
Teaching a Nao robot to
balance on one leg using
reinforcement learning

Junis Nagel



Layout: typeset by the author using LATEX.



Teaching a Nao robot to balance
on one leg using reinforcement

learning
Exploring the capabilities of the Soft Actor Critic

algorithm

Junis Nagel
13448714

Bachelor thesis
Credits: 18 EC

Bachelor Kunstmatige Intelligentie

University of Amsterdam
Faculty of Science
Science Park 900

1098 XH Amsterdam

Supervisor
Dr. A. Visser

Informatics Institute
Faculty of Science

University of Amsterdam
Science Park 900

1098 XH Amsterdam

June 28, 2024



Abstract

This thesis investigates the application of the Soft Actor-Critic (SAC) algo-
rithm to enable a Nao robot to balance on one leg, a crucial step towards executing
dynamic kicking motions. The current approach of the Dutch Nao Team involves
a static kick using a fixed sequence of joint angles without active balance control.
In contrast, this research aims to develop a reinforcement learning (RL) based
method leveraging the SAC algorithm, known for its effectiveness in continuous
action spaces and robustness to hyperparameters.
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Chapter 1

Introduction

1.1 Problem statement
The Dutch Nao Team is a team of UvA students who are competing in the
RoboCup, a competition where teams of humanoid robots (Nao robots) autonomously
play a soccer match against other teams. Numerous interconnected components
are needed to accomplish this task, such as computer vision, a movement engine
and a gameplay strategy. This thesis aims to lay a foundation for perform a dy-
namic kicking motion by focusing on the first crucial step of performing a kick,
balancing on one leg. A purely reinforcement learning (RL) based approach will
be attempted in contrast with existing methods that rely on, for example, bezier
curves whose parameters are tuned for the different phases of the kicking motion.
Currently, the Dutch Nao Team is using a static kick. This means that the kick-
ing motion is always performed using a fixed sequence of manually selected joint
angles. Since the sequence is fixed, there is no active balance control.

The aim of this paper is to explore the capabilities of the soft actor critic (SAC)
algorithm for this task. SAC is an algorithm that combines elements of actor-
critic methods as well as maximum entropy reinforcement learning. It has shown
promise in domains with continuous action spaces such as robotics (Haarnoja,
Zhou, Abbeel, & Levine, 2018) and has the advantage of being able to handle
both deterministic and stochastic policies.

To achieve the goal of implementing a stable one legged stance, several key steps
will be taken. Firstly, a simulation environment will be set up to allow for rapid
parallel training and testing of different hyperparameters and reward functions.
This environment will model the dynamics of the Nao robots and their interactions
with the soccer ball and other objects on the field. Secondly, the SAC algorithm
will be implemented and trained in the simulated environment. This training
process will involve iteratively refining the reward function to improve performance
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and adaptability and adjusting the hyperparameters of the SAC model to aid in
rapid training.

Bipedal robots like the Nao are inherently rather unstable due to their rela-
tively high center of mass, and dynamic movements such as kicking can therefore
introduce additional complexities. To address this challenge, noise such as ran-
dom pushes will be introduced in the training phase to force the learning algorithm
to build a more robust model of the world and learn to adapt to changes in its
environment.

1.2 Related work
As briefly mentioned in the introduction the challenge of creating a dynamic kick
for the Nao robot has been tackled before with varying degrees of dependency
on RL. Some papers utilize manually created controllers (Draskovic, 2022), while
others incorporate RL to learn model parameters such as kicking speed and body
orientation (Rezaeipanah, Amiri, & Jafari, 2021). There are also parameterized
models where the parameters, such as control points for splines (Engelke, 2021) are
learned through RL and there are purely reinforcement learning based approaches
where the joint velocities or target positions are directly controlled by a RL model
(Abreu, Silva, Teixeira, Reis, & Lau, 2021). The latter is the approach taken in
this paper.

For the task of balance control specifically imitation learning has been applied
before (Bong, Jung, Kim, & Park, 2022), but was considered to be a too large
scope for this paper. Balance control can be done through hip and ankle joint
adjustments or with the help of the robots’ arms. The arms can be particularly
helpful for reacting to external forces (Nakada, Allen, Morishima, & Terzopoulos,
2010).

