Search, Actuate, and Navigate Lab course
2016-2017

Faculty of Science,
University of Amsterdam

June 5, 2017

This manual describes the lab course of the first year Al course “Zoeken, Sturen en
Bewegen” a.k.a. “Search, Actuate, and Navigate”.

Before you ask any questions, read through the WHOLE manual!

Contents

1 Introduction 2
1.1 Al through roboticchess 2
1.2 Thelab course e 2
1.3 Other resources of information, 3

2 The programming environment 3
2.1 Component interfaces 3

3 Hardware setup 4
3.1 The chess board e 4
3.2 Robot arm configurations 6
3.3 Radial motion of the UMI-RTX robot 6

4 Tasks 7
4.1 Task 1: SimpleChess e 7
4.2 Implementing legal movest 9
4.3 Implementing evaluate board 9
4.4 TImplementing minimax Lo 9
4.5 Task 2: A chess playing robot arm L Lo 11
4.6 Task 3: Go, where no one has gone before 13

5 General lab course instructions 13
5.1 General instructions Lo 13
5.2 Writing software 14
5.3 Testing your software on the robot 14
54 How tosend your code 15
5.5 Grading 15

1 Introduction

This is the manual of the 1st year Search, Actuate, and Navigate lab course (formerly known as
the Robotics course). It gives a general overview of the problem to be solved and its subdivision
to assignments.

This manual contains a lot of information which might tend to blur your vision of the problem at
hand. This is why you have to:

1. Read the manual very carefully before starting the lab course.

2. Attend the lab course sessions every time where your lab assistants will try to guide you and
provide help.

We hope you will enjoy the lab course,

Nick, Thomas, Boas, Pieter, Simon, Tim and Douwe

1.1 Al through robotic chess

Pioneers of artificial intelligence and robotics were more than enthusiastic and had envisioned,
through rosy spectacles, a world populated with decision-making, moving machinery. With this
high expectation, research concentrated on high levels: theories, models, ethics, and how this
impinges on other subjects. This did sometimes appear to be esoteric; it eventually came to light
that there were indeed more down-to-earth problems yet to be solved - mechanical structures,
movement execution, optimal path-planning with obstacle avoidance etc. It is with these latter
issues that this exercise is concerned, consciously keeping in mind throughout however, that it is
these high levels that take precedence in any ‘outlet’.

Chess will be the game at hand and it will stand for the essential enigma to be solved. You
are to program a robot arm enabling it to virtually and physically carry out the solution of an
arbitrary game of chess. It is a mild but challenging and entertaining problem, and with the fine
guide of your intense, learned brain (and a computer to help it along), you shall succeed, and
furthermore be led, in time to come, towards the creation of an intentional system®. With the
strong foundation in robotics that you will acquire, we hope that you, as stars of tomorrow, will
build a solid aesthetics of method, to serve to the betterment of society. Yes! my dear friends,
Science shall march boldly forward. (thus spake Joris van Dam)

1.2 The lab course

In this lab course you will, solve chess endgames, and calculate the required poses of the robot,
and so solve the problem of a robot playing a game of chess. All other (non-trivial) tasks have
already been solved and the solutions will be provided by your lab assistants.

Your lab assistants will provide you with software for separately testing your solutions to all
problems. We do, however, expect that the solutions to the subtasks will be submitted as a single,
working, integrated program (using our main module). This means that you should test that your
solutions to the subtasks can work together.

While you are trying to solve the tasks you will for sure stumble upon some awkward features
(bugs) in the provided software and documentation. Do not blame the lab assistants for this,
well, just a tiny bit. We know the software can be improved in many ways and the interfaces
are not that great, but that is partly because some parts are really old and some are brand new
(just finished). But actually this perfectly mirrors the problems you will be confronted with in
the “real world”, when dealing with practical problems that require a lot of different parts of
software including drivers for old hardware. In the last two weeks, you will encounter more of this
situations. Report them to the assistants (who perhaps already know the feature/bug) and try to

1Daniel Dennett, Brainstorms, MIT Press 1978.

work around them. Solving these bugs is nice, but costs a lot of time which is one thing you will
lack the coming weeks.

This manual gives you a precise description of the tasks you have to solve and provides you with
the background needed to do this. First we will explain how the software and hardware works.
Read it carefully before starting to work on the assignments. Section 4 gives the assignments
you’ll be working on. And finally some general lab instructions are given in Section 5.

