can pose a problem if not dealt with correctly.

2.3 Deep Q Learning

The power of the use of neural networks as function approximators was first
demonstrated by (Mnih et al| (2015)). In their paper, the propose an archi-
tecture for Deep reinforcement learning named Deep @ Networks(DQN). DQN
offers a solution to the problems of stability in the use of neural networks as
function approximators. By using two concepts they call experience replay and
target networks, the stability of the networks is greatly improved.

2.3.1 Experience Replay

The first improvement made to the neural network is experience replay. The idea
behind experience replay is that, instead of updating the model at every step,
the agent keeps a record of the states it has visited in the past together with the
corresponding actions it took and the rewards it received as a tuple (s, a,r,s’).
Now when training the model, a batch of random experiences is drawn from
this 'memory’ and used to update the network. This is advantageous, as in the
original version that updates at every step, the states used for the updates are
all path of a trajectory the agent is following and are therefore more correlated,
which in term leads to inaccurate predictions of Q values.

2.3.2 Target Network

The second improvement to the neural network is a the use of a target network.
The use of a target network is another addition to the algorithm that is used to
remove the correlation between the parameters in the network and improve the

stability of the network.

In the Q network, the target values for the network that are used in the loss
function and to update the network are produced by the same network that is
used for training. This approach creates a correlation between the Q values the
network outputs and the target Q values. To solve this issue, a target network
is used. This is an exact copy of the Q network used for training, but it is only
updated towards the trained network with a very small amount 7 every n steps
to remove the correlation between the predicted Q value and the target value.
This target Q network is then used to produce the target for the loss function
of the neural network.

3 Method

3.1 State Space

For our purposes the state space consists of the discretesized position of the ball
that is binned according to the position and angle of the ball with respect to
the agent.

Figure 4: Bins based on angle and distance relative to the goalkeeper

The more states used, the more detailed and accurate the agents understand-
ing of the environment. However, increasing the number of states also increases
the complexity of the environment and this may result in longer training times
and increased memory usage. In the experiments, a state space consisting of 5
possible bins for distances and 5 possible bins for angles were used, where the
maximum distance was the penalty spot and the angles varied from -90 to 90
degrees.

3.2 Rewards

The penalty shootout situation naturally consists of very sparse rewards. In-
tuitively, the keeper would receive a positive reward for stopping the ball, and

10

a negative reward if the penalty taker is able to score a goal. Because there
are many steps between taking and action and receiving a reward however, it
would be very difficult for the agent to ever make connections between the ac-
tions it takes and the rewards it receives. Therefore, intermediate rewards are
introduced to guide the agent in the right direction. In this case, some caution
with the type of reward must be taken as for the specific type of features the
reward is based on. It might be intuitive to award the agent for its proximity
to the ball, but this might yield unexpected results, as the ball is almost always
heading towards the agent, and so any action taken by the agent will result in
a reduced distance to the ball. To overcome this problem, a reward signal that
is not dependent on the movement of the ball is chosen. The reward signal is
based on the distance between the goalkeeper and a line that represents the
trajectory of the ball, based on it’s current velocity. By using the difference in
distance between the current state and the previous state, the agent will receive
a positive reward for moving towards the interception point with the line of the
ball trajectory, and a negative reward if it moves away from this point.

Figure 5: The Reward Signal

-_-
2,
()

For the agent that does not receive intermediate rewards, the reward signal
is represented by the formula below :

Terial = —d00 % goaliriqr + 500 * capturei,iq

where goaliriq; and capturei,;q; or both boolean values, e.g. 1 if true 0
otherwise.
In mathematical form, the equation would look like the following:

Tt = Teapture + 100 * (dist,_1 (goalie, ball line) — dist,(goalie, ball_line)) (7)

In this equation, 7¢qpture is 500 if the goalkeeper catches the ball, and —500
if the kicker is able to score a goal.

3.3 Network Architecture

The architecture of the neural network is similar to that used in (Hausknecht &
Stone., 2015). two hidden layers of 10 nodes each have been used. all these for
layers are fully connected and use a Rectified Linear Unit (ReLu) as activation
function, except for the output layer, which has a linear activation function.
The target network has the same structure as the main network.

Figure 6: Neural Network Architecture

’ Q values ‘

ReLu

i

o]

’ state ‘

3.4 Training

In the training of the neural network, two distinct phases can be identified. (Watkinson
and Camp] (2018)) In the first phase, the agent performs random steps for a cer-

tain amount of steps, in order to fill the experience replay buffer enough so
that the network has substantial data to train with. In the second stage, the
network trains every 50 steps. In each update step, a batch of 16 experiences

is taken randomly from the 'memory’ and used to update the network. Now,

to calculate the loss function for the network, the target network is used. The
target network starts out with the same parameters as the main network, but

gets updated with a factor of 7 = 0.001 towards the main network every training
step.