Erez and Smart propose shaping as a means to improve reinforcement learning
algorithms. They suggest multiple six ways in which this can be done, three
of which will be applied in this paper. Namely modifying the reward function,
modifying internal parameters and modifying the action space.
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Chapter 2

Theoretical Background

2.1 Soft Actor-Critic Algorithm in Stable Base-
lines 3

2.1.1 Introduction

Reinforcement Learning (RL) has seen significant advancements with algorithms
like Deep Q-Networks (DQN), Proximal Policy Optimization (PPO), and Soft
Actor-Critic (SAC). Among these, SAC stands out for its ability to handle contin-
uous action spaces efficiently while promoting exploration through entropy max-
imization (Haarnoja et al., 2018) instead of using an epsilon-greedy strategy, as
seen in the algorithms mentioned above. This section provides a review of the
SAC algorithm as implemented in the Stable Baselines 3 (SB3) python library.

2.1.2 Background and Motivation

Traditional RL algorithms can struggle with the trade-off between exploration and
exploitation, particularly in high-dimensional continuous action spaces (Dulac-
Arnold et al., 2021). SAC addresses this challenge by incorporating an entropy
term, which encourages the agent to explore a wider range of actions by maximiz-
ing the entropy of the policy. This approach not only improves exploration but
also enhances the stability and robustness to hyperparameters and environmental
changes. Another advantage of SAC is it’s sample efficiency, allowing for rapid
prototyping .
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2.1.3 Algorithm Overview

The SAC algorithm optimizes a stochastic policy πθ(a|s) to maximize the expected
reward while also maximizing the entropy of the policy. The objective function for
SAC is:

J(π) = E(st,at)∼ρπ [Qπ(st, at)− α log π(at|st)] , (2.1)

where Qπ(st, at) is the Q-value under policy π, and α is a temperature param-
eter that balances reward and entropy.

2.1.4 Algorithm Evolution

The initial versions of SAC included a value function Vψ(s) alongside the Q-
functions Qθ1(s, a) and Qθ2(s, a). The value function reduced variance in Q-value
updates but added computational complexity. The modern version simplifies this
by directly using the Q-functions, which improves efficiency.

Older Version with Value Function

In the older SAC version, the value function Vψ(s) was updated using:

JV (ψ) = Est∼D

[
1

2
(Vψ(st)− Eat∼πθ [Qθ(st, at)− α log πθ(at|st)])2

]
, (2.2)

The policy was updated by minimizing the Kullback-Leibler divergence be-
tween the policy and the exponentiated Q-function. The Kullback-Leibner diver-
gence is a measure to quantify the statisctical difference between two probability
distributions.

Modern Version without Value Function

The modern SAC implementation in SB3 uses two Q-functions without an explicit
value function. The Q-value update is performed using the minimum of the two
Q-values:

JQ(θi) = E(st,at,rt,st+1)∼D

[
1

2
(Qθi(st, at)− yt)

2

]
, (2.3)

where

yt = rt + γEat+1∼πθ

[
min
i=1,2

Qθi(st+1, at+1)− α log πθ(at+1|st+1)

]
. (2.4)
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The policy update maximizes the expected Q-value minus the entropy term:

Jπ(θ) = Est∼D,at∼πθ

[
α log πθ(at|st)− min

i=1,2
Qθi(st, at)

]
. (2.5)

2.1.5 Implementation Details in Stable Baselines 3

SB3 has implemented this newer version of SAC with some specific details to
enhance performance and usability:

Policy Network

The policy network in SAC outputs the parameters of a probability distribution
from which actions are sampled. The mean and standard deviation are learned
separately, with the standard deviation parameterized as the logarithm of the
standard deviation to ensure positivity.

Squashing Function

A squashing function, usually a tanh activation, is applied to the output of the
policy network to ensure actions remain within valid bounds. The entropy calcu-
lation is adjusted to account for the change in distribution due to the squashing
function:

log π(a|s) = log πraw(araw|s)−
∑
i

log
(
1− tanh2(araw,i)

)
, (2.6)

where πraw represents the probability distribution before applying the tanh
function.