1.3 Other resources of information

Of course not all info you need is in this manual. Therefore one or two assistants will be present
in the lab during the practical hours (look at the main course page for the schedule), helping you
with the tasks, trying to help with programming, and operating the real robot. Your assistants
for the lab course are Nick de Wolf, Boas Kluiving, Thomas Groot, Pieter Kronemeijer,
Simon Paul, Tim Smit and Douwe van der Wal. For questions, remarks or whatever outside
the practical hours, the lab assistants can be reached by email at:
N.J.G.deWolf@uva.nl
R.B.Kluiving@uva.nl
thomas--g@hotmail.com
p.kronemeijer@xs4all.nl
S.Pauw@uva.nl
groeten.aan.tim@hotmail.com
douwev.dwal@live.nl

IMPORTANT: When you send an email, please start the subject field with the three letter

word ZSB, such that your email can be handled appropriately by the email filters.

The webpage for the practical course can be found at
https://staff.fnwi.uva.nl/a.visser/education/ZSB/lab_course.html .

Check this site frequently, as it will be updated with valuable info during the course. On the web-

page you will also find a link to the documentation of the Python software.

2 The programming environment

2.1 Component interfaces

For the most part communication between the components inside the main program takes place
by writing and reading files, which will be briefly described below. The choice for this interface
is partly historical, (it allows us to interface with older software written in other programming
languages (C, Java, Pascal, Prolog) and other operating systems (Windows 3.1, Sun Unix)) but
also very practical. While you are testing your software it is often useful to inspect the contents
of these files and maybe even correct them to allow further testing (while your partner solves the
bug that led to this incorrect input).

2.1.1 Chess board representation

The chess board is represented as an ASCII file called board.gch. This file is constantly updated
while a game is being played and is read by the Prolog endgames implementation to get the most
recent boardsetting. The 8 by 8 matrix describing the position of the pieces is the only information
used by our software components. The other values in the file such as the time control and the
score are neglected. Lower caps are the white pieces.

Black computer White Human 1
Castled White false Black false
TimeControl O Operator Time O
White Clock O Moves O

Black Clock O Moves O

8 R.BQKBNR 0 0 0 0 0 0 0 O
7 PPPPPPPP 0 0 0 0 0 0 0 O
6 ..N..... 000000O0O
5 ... 000000O0CO
4 ..., p-- 00000000
3 000000O0O
2 ppppp-Ppp 00000000
1 rnbgkbnr 0 0 0 0 0 0 0 O
abcdefgh

move score depth nodes time flags capture color

You may edit this file by hand to change the position of the pieces or replace it by another file
with a different chess setup while a game is being played. To start with a different game setting
than the default, you can add a file with the name renewboard.gch.

2.1.2 Chess move

The file move.txt is written by your endgame solver to communicate the chosen chess move to
playchess.

2.1.3 Joint path representation

The joints.txt file is quite similar to the positions.txt file. Your inverse kinematics algorithm
writes in joints.txt a path as a list of configurations of the joints of the robot. For example:

244.5 -29.710975377910298 100.87246341721223 -20.72525633069582 -90.0 0.0 30.0
244.5 -29.710975377910298 100.87246341721223 -20.72525633069582 -90.0 0.0 0.0
425.0 -29.710975377910298 100.87246341721223 -20.72525633069582 -90.0 0.0 0.0

425.0 -34.28883336382281 69.66192932102668 -0.5421312966905262 -90.0 0.0 0.0

On each line a certain robot arm configuration is written. See the Java documentation for a precise
description of these values.

3 Hardware setup

For the path planning task it is necessary to know the position of the chess board related to the
position of the robot, and for the inverse kinematics task you have to be aware of the possible
configurations of the robot arm.

3.1 The chess board

The drawing of the board placement, see figure 1, gives the representations of its position and
some arbitrary position of the garbage places. The x,y, z position of the board is determined by
the outer corner of field h8, with the edge included.

IMPORTANT: Note that the coordinate system is a left-handed system. This means, that the
path planning module must express Cartesian coordinates in this very same left handed module!

Placement of [z
the board

Figure 1: The chess board.