3.5 Simulation Environment

For the conduction of the experiments, the Half Field Offense (HFO) 2D Soccer
simulator has been used?] In this 2D simulator, the behavior of robots can be
programmed using various commands. Two feature sets containing information
about the environment are available, for this thesis, the low level feature set is
used as this provides low-level information, which can be translated to custom
high level features later.

The simulator supports multiple levels of actions, from low level moves such
walking and tackling to more complex strategic moves as reducing the angle
between the ball and the goal. Because in this particular simulation the use of
high level actions would make the task more or less trivial and it allows for much
less freedom in the movement of the robot, the low level action set is chosen.

Figure 7: Screenshot of the HFO Simulator Environment

base_left 0

7' b) 5t B4 B 24

3.5.1 Actions

For this thesis, the choice has been made to use 6 possible actions. These actions
are 'move slightly left /right’, 'move moderately left /right’ 'move left/right at full
speed’. This choice was made as the penalty kicker can only shoot the ball once
and so the keeper only has to be in the line of the ball and not necessarily
approach the ball. Furthermore, the discretization of the actions reduces the
size of the action space. Using a continuous action space would require a much
more complicated algorithm, which is not necessarily needed for this particular
task.

Shttps://github.com/LARG/HFO

13

https://github.com/LARG/HFO

3.6 Transfer Learning

A promising technique that can be used in an attempt to reduce the amount of
trials for the goalkeeper to learn the desired behavior is called transfer learn-
ing.(Taylor and Stone| (2009)). In transfer learning, the agent starts with a
relatively simple task and steadily progresses to more challenging tasks, using
the information learned in the previous tasks to guide the learning in the current
phase. In this thesis, 4 distinct phases are used in the training process.

3.6.1 Phases

The transfer learning experiment consists of 4 tasks increasing in difficulty. In
each task, the penalty kicker starts at the penalty spot in front of the goal and
every shot is taken with a power setting of 40.0, as a maximum power setting
makes it impossible for the goalkeeper to catch the ball if it is shot to one of
the corners due to an inability for the goalkeeper to perform a diving save in
the simulator.

Figure 8: The four phases of training in increasing difficulty

) Phase 1 (b) Phase 2
angle of 0° angle between -10°and 10°
(c) Phase 3 (d) Phase 4

angle between -20°and 20° angle between -30°and 30°

If the agent was able to stop a penalty 25 times in a row, the status of the
neural network at that time is saved and the agent progresses to the next phase
until it reaches Phase 4, after which it’s accuracy is measured.

3.7 Evaluation

In the experiments, there is no set amount of training trials for the goalkeeper.
Instead, the goalkeeper is trained until it is able to successfully stop 25 penalties
in a row before it progresses to the next phase. This is done because there is a
considerable variation in the amount it takes for the robot to master a particular
task. This has several reasons, one of them being the random initialization of the

14

parameters in the neural network, the other being the stochastic environment
in the simulator, meaning in two training sessions, the ball shot by the penalty
taker can be very different.

15

4 Results

For all the experiments conducted below, the same settings for the learning
parameters have been used, except for where noted.

parameter | value
« 0.1
T 0.001
vy 0.99

4.1 Learning with Intermediate Rewards

In comparison with the agent that received no reward during training, this agent
receives intermediate rewards according to Equation [} As this is expected to
guide the learning in the right direction significantly, this agent is not trained
using transfer learning, but is trained on the expert goalkeeper immediately.

On average, the goalkeeper with intermediate rewards learned to success-
fully stop 25 penalties in a row in 813 trials. After this training, the goalkeeper
achieved an accuracy of 96.7%.

The figure below represents a typical learning curve for an agent that uses
intermediate rewards. for the first 300 trials, the received rewards are distributed
somewhat uniformly. This is because the agent performs random actions during
this period until it has filled it’s experience buffer with enough experiences to
begin with training. During training it can be seen that the agent starts out with
little positive rewards but the amount of rewards it receives per trial increasing
as the training progresses, until it has stopped 25 shots in a row and moves on
to the next phase.