Target Networks

SAC uses target networks for the Q-functions to stabilize training. These target
networks are updated using a soft update mechanism:

θtarget ← τθ + (1− τ)θtarget, (2.7)

where τ is a small value to ensure smooth updates.

2.1.6 Algorithm Outline
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Algorithm 1: Soft Actor-Critic Algorithm
Initialize Q-networks Qθ1 , Qθ2 , policy πθ, and target networks Q′

θ1
, Q′

θ2
with

θ′ ← θ.
Initialize replay buffer D.
for every iteration do

for every step do
Sample action at ∼ πθ(at|st).
Execute action at in environment, observe reward rt and next state st+1.
Store transition (st, at, rt, st+1) in D.

end for
for each gradient step do

Sample batch of transitions (st, at, rt, st+1) from D.
Compute target Q-value:
yt = rt + γEat+1∼πθ [mini=1,2Q

′
θi
(st+1, at+1)− α log πθ(at+1|st+1)].

Update Q-networks by minimizing JQ(θi).
Update policy by maximizing Jπ(θ).
Soft update target networks: θ′ ← τθ + (1− τ)θ′.

end for
end for
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Chapter 3

Method

Balancing is challenging task. Multiple approaches were taken to address the chal-
lenge. To validate the choice of the SAC implementation by SB3 in combination
with qiBullet the cartpole problem was tackled. This is a much simpler task than
balancing on one leg, but can provide some confidence in an entropy maximizing
based approach to balancing. First, the common parts of the different tasks are
outlined, followed by specific information for each task.

3.1 Simulator
The use of a simulator was chosen over the use of a physical robot to allow for
quicker and parallel testing while also providing access to more variables such as
the absolute foot height. In order to be able to accurately use this variable in the
reward function outside of a simulator the use of, for example, cameras and object
detection would be needed. This complicates the technical setup without providing
benefits to the research. The chosen simulator is qiBullet, an open-source simulator
by United Robotics. Its goal is to provide a physically accurate simulation tool
via a Python based API (Aldebran Robotics, n.d.). The original Bullet simulator
uses a C++-based API, which makes it incompatible with most reinforcement
learning frameworks and libraries such as Tensorflow, SB3 and OpenAI Gym.
Higher-level languages like Python offer greater flexibility and ease in testing new
approaches quickly. qiBullet is built upon PyBullet (Busy & Caniot, n.d.), a
python module that interfaces with the Bullet Physics SDK, making it compatible
with the aforementioned frameworks and libraries.
The simulator has a step frequency of 240 per second. The URDF file for the
cartpole task and ground plane are available in pyBullet and the URDF file for
the Nao robot is provided in qiBullet. While qiBullet provides methods to read
the simulated IMU and FSR sensor data for the Nao robot, these were not used
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and a custom function was implemented instead. More on this can be found in
discussion section 6.1.2 and the corresponding code used instead can be found in
appendix section 7.1.

3.2 Environment
OpenAIs Gymnasium provides a standardized API for reinforcement learning li-
braries and frameworks, such as Stable Baselines3, to interact with. The base class
can be extended to create a custom environment which can be passed to algorithm
implementations of SB3. The main methods and attributes that the environment
need to have are outlined below.

3.2.1 Methods and attributes

Step()

This method takes as argument the action to be taken and is called to apply this
action to the environment and perform a single simulation step. It returns a new
observation vector, the reward for the new state, a boolean indicating if the current
episode is finished (in the case of this paper this would be when a fall is detected),
a boolean indicating if the current episode is truncated (the maximum episode
length is reached), and a dictionary for logging purposes.

Reset()

The reset method resets the environment and its variables to its initial state.
PyBullet has a method to reset the simulator, but that reloads the robot from
the URDF file. A function was implemented instead to reset the robots position,
orientation and joint angles and velocities. It also returns the observation vector
and a dictionary for logging purposes.

Action space

The action space defines the set of actions the agent can explore. Any action
vector calculated by the SAC algorithm should fall within this action space.

