
University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 1

Game Playing

Search the action space of 2 players
Russell & Norvig Chapter 5

Bratko Chapter 24

University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 2

Game Playing

• ‘Games contribute to AI like

Formula 1 racing contributes to

automobile design.’

• ‘Games, like the real world,

require the ability to make some

decision, even when the

optimal decision is infeasible.’

• ‘Games penalize inefficiency

severely’.

University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 3

Games vs. search problems

• "Unpredictable" opponent specifying a

move for every possible opponent reply

• Time limits unlikely to find the solution,

must approximate a solution

University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 4

Game tree of tic-tac-toe
(2-player, deterministic, turn-taking, zero sum)

University of Amsterdam

University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 5

Minimax

• Perfect play for deterministic games

• Idea: choose move to position with highest

minimax value = best achievable payoff against

 perfect playing opponent

• E.g., 2-ply game:

University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 6

Minimax algorithm

University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 7

Minimax prolog implementation
minimax(Pos, BestSucc, Val) :-

 moves(Pos, PosList), !, % Legal moves in Pos

 best(PosList, BestSucc, Val)

 ;

 staticval(Pos, Val). % Terminal Pos has no successors

best([Pos], Pos, Val) :-

 minimax(Pos, _, Val), !.

best([Pos1 | PosList], BestPos, BestVal) :-

 minimax(Pos1, _, Val1),

 best(PosList, Pos2, Val2),

 betterof(Pos1, Val1, Pos2, Val2, BestPos, BestVal).

betterof(Pos0, Val0, Pos1, Val1, Pos0, Val0) :-

 min_to_move(Pos0), Val0 > Val1, ! % MAX prefers the greater value

 ;

 max_to_move(Pos0), Val0 < Val1, !. % MIN prefers the lesser value

betterof(Pos0, Val0, Pos1, Val1, Pos1, Val1).

% Otherwise Pos1 better than Pos0

University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 8

Game interface

moves(Pos, PosList) % Legal moves in Pos, fails when Pos is terminal

staticval(Pos, Val). % value of a Terminal node (utility function)

min_to_move(Pos) % the opponents turn

max_to_move(Pos) % our turn

• Bratko’s implementation: fig22_3.txt

• The tic-tac-toe game interface is based on 4 relations:

• Bratko’s terminal position are win (+1) or loose (-1),

http://media.pearsoncmg.com/intl/ema/ema_uk_he_bratko_prolog_3/prolog/ch22/fig22_3.txt

University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 9

Properties of minimax

• Complete? Yes (if tree is finite)

• Optimal? Yes (against an optimal opponent)

• Time complexity? O(bm)

• Space complexity? O(bm) (depth-first exploration)

• For chess, b ≈ 35, m ≈100 for "reasonable" games

 exact solution completely infeasible

University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 10

α-β pruning

• Efficient minimaxing

• Idea: once a move is clearly inferior to a previous move, it is

not necessary to know exactly how much inferior.

• Introduce two bounds:

Alpha = minimal value the MAX is guaranteed to achieve

Beta = maximal value the MAX can hope to achieve

• Example:

University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 11

α-β pruning

• Example:

 Alpha = 3 Val < Alpha, Val > Alpha

 ! Newbound(β)

University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 12

α-β pruning

• Example:

 Val > α Val < α

 Newbound(β) !

University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 13

Properties of α-β

• Pruning does not affect final result

• Good move ordering improves effectiveness of
pruning

• With "perfect ordering," time complexity = O(bm/2)
 doubles depth of search

• A simple example of the value of reasoning
about which computations are relevant
(a form of meta-reasoning)

University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 14

AlphaBeta prolog implementation
alphabeta(Pos, Alpha, Beta, GoodPos, Val) :-

 moves(Pos, PosList), !, % Legal moves in Pos

 boundedbest(PosList, Alpha, Beta, GoodPos, Val)

 ;

 staticval(Pos, Val). % Terminal Pos has no successors

boundedbest([Pos | PosList], Alpha, Beta, GoodPos, GoodVal) :-

 alphabeta(Pos, Alpha, Beta, _, Val),

 goodenough(PosList, Alpha, Beta, Pos, Val, GoodPos, GoodVal).