3.2 Robot arm configurations

This section is related to the subtask of inverse-kinematics. We discuss here some details of the
motion of the UMI-RTX robot. This robot is designed to work in a cylindrical workspace. Vertical
movements and rotations around the base are easily performed by controlling a single joint. Radial
movements of the wrist from and to the base involve movements of several joints, but this is also
made simple by a trick, which is discussed in the next section.

To illustrate the difference between the performance level of the human arm and this robot arm the
following can be said: a ‘natural” arm of a human has about 42 degrees of freedom. The most subtle
artificial arm, for general human use, has less than 10 degrees of freedom. The drawing, figure 2,
specifies only 6 degrees of freedom which are the minimal demands for an artificial fore-arm and
wrist.

[

Figure 2: Degrees of freedom of a human arm.

The UMI-RTX robot has precisely those minimal 6 degrees of freedom, enough for finding a
solution for this robot arm in the domain of chess playing.

3.3 Radial motion of the UMI-RTX robot

The upper arm and lower arm have the same length: AB equals BC:

upperarm

—I wrist unit

. : 9 =~

lower arm

This means that you can move the wrist in a straight line outwards from the column - a radial
line between the shoulder and wrist spindles - by rotating the two parts of the arm, making sure
that angle P is always half angle Q:

W

The gear ratio from the shoulder motor to the upper arm is twice that of the elbow motor to the
lower arm. To move the wrist in a radial line, both motors are driven at the same speed but in
opposite directions. The benefit of this arrangement is that the robot controller can keep track
of the position of the wrist in cylindrical coordinates very easily, by simple calculations based on
the motor encoder counts. (Encoder counts are the units in which the movement of an rtx motor
is measured).

In addition, the gripper is automatically pointing along the radial line:

=
~~

This is achieved without needing to drive the yaw motor (angle R): the yaw is not only coupled to
its own motor, but also coupled to the elbow motor! When the lower arm moves through an angle
Q, the wrist automatically moves through R, which is Q/2, because of the 2:1 gear ratio from the
combined pulley which rotates on the elbow spindle and the wrist pulley. This behavior is by the
way not correctly produced by the simulator.

Because of this automatic compensation, it is possible with certain yaw orientations for the wrist
to hit its end-stops when driving the arm radially in and out.

4 Tasks
4.1 Task 1: SimpleChess

Introduction

In this assignment, you will program a chess engine for a simplified version of chess. You will be
using the minimax algorithm to implement the chess engine. Minimax allows the computer to
evaluate all possible moves up to a certain depth and then choose the one that maximizes the win,
given that an ideal opponent plays against you.

The framework of with the assignment contains the basic functionality to play chess. It is now your
task to implement the minimax function (plus alpha-beta optimization) and all helper functions
necessary to make the chess engine work correctly.

SimpleChess

Chess itself contains many different and special rules, which can take some time to implement. In
order to make this assignment more containable and less tedious to implement, we will be looking
at a simplified kind of chess game called SimpleChess. In SimpleChess, the only chess pieces used
are the king, rook and pawn. While the king can still reach any adjacent square (horizontal,
vertical and diagonal) and the rook can still reach all horizontal and vertical squares, the pawn
always only moves one place forward.

You may use the following simplifications:

e The only pieces on the board are the king, pawn and rook.

e A pawn cannot promote when it reaches the other side.

e A pawn can only move one piece forward at a time (even the first turn).
e There is no checkmate; the game is over when one of the kings is hit.

e You do not need to worry about stalemate until later in the assignment

The framework

Helper functions

The static classes Material and Side are just used to provide enums for board pieces and the
player turn, so you can refer to a rook with Material.Rook instead of a string/char and refer to
the white player with Side.White. A chess piece is then represented as an Piece object with two
properties: side and material.

The helper functions to_coordinate and to_ notation when converting a position in x,y-notation
(e.g. (2,5)) to a board coordinate in chess notoation (e.g. ”¢3”) and vice versa. Note: (0,0)
corresponds to "a8”.

The ChessBoard class

A single board state is specified by the ChessBoard class. The ChessBoard class contains two vari-
ables. The turn variable specifies whether the white or black player is on turn. The board matrix
variable contains an 8 by 8 2d-array array with at each cell either None if no chess piece is present
at that position or the Piece object specifying the chess piece that is present at that position.
You can use getter function get_boardpiece and setter function set_boardpiece to retrieve and
set a chess piece at a specified position.