The action space used by SB3 was normalized to lie between -1 and 1 for every
dimension. Remapping to the actual action space of the joints was done using
formula 3.1 for every dimension. This formula is suitable for non-symmetrical
action spaces and ensures a remapping of 0 to the mean:

0.5 ∗ (action + 1) ∗ (upper limit− lower limit) + lower limit (3.1)
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The upper and lower limit depend on the control mode (position or velocity). The
action space has type spaces.Box from the gymnasium library.

Observation space

An observation vector represents the state of the environment, or in this case, the
state of the robot. The observation space was also normalized by using the inverse
of the previous formula:

2 ∗ observation− lower limit
upper limit− lower limit

− 1 (3.2)

This maps the observation to the range -1 to 1, with the mean mapped to 0. Like
the action space, this space also has type spaces.Box from the gymnasium library.

3.3 Reward function
The reward functions used in this thesis are comprised of multiple components R,
each with its own multiplier α to allow for manual adjustment of their influence
on the final reward for a given state. By setting multiplier αi to 0 effectively
removes the corresponding component Ri from the reward function. This allows
for assessment of the influence of each component of the reward function on the
performance of the model. Additionally, there are one or more conditions f ∈ F
that constitute a failure, such as falling over. Meeting one of these conditions result
in penalty Pfail for that episode. The calculation of the final reward is calculated
as follows:

Rfinal =

{∑n
i=1 αiRi, if no fall is detected

Pfail, if a condition f ∈ F is met

Explanations of the reward components for each task can be found in their
respective sections.
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3.4 Cartpole balancing

Figure 3.1: A visual representation of the cartpole task.

Figure 3.1 shows the cartpole balancing task. It is a relatively simple task where a
0.1 kg pole (white) is attached to a cart (blue) using a freely moving angular joint.
The cart can slide along an axis (light blue) at a maximum velocity of 5 m/s to
attempt to keep the pole from falling over. An additional goal is to keep the cart
from moving too far away from the origin. The urdf file for this task is included
in PyBullet and the simulations were ran for 500000 simulation steps, which the
equivalent to approximately 35 minutes of real time practice.

3.4.1 Action and observation space

The action space for this task the velocity of the cart along the axis. The obser-
vation space is the velocity and the position of the cart along the axis and the
angular position and velocity of the pole.

3.4.2 Reward function

COM (center of mass) distance

When the COM is located directly above the joint and no additional movements
are made or external forces are applied, the robot is in a stable state. A negative
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reward is therefore given relative to the distance of the projection of the COM
with respect to the joint connecting the cart and the pole.

Failing conditions

The model fails when one of two conditions is met. Either the pole has an angular
deviation of more than of twelve degrees relative to the upright position or the cart
has a deviation of more than 0.4m from the origin. Both end the episode early.

3.5 Nao Robot balancing

Figure 3.2: Specifications of the NAO H25 1.

The robot used is the Nao H25 V5.0 robot by United Robotics (formerly SoftBank
robotics and Aldebaran Robotics). This humanoid robot comes with a multitude
of sensors built in, a three-dimensional gyroscope and accelerometer in its head
and magnetic rotary encoders to enable reading of the joint angles 1.

1http://doc.aldebaran.com/21/family/nao_h25/index_h25.html
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Additionally, there are four force sensitive resistors (FSRs) in four locations
underneath each of its feet. Their locations are shown in figure 3.3 below.

Figure 3.3: Black squares representing the FSR sensors and their locations.

3.5.1 Setup

The lateral as well as the spinning friction coefficient for the ground plane were set
to 1, their default values could not be found in the pyBullet documentation. For
every step in the training process five simulation steps are performed. Since the
simulation frequency is 240 steps per second, there are 240/5 = 48 motor velocity
changes, state observations and rewards collections per second. This design choice
was made to reduce erratic movement by the robot. Another choice for the same
purpose was to limit the motor velocities to 10% of their respective maximum
velocities.

3.5.2 Action and observation space

For the Nao robot, joint control is done through angles or velocities. To simplify
the learning task and select the most crucial joints for the balancing task, the
lifting foot ankle joints, head, elbow, wrist, hand and finger joints as disregarded
in the action space. These joints likely won’t contribute significantly to maintaining
balance and complicate the learning process unnecessarily. The remaining joints
are the action joints. Two different action spaces were explored in this paper, one
in which the shoulder joints were part of the action joints and one in which they
were not. This gives and action space dimensionality of 14 and 10 respectively.

