
University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 1

Game Playing

Search the action space of 2 players
Russell & Norvig Chapter 5

Bratko Chapter 24

University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 2

Game Playing

• ‘Games contribute to AI like

Formula 1 racing contributes to

automobile design.’

• ‘Games, like the real world,

require the ability to make some

decision, even when the

optimal decision is infeasible.’

• ‘Games penalize inefficiency

severely’.

University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 3

Games vs. search problems

• "Unpredictable" opponent specifying a

move for every possible opponent reply

• Time limits unlikely to find the solution,

must approximate a solution

University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 4

Game tree of tic-tac-toe
(2-player, deterministic, turn-taking, zero sum)

University of Amsterdam

University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 5

Minimax

• Perfect play for deterministic games

• Idea: choose move to position with highest

minimax value = best achievable payoff against

 perfect playing opponent

• E.g., 2-ply game:

University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 6

Minimax algorithm

University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 7

Minimax prolog implementation
minimax(Pos, BestSucc, Val) :-

 moves(Pos, PosList), !, % Legal moves in Pos

 best(PosList, BestSucc, Val)

 ;

 staticval(Pos, Val). % Terminal Pos has no successors

best([Pos], Pos, Val) :-

 minimax(Pos, _, Val), !.

best([Pos1 | PosList], BestPos, BestVal) :-

 minimax(Pos1, _, Val1),

 best(PosList, Pos2, Val2),

 betterof(Pos1, Val1, Pos2, Val2, BestPos, BestVal).

betterof(Pos0, Val0, Pos1, Val1, Pos0, Val0) :-

 min_to_move(Pos0), Val0 > Val1, ! % MAX prefers the greater value

 ;

 max_to_move(Pos0), Val0 < Val1, !. % MIN prefers the lesser value

betterof(Pos0, Val0, Pos1, Val1, Pos1, Val1).

% Otherwise Pos1 better than Pos0

University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 8

Minimax Python implementation
def minimax_decision(state, game):

 """Given a state in a game, calculate the best move by searching

 forward all the way to the terminal states. [Fig. 6.4]"""

 player = game.to_move(state)

 def max_value(state):

 if game.terminal_test(state):

 return game.utility(state, player)

 v = -infinity

 for (a, s) in game.successors(state):

 v = max(v, min_value(s))

 return v

 def min_value(state):

 if game.terminal_test(state):

 return game.utility(state, player)

 v = infinity

 for (a, s) in game.successors(state):

 v = min(v, max_value(s))

 return v

 # Body of minimax_decision starts here:

 action, state = argmax(game.successors(state),

 lambda ((a, s)): min_value(s))

 return action

This pseudo code is provided by

Russell & Norvig

http://aima.cs.berkeley.edu/python/games.html
http://aima.cs.berkeley.edu/python/games.html

University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 10

Game interface

moves(Pos, PosList) % Legal moves in Pos, fails when Pos is terminal

staticval(Pos, Val). % value of a Terminal node (utility function)

min_to_move(Pos) % the opponents turn

max_to_move(Pos) % our turn

• Bratko’s implementation: fig22_3.txt

• The tic-tac-toe game interface is based on 4 relations:

• Bratko’s terminal position are win (+1) or loose (-1),

http://media.pearsoncmg.com/intl/ema/ema_uk_he_bratko_prolog_3/prolog/ch22/fig22_3.txt

University of Amsterdam

• Russell & Norovig implementation:

• The game interface is based on 4 functions:

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 11

Game interface

game.successors(state)

game.utility(state, player)

game.to_move(state)

game.terminal_test(state)

University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 13

Properties of minimax

• Complete? Yes (if tree is finite)

• Optimal? Yes (against an optimal opponent)

• Time complexity? O(bm)

• Space complexity? O(bm) (depth-first exploration)

• For chess, b ≈ 35, m ≈100 for "reasonable" games

 exact solution completely infeasible

University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 14

α-β pruning

• Efficient minimaxing

• Idea: once a move is clearly inferior to a previous move, it is

not necessary to know exactly how much inferior.

• Introduce two bounds:

Alpha = minimal value the MAX is guaranteed to achieve

Beta = maximal value the MAX can hope to achieve

• Example:

University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 15

α-β pruning

• Example:

 Alpha = 3 Val < Alpha, Val > Alpha

 ! Newbound(β)

University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 16

α-β pruning

• Example:

 Val > α Val < α

 Newbound(β) !

University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 17

Properties of α-β

• Pruning does not affect final result

• Good move ordering improves effectiveness of
pruning

• With "perfect ordering," time complexity = O(bm/2)
 doubles depth of search

• A simple example of the value of reasoning
about which computations are relevant
(a form of meta-reasoning)

University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 18

AlphaBeta prolog implementation
alphabeta(Pos, Alpha, Beta, GoodPos, Val) :-

 moves(Pos, PosList), !, % Legal moves in Pos

 boundedbest(PosList, Alpha, Beta, GoodPos, Val)

 ;

 staticval(Pos, Val). % Terminal Pos has no successors

boundedbest([Pos | PosList], Alpha, Beta, GoodPos, GoodVal) :-

 alphabeta(Pos, Alpha, Beta, _, Val),

 goodenough(PosList, Alpha, Beta, Pos, Val, GoodPos, GoodVal).

…

goodenough(_, Alpha, Beta, Pos, Val, Pos, Val) :-

 min_to_move(Pos), Val > Beta, ! % MAX prefers the greater value

 ;

 max_to_move(Pos), Val < Alpha, !. % MIN prefers the lesser value

goodenough(PosList, Alpha, Beta, Pos, Val, GoodPos, GoodVal) :-

 newbounds(Alpha, Beta, Pos, Val, NewAlpha, NewBeta), % Refine bounds

 boundedbest(PosList, NewAlpha, NewBeta, Pos1, Val1),

 betterof(Pos, Val, Pos1, Val1, GoodPos, GoodVal).

University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 19

AlphaBeta Python implementation
def alphabeta_full_search(state, game):

 """Search game to determine best action; use alpha-beta pruning.

 As in [Fig. 6.7], this version searches all the way to the leaves."""

 player = game.to_move(state)

 def max_value(state, alpha, beta):

 if game.terminal_test(state):

 return game.utility(state, player)

 v = -infinity

 for (a, s) in game.successors(state):

 v = max(v, min_value(s, alpha, beta))

 if v >= beta:

 return v

 alpha = max(alpha, v)

 return v

 def min_value(state, alpha, beta):

 if game.terminal_test(state):

 return game.utility(state, player)

 v = infinity

 for (a, s) in game.successors(state):

 v = min(v, max_value(s, alpha, beta))

 if v <= alpha:

 return v

 beta = min(beta, v)

 return v

 # Body of alphabeta_search starts here:

 action, state = argmax(game.successors(state),

 lambda ((a, s)): min_value(s, -infinity, infinity))

 return action

University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 20

Properties of α-β implementation

+ straightforward implementation

- It doesn’t answer the solution tree

- With the depth-first strategy, it is difficult to control

University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 21

Prolog assignment

alphabeta(Pos, Alpha, Beta, GoodPos, Val, MaxDepth)

• Download AlphaBeta implementation from Bratko:
fig22_5.txt

• Replace in your solution minimax for AlphaBeta.

Create test-routines to inspect the performance

difference

http://media.pearsoncmg.com/intl/ema/ema_uk_he_bratko_prolog_3/prolog/ch22/fig22_3.txt