…

goodenough(_, Alpha, Beta, Pos, Val, Pos, Val) :-

 min_to_move(Pos), Val > Beta, ! % MAX prefers the greater value

 ;

 max_to_move(Pos), Val < Alpha, !. % MIN prefers the lesser value

goodenough(PosList, Alpha, Beta, Pos, Val, GoodPos, GoodVal) :-

 newbounds(Alpha, Beta, Pos, Val, NewAlpha, NewBeta), % Refine bounds

 boundedbest(PosList, NewAlpha, NewBeta, Pos1, Val1),

 betterof(Pos, Val, Pos1, Val1, GoodPos, GoodVal).

University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 15

Properties of α-β implementation

+ straightforward implementation

- It doesn’t answer the solution tree

- With the depth-first strategy, it is difficult to control

University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 16

Prolog assignment

alphabeta(Pos, Alpha, Beta, GoodPos, Val, MaxDepth)

• Download AlphaBeta implementation from Bratko:
fig22_5.txt

• Replace in your solution minimax for AlphaBeta.

Create test-routines to inspect the performance

difference

http://media.pearsoncmg.com/intl/ema/ema_uk_he_bratko_prolog_3/prolog/ch22/fig22_3.txt

University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 17

Resource usages in chess

Suppose we have 100 secs, explore 104 nodes/sec

 106 nodes per move ≈ 358/2

 α-β reaches depth 8 human chess player

Needed additional modifications:

• cutoff test:
e.g., depth limit (perhaps add quiescence search)

• evaluation function
= estimated desirability of position

University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 18

Evaluation-functions are quite static

3

3

2

2

2

2

3

2

2

2

2

2

2

2

2

• We need domain knowledge (heuristics)

• At many equivalent quiescence positions, we need long term

plans, and we have to stick to them

• An expert system is needed with long term plans

– This heuristic values are values proposed by Maarten van Someren

University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 19

Advantages of separating

production rules from inference engine

+ Modularity: each rule an concise piece of knowledge

+ Incrementability: new rules can be added

independently of other rules

+ Modifiability: old rules can be changed

+ Transparent

University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 20

Production rules

• If precondition P then Conclusion C

• If situation S then action A

• If conditions C1 and C2 hold then Condition C

does not hold

University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 21

Advice Language

Central in Advice Language is an advice table.

Each table is ordered collection of production rules.

When the precondition is forfilled, a list of advices can be

tried, in the order specified.

A ‘piece-of-advice’ is the central building block in AL0.

University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 22

Piece-of-Advice

Extending Situation Calculus:

• Us-move-constraints:

selects a subset of all legal us-moves

• Them-move-constraints:

 selects a subset of all legal them-moves

Combination of precondition and actions.

University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 23

Advice Language

Stop criteria:

• Better-goal:

a goal to be achieved

• Holding-goal:

a goal to be maintained while playing

toward the better-goal

University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 24

The result

Solution trees are implemented with forcing trees:

AND/OR trees where AND-nodes have only one arc

(selected us-move).

P

Q1

R1

Q2

R2

Q3

R3

University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 25

Prolog assignment

• Select subset of legal moves with Advice Language:

• Download:
http://staff.fnwi.uva.nl/a.visser/education/ZSB/follow_strategy.pl

http://staff.fnwi.uva.nl/a.visser/education/ZSB/advice.pl

• Test:

http://staff.fnwi.uva.nl/a.visser/education/ZSB/follow_strategy.pl
http://staff.fnwi.uva.nl/a.visser/education/ZSB/follow_strategy.pl
http://staff.fnwi.uva.nl/a.visser/education/ZSB/advice.pl
http://staff.fnwi.uva.nl/a.visser/education/ZSB/advice.pl

University of Amsterdam

Search, Navigate, and Actuate – Search through Game Trees Arnoud Visser 26

Assignment for tomorrow

• Generate a game interface for tic-tac-toe
and couple this to minimax, alphabeta and follow_strategy:

• Deadline Wednesday June 3, 11:00

moves(Pos, PosList) % Legal moves in Pos, fails when Pos is terminal

staticval(Pos, Val). % value of a Terminal node (utility function)

min_to_move(Pos) % the opponents turn

max_to_move(Pos) % our turn