The observation space contains the gyroscope and accelerometer readings and
the joint angles and velocities of the action joints.
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3.5.3 Reward function

The reward function for this task consists of five components, with an additional
penalty Pfail when the robot falls or its supporting leg is too far of the ground.
They are briefly explained below.

Foot height

The goal for the foot height y was set at 5cm, therefore a reward equal to the foot
height up to 0.05 was given. This was later changed to

Rfinal =

{
y, y <= 0.05
0.1− y, y > 0.05

to discourage lifting the foot too high in the second round of training. More
on why this change was made can be found in section 4.3.

Number of contact points reward

The number of contact points of the foot is determined by counting how many
of the FSR values are non-zero. This reward is meant to encourage staying in
contact with the ground. The resulting value is divided by four to normalize it
and squared to provide a steeper gradient when more points are in contact with
the ground plane.

COM above the support polygon reward

The support polygon is defined as the polygon described by the projection of the
four positions of the FSRs (see figure 3.2) on the ground plane. When the COM
is located directly above the support polygon and no additional movements are
made or external forces are applied, the robot is in a stable state.

To simplify calculations and encourage a stance where the COM projection is
closer to the center of the support polygon, the support polygon used is simplified
and made to be smaller than the actual foot shape. This is a more stable position
since it is easier for the projection of the COM to move outside of the support
polygon upon movement or external factors when it is at the edge of the support
polygon.
This is a binary reward, its value is either 0 or 1.

COM distance to the center of the support polygon penalty

The distance of the COM projection to the center of the support polygon is used
to provide a smoother gradient in the reward function towards a stable one legged
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stance.
The distance is used as a penalty. The distance is inherently a positive value, so it
is multiplied by -1 to incentives minimizing the distance. It additionally promotes
moving towards the center of the support polygon to stabilize the stance further.
This is a more nuanced and gradual approach than the binary reward described
above.

Torso orientation reward

This reward represents the cosine of the angle between the robot’s z-axis and the
world z-axis.

It is equal to 1 when the torso is completely upright and decreases towards 0
when the torso is horizontal. It is also cubed.

Failing penalty

An episode is considered a fail when one of two conditions is met. Either the torso
orientation deviates too much from the upright position, or the supporting foot
ankles is lifted more than 2 centimeters compared to its starting height. Falling is
defined as having a torso orientation reward of less than 0.85, which corresponds
to a torso z-axis orientation of more than 30 degrees compared to the world z-axis.
The episodes is terminated early when either condition is detected and the other
reward components are disregarded for this training step. The failing penalty is
equal to -10.

3.6 Evaluation
The weights and biases (wandb) library provides a web based tool to visualize data
collected by the SB3 logger and a custom wandb callback. The reward function
components as described in section 3.4 are also logged for each time step to fa-
cilitate a clear overview of their scale and change in contribution over time. The
main metric to evaluate model performance is the episode length, since an episode
is terminated early when a failing condition is met. The average reward increasing
is not a good indication for actual progress, since one of the reward function com-
ponents might increase, such as keeping the torso upright for the Nao robot task,
without also keeping the COM above the support polygon. This phenomena is
called "reward hacking" and should be avoided. For this reason visual inspection
of the learned policy is imperative to ensure that the learned policy performs as
expected and no reward hacking occurs.
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Chapter 4

Experiments and Results

4.1 Introduction
Several experiments were performed to evaluate the influence of the hyperparam-
eters. The reward function parameters to be tuned are outlined in section 3.4.
The model hyperparameters that were evaluated are the learning rate, batch size,
gamma value and neural network breadth and width (denoted as [layer 0 size, layer
1 size...]). Initially, the model hyperparamaters were kept at their default value.
Unless specified otherwise, reward function multipliers can be assumed to be 0
and model hyperparameters to be at their default value unless specified otherwise.
The default hyperparamter values for SAC are outlined in table 4.1 below.