Apart from representing a board state, the ChessBoard class is also responsible for reading a
board configuration from input (load_-from_input)and printing itself (__str__). It also contains
the make move function, which, given a certain move, returns a new board configuration with that
move executed.

Lastly, it contains the legal moves function, which should return all the possible moves for the
current board state. You will need to implement this function yourself.

Other classes

The ChessComputer class provides functions to calculate the best computer move using minimax
or alphabeta. You will need to implement both functions. The function evaluate_board should
give a score to each board configuation as to how favourable this configuration is for the white or
black player.

Lastly, the ChessGame class contains functionality for playing the game in the command line and
reads input from the user. This class will automatically load the configuration in board.chb in
the same directory. If you would like to open another board configuration, you can specify this as a
command line argument (e.g. python chessgame.py board_configurations/capture kingl.chb).
You will not need to make changes to this class.

The assignment

In order to implement the minimax algorithm, we first need a few helper functions. More specifi-
cally, we need a function that gives us the moves between states and a scoring function for states.

4.2 Implementing legal moves

The first function we need to implement when writing the chess engine is a function that returns all
the legal moves of the rooks, pawns and king that are possible given a certain board configuation.
To this end, you will need to implement legal moves in the ChessBoard class. Make sure you
test this functionality before continuing with the next part, since this function will be used in later
parts of the assignment.

4.3 Implementing evaluate board

Secondly, we need to assign a score to every board position. We will do this in the evaluate_board
function in the ChessEngine class. A simple way to give a score to a board configuration is to
give a score for each pawn, rook and king white has on the board and perform the same negatively
for the material that black has on the board. This way, a board configuration in which a rook of
the black opponent is captured will have a higher score. Make sure you form the score in such a
way that a rook has a higher score when captured than multiple pawns and capturing the king
the highest (since then the game is won). Besides counting material, you would also like to prefer
strategies for capturing material that take fewer turns than long strategies (e.g. if you can capture
a king in 2 turns, you should not take 4 turns to do so). You can use the depth_left variable to
take this into account when designing your scoring function.

You are free to implement this scoring function any way you like, but for full credits you do need
to make sure that the minimax algorithm will perform optimally on all the board configurations
that are included with the assignment.

4.4 Implementing minimax

If you finished the scoring function and the legal moves function, you have essentially all the basics
you need to implement the minimax algorithm. We are going to implement a depth-bounded
minimax algorithm. This means that we will only look forward a pre-defined amount of moves.
After this depth is reached, the current board position is evaluated using the scoring function, even
though it might not yet be an endposition of the game. Use legal moves to enumerate all the
moves possible, make move to execute this move and evaluate_board to give a score to a board
position after we have reached the maximum depth.

Once you have the minimax algorithm working, you can implement the alpha-beta optimization
in function alpha_ beta.

The different parts of the assignment are weighed as follows:

(3 pt) Implement legal moves in the ChessBoard class

(2 pt) Implement evaluate board in the ChessEngine class

— For full credits, the chess engine should handle all of the board configurations attached
in the assignment well.

(2 pt) Implement minimax in the ChessEngine class
(1 pt) Implement alphabeta in the ChessEngine class

(2 pt) Implement two of the following enhancements:
— Make the chess engine able to prevent stalemate situations

— Include at minimum two other chess pieces, such as the queen and the knight

10

4.5 Task 2: A chess playing robot arm

Introduction

In this assignment you will be implementing inverse kinematics in a VPython simulation in order
to make a robot arm play chess. There are three parts to this assigment:

e Cartesian Coordinate conversion
e Inverse kinematics
e High path planning

The high path planning is a series of instructions the robot arm will need to follow in order to
move a piece. The inverse kinematics part will tell the robot exactly what angles the individual
arm joints need to have so it will be at a desired location. And the coordinate conversion means
that you translate a board position, e.g. ”al”, to a real world coordinate. You can determine
yourself in what order you want to complete these modules as they work independently. However,
we suggest starting with high path planning and coordinate conversion. These are the easier
components, so it will allow you to familiarize yourself with python again.

VPython simulator

The simulator uses “Classic” VPython 6 in combination with Python 2.7, and the version we use
works by default on Windows and not on Linux (yes, we managed to find a Python package that
does not work on Linux by default...)