Figure 9: Rewards per trial of agent with intermediate rewards

Episode Rewards

- Reward : i
—— Average Reward ;. i ;

T T
200 300 400 500
Trial

o -
=
(S
=]

16

4.2 Learning without Intermediate Rewards

For the agent that was given no intermediate reward, it proved impossible to
learn the task of stopping a penalty against a penalty kicker if it started out
on full capacity. For this reason, transfer learning was introduced to attempt
to let the agent learn the complex task by dividing it into tasks of increasing
difficulty. This in order to make the agent first learn the basic concept behind
the stopping of the ball, before introducing it to more complex situations e.g.
wider angles of the ball that require the agent to move more. (see section 3.6
for more detail about the phases)

Below are the results for the agent trained with the intermediate reward,
showing the average amount of trials it took for the agent to progress to the
next phase.

Experiment ID | Average Trials
Phase 1 844
Phase 2 1930
Phase 3 1769
Phase 4 2943

It was apparent during the training of the agent without intermediate re-
wards, that the learning process was very unstable, meaning that the amount
of trials for the agent to succeed in a task varied widely, in contrast to the
agent with intermediate rewards, where the learning process was much more
stable. However, the agent without intermediate rewards was able to complete
all 4 phases successfully. The average accuracy of the agent trained without
intermediate rewards that had progressed through all 4 phases was 64.5%

4.2.1 Adjustments To Transfer Learning

Because the results of the transfer learning experiment did not outperform the
agent trained with the intermediate reward, adjustments to the learning process
were made in an attempt to improve the agent’s results. By looking at the
behavior of the agent through the visualizer, it was apparent that the agent had
began to favor one side of the goal, most likely due to an uneven distribution of
the amount of ball shot in each direction. Tests confirmed that the agent was
performing very consistently with balls shot to one side, while performing very
poorly with balls shot in the opposite angle. The reason for this behavior is not
entirely clear, but it might be due to the structure of the neural network, as
the goalkeeper performs significantly better if the agent is trained on ball shots
to one side of the goal only than if trained to bot sides such as in the training
phases.

17

Figure 10: sides to which a goal was conceded for an agent without intermediate
rewards

250 -
 |eft side

m right side

200 A

150 4

100 4

amount of goals conceded

50 +

0 T T
Phase 1 Phase 2 Phase 3 Phase 4

(a) total of 1000 trials

One option for improving the performance of the agent is to train the agent
on balls shot to it’s 'weak’ side. As the goalkeeper always seemed to favor a
specific side of the goal e.g. either left or right, the training was adjusted in
order to compensate for this tendency. The goalkeeper was trained normally
up to Phase 2, after which it was determined through visual inspection of the
goalkeepers behavior in the simulator which side was favored. Before progressing
through Phase 3, the goalkeeper was trained on catching penalties on it’s weak
side. Unfortunately this did not improve the performance of the agent and could
even decrease the performance of the agent because the training would override
the agent’s previous strategy and overfit and only catching balls from one side
of the goal if the learning rate was too high.

18

4.3 Comparison between Intermediate Rewards and No
intermediate Rewards

Figure 11: Average amount of trials for both agent to complete the task

7000

6000 -

w
=}
(=]
S

<]
E

number of trials

Intermediate Rewards No intermediate Rewards

The above figure shows the average amount of trials needed for both agents to
reach expert-level e.g. Phase 4. As can be seen from the figure, the agent that
receives intermediate rewards is able to learn to master the expert task in much
fewer trials than the agent that was not trained using intermediate rewards.

Figure 12: Amount of captures for all 4 Phases

600

500 -

400

300 A

numer of captures

200 A

100 1

T T T T T
0 500 1000 1500 2000 2500
number of trials

The above figure shows the amount of captured balls for all 4 phases of the
tansfer learning training process. The four phases can cleary be seen in the
figure, and the scope of the line shows that the agent learns to stop the ball
during the phase 4, the steeper the rate of descent, the better.

It is apparent from the above figures, that the agent that was given interme-
diate rewards outperformed the agent that did not receive intermediate rewards

19

on was trained using transfer learning. However, the agent that used transfer
learning was able to learn the concepts of goalkeeping, with the only problem
being did it did not seem to learn the appropriate behavior for both sides of the
goal.

Video’s of the behavior of both of the goalkeepers can be found on YouTubem

5 Conclusion

In this thesis a method for applying Deep Q learning combined with transfer
learning to a goalkeeper in a penalty situation in the RoboCup has been intro-
duced. The results show that it is possible for a goalkeeper to learn to stop a
penalty, both with and without intermediate rewards, with different accuracies.
The goalkeeper that was trained with the intermediate rewards showed to learn
the task faster than the agent trained without intermediate rewards, scoring a
much higher accuracy, and displaying more stable learning. However, the agent
that was trained without using intermediate reward was able to reach the final
phase of training, meaning it did possess reasonable goalkeeping skills. Transfer
learning proved to help in the training process for an agent without intermediate
rewards, as an agent without intermediate rewards and no transfer learning was
not able to reach Phase 4 of the experiments.