Learning rate Gamma Batch size Model size
0.0003 0.99 256 [256, 256]

Table 4.1: Default values for tuned SAC hyperparameters
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4.2 Cartpole task

4.2.1 Initial experiment

Figure 4.1: Mean episode length for different learning rate and gamma values.

Name Gamma Learning rate COM multiplier X deviation multiplier
twilight-resonance-36 0.99 0.001 10 0.1
grateful-serenity-35 0.98 0.001 10 0.1

robust-flower-28 0.99 0.01 10 0.1
dulcet-disco-22 0.98 0.01 10 0.1

Table 4.2: Hyperparameters corresponding to figure 4.1.

Both runs with a gamma value of 0.99 performed better than the other two. Twi-
light resonance with its lower learning rate managed to keep improving for longer.
To verify that a lower learning rate is beneficial in this task another experiment
was performed.
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4.2.2 Final experiment

Figure 4.2: Mean episode length for different batch sizes and learning rates

Name Learning rate COM multiplier X deviation multiplier
dail-sun-53 0.001 10 1

crimson-shadow-52 0.001 10 0.1
glad-haze-51 0.01 10 0.1

Table 4.3: Hyperparameters corresponding to figure 4.2.

The gamma value was set to 0.99 for every model. Rollouts are only calculated at
the end of episodes. While daily-sun did complete all 500000 time steps, the final
episode length was not logged as the model did not fail anymore before the end
of the 500000 time steps. The last episode length was logged at time step 402384,
which means the last episode lasted 97616 time steps before being truncated. This
is equal to more than six and a half minutes.

While these results confirm that the lower learning rate enhances the models
ability to keep learning over time. The biggest improvement however was due to
the increase in the penalty for the deviation of the cart along the x axis.

This model was further tested by applying forces ranging from -25N to 25N for
a single time step to the center of the pole every second in the horizontal direction,
a task on which the model was not specifically trained. 25N equates to . It was
able to stay balanced for over 10 minutes without falling before the episode was
manually stopped.
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4.3 Nao balancing task
The graphs in this sextion will have smoothing applied to their graph. The smooth-
ing used is the running average with a box size of 100 samples 1. Runs are assigned
names random names by wandb, followed by the run number.

4.3.1 Initial experiments

Figure 4.3: Smoothed episode length for initial experiments.

Name Foot height COM distance to support Torso upright
stilted-salad-366 5 10 1

lively elevator-364 15 20 0.5
faithful-universe-363 15 20 0.5

clear-dragon-362 15 20 0.5
smart-night-358 15 20 0.5

unique-snowball-357 15 20 2
classic-silence-356 15 10 1

morning-firebrand-355 20 20 1
dazzling-firefly-354 15 20 1

Table 4.4: Model and reward function parameters for 4.3
1https://docs.wandb.ai/guides/app/features/panels/line-plot/smoothing

19



This experiment was supposed to run for 1.000.000 steps, but crashed and finished
prematurely. Due to time constrains the experiment was not reran. The initial
test shows invariance to reward function parameters, with the exception of the
foot height multiplier. Faithful universe as well as clear dragon stand out for
their initial jump in episode length around 100-200 thousand steps. The reward
function parameters for these models are the same, and will be used for tuning
of the model parameters in the hope of continuing their upwards trend without
coming back down again.

4.3.2 Learning rate and gamma value with shoulder control
added

Next the action space was expanded to include shoulder control and the learning
rate and gamma parameter were assessed.

Figure 4.4: Smoothed episode length for trial with shoulder control
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Name Gamma Learning rate
fancy-fire-374 0.99 0.0003

legendary-cloud-373 0.999 0.003
electric-fog-372 0.999 0.001
revived-bee-371 0.99 0.001

fearless-wildflower-370 0.99 0.003

Table 4.5: Model hyperparameters for 4.4.

Only legendary cloud managed to consistently balance for longer than its coun-
terparts. Notably it took longer too reach a level similar to faithful universe and
clear dragon in the previous experiment, likely due to the fact that the action
space was expanded. It did however manage to stay dominant until the end of
the training cycle. It’s parameters were therefore propagated to the next round of
experimentation.