Installation
Windows

For more download instructions, you can refer to http://www.vpython.org/contents/download_
windows.html.
Check if you have Python 2 installed on your computer, at the following location:

C:\Python27

If this is the case you can download either the 32-bit or the 64-bit VPython depending on what
python version you have installed. To check what version you have installed use the command:

C:\Python27\python.exe

And you should see a line of text showing you your version details, including the bits. If you have
Anaconda installed for Python 2, you can use this command instead:

conda install -c https://conda.binstar.org/mwcraig vpython

After you install the correct VPython version, it should work right away.

Linux

For more download instructions, you can refer to http://www.vpython.org/contents/download_
linux.html. Linux requires slightly more work and requires you to use Wine (basically a bit
of windows inside Linux). The installation instructions of Wine, can be found here: https:
//wiki.winehq.org/Ubuntu. Depending on the version you installed, pick the correct files from
the download linux link, and place them in the correct folders (once again check the bit versions
that you use) and follow the Installing VPython 6 under Wine instructions on the web page.

11

What is provided?

In order for you to find the correct parameters for the robot, without having to go measure it
yourself, and probably end up making mistakes, we provide you with the Denavit-Hartenberg
convention for robot joint parameters of the simplified UMI in Table 1.

Joint; 0, o a; d; Joint range
riser/zed | 90.0 | 0.0 67.5 | 1082.0 0.0 - 925.0
shoulder | 0.0 0.0 | 253.5 | 95.0 -90.0 - 90.0

elbow 0.0 0.0 | 253.5 | 80.0 180.0 - 110.0

wrist 0.0 | -90.0 | 0.0 90.0 | -110.0 - 110.0
gripper 0.0 0.0 0.0 0.0 0.0 - 50.0

Table 1: The Denavit Hartenberg notation of the simplified UMI robot arm. The d; of the wrist

includes the d; of the gripper. Distances are given in mm (the simulator uses meters)

The simulator that will be provided to you consists of the following files:

umi_chessboard.py - Contains the representation of the chessboard and the pieces. Also
contains functions that have to do with the translation and rotation of the board.

umi_common - Contains some functions that are used across all the files, also included the
functions for file interactions.

umi_parameters - This file contain all the parameters of the robot arm, but it is your task
to retrieve this information, and add it correctly.

umi_simulation - Contains the simulator for the robot arm, and all the functions that have
to do with the visualizations. This file is also the main function to call, if you want to run
the program. The sliders work per default, as long as you have the correct parameters.

umi_student_functions - Empty shells of functions for you to fill, such that all functionality
works correctly.

High path - 2 points

In order to play chess, the robot arm needs to be able to move a chess piece from one location to
another. To achieve this the robot arm will need to follow a series of instructions:

1.
2.

=~ W

o

© ®» N >

10.
11.

Open gripper

Move to safe height over piece

Move to low height over piece

Move to piece height

Close gripper

Move to safe height over piece

Move to safe height over new position
Move to low height over new position
Move to piece height

Open gripper

Move to safe height

12

Where safe height is an arbitrary height above a board location where it is impossible to for the
robot arm to interact with the pieces. Low height is right above the piece and piece height is
the height where the robot arm is able to actually grab the piece. These instructions can be
implemented in the high_path(chessboard, from_location, to_location) function

In addition, very similar to the above function, you also have a move_to_garbage function. With the
difference that it now drops the pieces on a garbage pile outside of the board. You can choose dif-
ferent ways to solve this problem e.g. place the in a nice row next to the board, or just toss them in
your imaginary box. These instructions can be implemented in the move_to_garbage(chessboard,
from_location, to_location) function

Cartesian Coordinate Conversion - 4 points

Because the UMI robot arm is blind, it is difficult for him to determine what to do if you
tell it to move a piece from “al” to "a3”. After all, it can not see the chessboard. Hence,
you will write a function to help him out, by writing the function that returns a (x,y,z) tuple,
when given a position in the form <letter><digit> e.g. ”al”. For this you will use the ro-
tation and translation of the board, as well as the position of the piece. The rotation point
of the chessboard is next to the position "h8”. These instructions can be implemented in the
board_position_to_cartesian(chessboard, position) function.

Inverse kinematics - 4 points

Solve the inverse kinematics problem for the robot arm: ”Given a point on the board and a height,
what are the joint angles needed for the robot arm to reach this point?”. Keep in mind that there
is no right answer for this. Inverse kinematics generally does not have one solution as there are
multiple ways to reach the same position. This means that you can implement movement that
you think is best as long as it works within the simulator. Inverse kinematics can be implemented
in the apply_inverse_kinematics(x, y, z, gripper)

4.6 Task 3: Go, where no one has gone before

This section is intentionally left blank, content to be provided by you. We expect a research
proposal with your plans in the third week.