6 Discussion

6.1 Related Work

Extensive research on the application of learning algorithms for robotics and
robot soccer has already been done in recent years. In a 2005 paper, Sutton,
Stone and Kuhlmann developed behavior policies for keepers in the Half Hield
Offense(HFO) keepaway game(Stone et al.[(2005)). In the HFO Keepaway sce-
nario, there are two teams, the keepers and the takers. The objective of the
takers is to obtain the ball from the keepers while the keepers try to keep the
ball in their possession for as long as possible. The approach taken in the pa-
per involved using the SARSA learning algorithm with linear tile encoding as a
function approximator to learn the agent the optimal policy using actions such
as holding the ball or passing the ball to a teammate. This approach has sim-
ilarities with this thesis in that at also attempts to make a soccer robot learn
control policies using reinforcement learning. In this paper however, the keepers
use high level control actions, whereas this thesis focuses on learning behavior
from more low-level actions. A similar study has been done by (Hester et al.
(2010)) in learning a robot how to score a penalty and this research focused on
even lower level actions then our approach, namely on the specific joint angles of
the robot. In the area of robot soccer penalty shoot-outs, multiple approaches
have been used, most of them concerning the penalty kicker. In a thesis by (La-
grand| (2017))), reinforcement learning combined with a neural network was used
to make a penalty kicker learn to score against hand-coded goalie. The approach
is similar in our approach in both the action space as well as the action space,

4https://www.youtube.com/watch?v=ZcAtLxHpHR4
Shttps://www.youtube.com/watch?v=M1HNmP- _R3g

20

https://www.youtube.com/watch?v=ZcAtLxHpHR4
https://www.youtube.com/watch?v=MlHNmP-_R3g

which is also divided into bins for angles and distances relative to the robot.
However, In this thesis, the focus is on training a goalkeeper, using reinforce-
ment learning and different additions such as transfer learning to increase the
performance of a goalkeeper not using intermediate rewards. The use of transfer
learning in the RoboCup was first used by (Watkinson & Camp,. 2018). In this
paper, transfer learning was used to train a penalty kicker to score a penalty
against an expert goalkeeper (Watkinson and Camp| (2018)). In their paper,
they also used multiple phases of learning, but used in Actor Critic Network as
function approximator combined with a target network and experience replay.
In the paper, the agent was able to learn to score reliably against an empty
goal and against a goalkeeper up to 50% after which intermediate rewards were
used to make the agents able to defeat expert-level hand-coded defense agent.
Their approach did not use the discretized state space like used in this thesis,
but rather a continuous vector of various features of the environment, such as
the distance and angle of the robot to various landmarks and the soccer field.

6.2 Applicability on the Nao Robot

The difficulty with the applicability of the current approach to the Nao Robot
lies within the used abstractions of the state space, and that the features used
in the robot simulator do not bear a one-on-one to the features available to the
Nao in real life. Mainly, the discretization of the the position of the ball with
respect to the robot is based on the absolute position of the ball on the field.
This information is not available in this form and thus the representation of
the bins shall have to be done differently. This could be done be retrieving the
equivalent features of angle and distance from the camera of the Nao robot, but
this is not straightforward and will require additional computational power in
addition to the learning algorithm.

6.3 Transfer Learning

Although the use of transfer learning did significantly improve the ability for
the goalkeeper without intermediate rewards to stop a penalty, the resulting
strategy was visibly sub-optimal. The agent seemed to perform very well if
balls were shot to one side of the goal, and very poorly if balls were shot to the
other side, although the agent did make an attempt to catch all the balls to it’s
weak side. On explanation for this behavior could be that the goalkeeper has
experienced more shots to one side of the goal and had learned to stop those
shots better. However, compensating this by training it more on the agents’
weak side after regular training did not improve the performance. One reason
might be that the policy has reached a local optimum, which is very hard to
overcome. Experiments with the size of the neural network can be done in an
attempt overcome this behavior.

6.4 Size of The Neural Network

In thesis a neural network consisting of 2 hidden layers both having 10 nodes
has been used. Although this approach yielded good results, the size of the
network means that not all Q values cannot be fully represented by the neural
network, something that could be problematic in learning the task. This can

21

be solved by using a larger network, possibly with a different architecture, for
example a diamond shaped network, to be able to faithfully represent all the Q
values.