Figure 4.5: The Nao robot lifting its foot during training.

Some models were observed to move their foot unnecessarily high, one such
instance can be seen in figure 4.5. To combat this a change was made to the foot
height reward to decrease the reward as the foot moves above the target height.
The details of this change are outlined in the method 4.3.
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4.3.3 Final results

The batch and model size were experimented with next, as well as the rewards for
having the COM above the support polygon and keeping the supporting foot on
the ground.

Figure 4.6: Smoothed episode lengths for the last experiment.

Name COM above support Contact points Batch size Model size
earnest-pond-382 1 1 512 [512, 512]
wise-violet-380 1 1 1028 [256, 256]
eager-glade-379 1 0 256 [256, 256]
absurd-breeze 0 1 256 [256, 256]
sweet-sun-377 1 1 256 [256, 256, 256]

hopeful-cosmos-376 1 1 256 [512, 512]

Table 4.6: Reward function parameters and model hyperparameters for figure 4.6

Eager glade performed significantly worse than absurd breeze, indicating that
the contact point reward is more important for the learning process. This makes
sense as there already is a reward to incentives moving the COM above the support
polygon, namely the distance penalty.
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Figure 4.7: The last stance learned by legendary cloud.

The final stance learned by hopeful cosmos can be seen in the figure above,
note that this is not a completely stable and can only be maintained for around
4 seconds before falling over. Besides this it is not an ideal stance to perform the
rest of a kicking motion from. The model has learned to lower its COM, this could
also be observed for other models in this experimentation phase. Some examples
of attempted stances are provided in appendix section 7.2.
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Chapter 5

Conclusion

In this study, the potential of the Soft Actor Critic algorithm to achieve a sta-
ble one legged stance was investigated. The research aimed to create a purely
reinforcement learning based model for dynamic balancing to lay a foundation for
moving away from the static kick that is currently deployed by the Dutch Nao
team.

A small initial test was performed to provide confidence in SAC as choice for the
dynamic balancing task, namely using the cartpole task. This yielded reaffirming
results.

The experiments were conducted in a simulated environment instead of with a
physical robot to facilitate more rapid prototyping. By adjusting various hyper-
parameters and reward function components, it was possible to identify configu-
rations that led to improved stability and performance.

Despite the progress made, several technical challenges were encountered. The
discrepancies between the simulated and physical capabilities of the robots high-
lighted the limitations of the simulation environment. Additionally, the initial
implementation of qiBullet sensor readings caused significant delays.

The time constraints caused by the technical challenges limited the extent
of experimentation and optimization possible within the scope of this research.
Future work could focus on performing more extensive hyperparameter searches
and refining of the reward function.

In conclusion, this study lays a foundation for utilizing reinforcement learning
algorithms, particularly SAC, in enhancing the dynamic capabilities of humanoid
robots. The findings suggest that with further refinement and exploration, it is
feasible to develop more sophisticated and adaptable balancing behaviors, paving
the way for improved performance in competitive robotics scenarios like RoboCup.
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Chapter 6

Discussion

6.1 Technical challenges

6.1.1 Simulator

Figure 6.1: The Nao robot jumping during training

During training it could be observed that the robot jump up into the air while
keeping upright. It achieves a jump of approximately 50cm, which is almost its
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own height. The physical robot, even with the help of an energy storing elastic
device, cannot achieve a jump of over 14mm (Hondo, Kinase, & Mizuuchi, 2012).
That is over 30 times less than observed in the simulator. This shows a clear
discrepancy in the capabilities of the physical and simulated robot in terms of
strength. This observation was the main reason for introducing the failing condi-
tion for the supporting leg leaving the ground and reducing the maximum joint
velocity to 10%.

6.1.2 qiBullet sensor implementation

It was observed that the simulations for the nao robot experiments initially ran
at a lower than expected pace, taking multiple hours to run approximately 35000
time steps. This would significantly reduce the amount of experimenting that
could be done, as a single experiment is 500000-1000000 time steps. Upon further
investigation it was found that the culprit was the implementation of qiBullets
sensor readings. The sensors were using a threading lock. The qiBullet documen-
tation does not elaborate on the reason for this choice 1. Since the IMU sensors
are located in the torso of the robot, a function was made to read the angular and
linear velocity of the torso link instead. A version of the FSR reading sensors was
also created that does not rely on the Sensor class by qiBullet. Both can be found
in appendix section 7.1.

