Search, Navigate, and Actuate

Qualitative Navigation

University of Amsterdam

Arnoud Visser

Search, Navigate, and Actuate - Qualitative Navigation

Navigation

Critical ability for mobility

Challenging, because strong coupling with:

- Sensing, Planning, Acting
- Hardware / Software architectures
- Problem solving, computational efficiency

Hierarchical Paradigm

Mobility

- Where am I going? Mission planning
- What's the best way there? *Path planning*
- Where have I been? *Map making*
- Where am I? *Localization*

deliberative

reactive

Path Planning

- *What's the Best Way There?* depends on the representation of the world
- A robot's world representation and how it is maintained over time is its *spatial memory*
- Two forms
 - Route (or qualitative / topology)
 - Map (or quantitative / metric)
- Map leads to Route, but not the other way

Route

Less general,

but strong coupling with reactive layer

- Attention points *What features, landmarks to look for next*
- Distinction criteria What features are good to recognize places:
 - Have I ever seen it before?
 - What has changed since the last time?

Landmarks

- A *landmark* is one or more perceptually distinctive features of interest on an object or locale of interest
- *Natural landmark*: configuration of existing features that wasn't put in the environment to aid with the robot's navigation (i.e. MacDonalds on the corner)
- *Artificial landmark*: set of features added to the environment to support navigation (i.e. highway sign)
- Highly useful landmarks are those visible at points where one has to select which way to go: *gateways*

early relational graphs

- Not coupled with how the robot would get there
- Navigation path: direction and distance
- Shaft encoder uncertainty accumulates

Two solutions

• Localization relative to the landmarks

• Navigation path specified as sensor based behaviors

Arnoud Visser

Search, Navigate, and Actuate - Qualitative Navigation

Getting to a Distinctive Place: Neighborhoods

Use one behavior until the landmark is seen then swap to a landmark localization behavior

University of Amsterdam

relational graphs with behaviors

Discussion

• Advantages

- Eliminates concern over navigational errors at each node
- Robot can build up metric information over multiple trips, since error will average out
- Disadvantages
 - Features that are easy to recognize, are often too numerous to be unique
 - Indoors it is nearly impossible to find distinctive places

Class Exercise

- Create a relational graph for this floor
- Label each edge with the appropriate Local Control Strategy
- Label each node with the type of gateway: dead-end, junction, room
- Identify unique features of each node

Alternative for relational graphs

• Associative method

- spatial memory is a series of remembered
 viewpoints, where each viewpoint is labeled with a location
- good for retracing known paths

University of Amsterdam

Associative Methods

- Create a behavior that converts sensor observations into direction to go to reach a particular landmark
- Assumption: location or landmark are:
 - Perceptual stable: views from nearby locations look similar
 - Perceptual distinguishable: views far away should look different

Cogniron project

• Pair-wise similarities between the images are computed using local features extracted from the images and geometric constraints

Visual Homing

- Partition image into coarse subsections (e.g., 16)
- Each section measured based on some attribute – e.g., edge density, dominant edge orientation, average intensity, etc.
- Resulting measurements yield image signature
- Image signature forms a pattern
- If robot nearby, should be able to determine direction of motion to localize itself relative to the location
- Visual homing: the use of image signatures to direct robot to specific location

Image Signatures

The world

Tessellated (like faceted-eyes)

Direction of movement

University of Amsterdam

Search, Navigate, and Actuate - Qualitative Navigation

Visual Compass

• Segmentation of surroundings in 80 sectors

Sector-based feature extraction

Arnoud Visser

Search, Navigate, and Actuate - Qualitative Navigation

Demo Video Visual Homing

QualNav

- Basic idea: localize robot relative to particular orientation region
- Orientation region:
 - multiple landmarks visible
 - Defined by landmark pair boundaries
 - Within an orientation region, all landmarks appear in same relationship
- Vehicle localizes with view-angles, distances not used

Example of orientation region

Entering new orientation region

Discussion

• Advantages:

- Tight coupling of sensing to homing
- Robot doesn't need to explicitly recognize what a landmark is
- Enables robots to build up maps as it explores
- Disadvantages:
 - require massive storage
 - Require landmarks that are widely visible

Route versus Map

How do humans find their ways? → Psychological data and theories

- Human Landmarks != robotic distinctive places
- Siegel & White's hypothesis: landmarks → routes → map
- Recently: landmarks & implicit map → routes

University of Amsterdam

Conclusions

- Landmarks simplify the "where am I?" problem by providing orientation cues
- Gateways: special cases of landmarks that allow robot to change directions
- Distinctive places can be related to each other by local control strategies for traveling between them
- Image signatures can be used to directly couple perception with acting