7 Future Work

In this thesis the goalkeeper uses a set of discrete actions in order to stop
a penalty. More research can be done into the use of continuous action pa-
rameters,similar to the learning algorithm developed in (Hausknecht and Stone
(2015)), enabling more precise control for the robot. In this thesis, Q learning
was used as the primary learning algorithm. More research can be done into
the usage of other learning algorithms, for example SARSA. The used method
in this thesis has proved to work as a method for a goalkeeper to stop a penalty.
Research can be done into the generalization of this method so that the method
can be used as a general policy for a goalkeeper during the entire game. In this
thesis, the pre-train policy for an agent consisted of random movement in the
Phase 1, and the network from the previous phases in the phases after that.
More research can be done into using a different pre-train strategy, perhaps
something similar to that used in (Smart and Kaelbling| (2000)). Here, learning
system of the agent observes for example a human performing the task, and
in this way learns interesting components of the environment. Something that
could enhance the performance of the goalkeeper is to use a different binning
of the states than used here. For example, the closer the ball is relative to the
goalkeeper, the more bins are used, thus giving the robot a better understanding
of where the ball is if it is very close to the robot. This could be advantageous,
because the closer the ball is to the goalkeeper, the more important it is for
the goalkeeper to know the exact position of the ball, in order to make more
effective decisions.

22

References

Duguleana, M. and Mogan, G. (2016). Neural networks based reinforcement
learning for mobile robots obstacle avoidance. Ezpert Systems with Applica-
tions, 62:104-115.

Ferrein, A. and Steinbauer, G. (2016). 20 years of robocup. KI-Kiinstliche
Intelligenz, 30(3-4):225-232.

Hausknecht, M. and Stone, P. (2015). Deep reinforcement learning in parame-
terized action space. arXiv preprint arXiv:1511.04143.

Hester, T., Quinlan, M., and Stone, P. (2010). Generalized model learning for
reinforcement learning on a humanoid robot. In Robotics and Automation
(ICRA), 2010 IEEFE International Conference on, pages 2369-2374. IEEE.

Kober, J., Bagnell, J. A., and Peters, J. (2013). Reinforcement learning
in robotics: A survey. The International Journal of Robotics Research,
32(11):1238-1274.

Lagrand, C. G. (2017). Learning a robot to score a penalty minimal reward re-
inforcement learning. https://esc.fnwi.uva.nl/thesis/. Bachelor Thesis,
University of Amsterdam.

Martinez-Tenor, A., Fernandez-Madrigal, J. A., Cruz-Martin, A., and Gonzélez-
Jiménez, J. (2017). Towards a common implementation of reinforcement
learning for multiple robotic tasks. Fxpert Systems with Applications.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,
M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al.
(2015). Human-level control through deep reinforcement learning. Nature,
518(7540):529.

Noda, I., Suzuki, S., Matsubara, H., Asada, M., and Kitano, H. (1998).
Robocup-97: The first robot world cup soccer games and conferences. Al
magazine, 19(3):49.

Smart, W. D. and Kaelbling, L. P. (2000). Practical reinforcement learning in
continuous spaces. In ICML, pages 903-910.

Stone, P., Sutton, R. S., and Kuhlmann, G. (2005). Reinforcement learning for
robocup soccer keepaway. Adaptive Behavior, 13(3):165-188.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement learning: An introduction,
volume 1. MIT press Cambridge.

Taylor, M. E. and Stone, P. (2009). Transfer learning for reinforcement learning
domains: A survey. Journal of Machine Learning Research, 10(Jul):1633—
1685.

Watkinson, W. B. and Camp, T. (2018). Training a robocup striker agent via
transferred reinforcement learning. RoboCup symposium 2018, Montreal.

23

https://esc.fnwi.uva.nl/thesis/

	Introduction
	Theoretical Background
	Reinforcement Learning
	On-Policy Vs. Off-Policy

	Reinforcement Learning with Neural Networks
	Deep Q Learning
	Experience Replay
	Target Network

	Method
	State Space
	Rewards
	Network Architecture
	Training
	Simulation Environment
	Actions

	Transfer Learning
	Phases

	Evaluation

	Results
	Learning with Intermediate Rewards
	Learning without Intermediate Rewards
	Adjustments To Transfer Learning

	Comparison between Intermediate Rewards and No intermediate Rewards

	Conclusion
	Discussion
	Related Work
	Applicability on the Nao Robot
	Transfer Learning
	Size of The Neural Network

	Future Work