6.2 Time limitations
Due to programming mistakes resulting in the redoing of the experiments in a
late stage of the research for the Nao robot balancing, task the amount of time
was available for testing was severely reduced. It is in the nature of reinforce-
ment learning that gathering results and iterating upon them takes a considerable
amount of time as the training process has to be repeated for every change. Given
more time a more extensive search through the optimise parameters would have
been feasible. Additionally there are many ways to improve and expand upon the
the research performed during the writing of this paper, as will be discussed in the
section below.

1https://softbankrobotics-research.github.io/qibullet/classqibullet_1_1imu_1
_1Imu.html#a3699aac415978b7b06aa72fecc2a8f13
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6.3 Future work
The limitations encountered in this study highlight the need for further research
to conduct a more thorough search for the ideal reward parameters and model
hyperparameters. Several avenues for future exploration additionally include:

Incorporating standing on one leg into a full kicking motion:
The final stance learned was not ideal for performing the kicking motion, this
may change once it is trained in the context of the full task. Different control
strategies:
Instead of velocity control position or torque control could be investigated instead
Adjusting from Static Kicks:
Starting from a static kick and adjusting key points, could provide a more stable
foundation for dynamic balancing. This is a hybrid approach and reduces the ac-
tion space to search through.
Exploring Related Work Approaches:
Implementing and testing the various methods discussed in the related work sec-
tion to identify potential improvements and alternative strategies.
Proximal Policy Optimization (PPO):
A reinforcement learning algorithm like PPO may be more suitable for the bal-
ancing task. Parameter Consistency:
Running models with the same parameters multiple times to obtain standard de-
viations and see clearer differences in performance, thereby ensuring more robust
conclusions.
Transfer to Physical Robot:
Bridging the gap between simulation and real-world application by transferring
the learned models to physical Nao robots and validating their performance in
actual environments.
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Chapter 7

appendix

7.1 Sensor code
This code was heavily inspired by the original implementation by United Robotics
in the qiBullet simulator and falls under the Apache license 2.0 1

import pybullet as p

class Sensor:
def __init__(self, robot, client):

self.robot = robot
self.client = client

class Imu(Sensor):
def __init__(self, robot, imu_link, client):

super().__init__(robot, client)
self.imu_link = imu_link
self.angular_velocity = [0.0, 0.0, 0.0]
self.linear_velocity = [0.0, 0.0, 0.0]
self.linear_acceleration = [0.0, 0.0, 0.0]
self.last_time = 0.0

def get_imu_data(self):
try:

link_state = p.getLinkState(
self.robot,
self.imu_link.get_index(),

1https://github.com/softbankrobotics-research/qibullet/blob/master/LICENSE
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computeLinkVelocity=True)
current_time = time.time()
dt = current_time - self.last_time

self.angular_velocity = link_state[7]
self.linear_acceleration = [

(i - j) / dt for i, j in zip(
link_state[6],
self.linear_velocity)]

self.linear_velocity = link_state[6]
self.last_time = current_time

return self.angular_velocity, self.linear_velocity, self.linear_acceleration
except Exception as e:

print("warn:", e)
return self.angular_velocity, self.linear_velocity, self.linear_acceleration

class Fsr(Sensor):
LFOOT = "l_ankle"
RFOOT = "r_ankle"

def __init__(self, robot, fsr_link, client, gravity = -9.81):
super().__init__(robot, client)
self.fsr_link = fsr_link
self.gravity = gravity

def get_force(self):
contact_tuple = p.getContactPoints(

bodyA=self.robot,
linkIndexA=self.fsr_link.get_index())

if not contact_tuple:
return [0.0, 0.0, 0.0, 0.0]

return [contact[9] for contact in contact_tuple]
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7.2 Learned stances in the final round of experi-
mentation

Figure 7.1: Learned stance 1.

Figure 7.2: Learned stance 2.
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Figure 7.3: Learned stance 3.
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