The only requirement is that you come up with an idea of a thing never done before’ in this
course.

An overview of things that were already tried:

e https://staff.fnwi.uva.nl/a.visser/education/ZSB/2016/Experiment/

e https://staff.fnwi.uva.nl/a.visser/education/ZSB/2004/Experiment2004/

5 General lab course instructions

5.1 General instructions

During the first two weeks you will be working in pairs. For the secnond two weeks you will be
working in a quartet. By making you work in groups we aim to give you an idea of how it is to
work in a team. If there are any unsolvable organizational difficulties, troubles, hitches, impasses
etcetera, do not act too late and inform your lab assistants at an early stage before everything gets
out of hand. We would like to prevent students from getting lost. So definitely do not hesitate to
inform us that there is some problem.

For the first two tasks you will hand in your software (including documentation) per pair.

For the last two weeks we will expect a more extensive research proposal and technical report.

13

Details how to write a research proposal and technical report can be found at the Practicum
Academische Vaardigheden-website:

e http://practicumav.nl/onderzoeken/onderzoeksvoorstel.html

e http://practicumav.nl/onderzoeken/rapport.html
Upload your reports in a printable format, that is: PDF (so no tex-code, plain text-files or Word-
files).

5.2 Writing software

Implementation of your ideas into code is only half of the job to be done for this lab course. Inside
your source-files we want the following information:

a header:
e the filename
e a short description what’s in the file

e the names, registration-numbers and login-names of both partners

the id of your group.
e the current date
comments:
e on a tactical level: to indicate where dirty tricks are performed
e on a strategic level: to explain what was your intention for a piece of code
self-explaining function- and variable-names:
e the most important issue is to be consistent
e don’t mix Nederlands and English
structure:
e make use of empty space to make your program readable
e order your functions in a logical way
error reports:

e describe how the software was tested

e make sure that both programmer and user can understand what went wrong

5.3 Testing your software on the robot

If you tested your code on the simulator and you are (very) confident that it works correctly and
does not, for example, press a chess piece through the chess-board, then you may want to test it
on the real robot. However there is only one robot and limited time available. When an assistant
is confident in your implementation, he could sent you to the robolab to test it on the actual
UMI-RTX the robot. In that case, send all your code to the lab assistant in the following manner.
Compose an email with the subject reading ZSB Your Name and attach your code, see Section 5.4
how to append your code. Specify your names and student-ids in the mail.

14

5.4 How to send your code

The code should be send as one tar file attached to an email to the assistant. To create a tar file
do the following.

e Open a terminal.

e Go to the directory with your code (cd ~/zsb/).

e make a tarball of it by executing tar -cvf YourName Code.tar . # don’t forget the dot
e Attach the tarball to your mail.

If you do not understand how to work with a terminal or you do not want to learn it (sigh...), you
can also make a zip file of your code with your favorite gui zip-program and attach the zip file.

5.5 Grading

Each task as well as the final demonstration will be graded. For grading the tasks we will not
only look at the approach that was chosen to solve the problems but also the reasoning behind
these choices. Explain in your report why you implemented algorithm B and not algorithm A,
and show that you understand the pros and cons of the different methods. Also the readability of
the report and the code will be taken into account. Your lab course assistants will try their best
to finish evaluating your reports the week after they were handed in. So the feedback can be used
to improve the next report.

The demonstration will really be a crash-test for your system. In a few minutes you will have to
show that your software works on a couple of tasks. Be sure to have a stable final version, because
there will be no time for in-between hacking.

Acknowledgments

Toto van Inge and George den Boer undertook the painstakingly effort of setting up the entire
practical course and also wrote the first version of this manual. Their successors were Arnoud
Visser and Joris van Dam. The manual was subsequently modified by Gerben Venekamp, Daan
van Schaijk, Nikos Massios, Paul Ruinard, Matthijs Spaan, Olaf Booij, Julian Kooij, Tim van
Rossum, Elise Koster, Michael Cabot, Robrecht Jurriaans, Toto van Inge, Nick de Wolf and Boas
Kluiving.

15

