UGV Rover manual

Arnoud Visser

July 2025

1 Introduction

In the course Vision for Autonomous Robots we are planning to use 10 UGV
Rover robots for 40 students.

2 UGV Rover robot

The idea is behind the UGV Rover robot is an open-source mobile robot based
based on powerful Jetson Orin ROS2 Kit'. Nvidia claims that the Jetson Orin
Nano is the most affordable generative Al super computer. It delivers up to 67
TOPS of Al performance, which makes it possible to run Large Language models
such as Liama 3.1 and Vision Tranformers such as DINOv2 on-board. The
Jetson Orin basis is Nvidia JetPack, which is Ubuntu Linux kernel, including
dedicated Nvidia drivers and the full CUDA toolbox.

On this basis Waveshare has build a UGV Rover robot, a robot with 6
wheels. On top of that, the robot has a pan-tilt camera with 160 deg field-of-
view, a depth-camera and a Lidar. This sensor-suite makes it very suitable for
a master course like "Vision for Autonomous Robots’.

Figure 1: The UGV Rover Jetson Orin ROS2 from Waveshare

1https ://www.waveshare.com/wiki/UGV_Rover_Jetson_Orin_R0OS2

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/nano-super-developer-kit/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/nano-super-developer-kit/
https://www.waveshare.com/wiki/UGV_Rover_Jetson_Orin_ROS2

It has a 5M-pixel camera at the top, stereo cameras at the front and back
and 4 wheels to drive around. Actually, the stereo cameras are developed by
Luxonis for OpenCV, just as the RAE robot used in 2024 course, so most
developed software should still work.

The UGV Rover robot runs on Ubuntu 22.04.05, with Nvidia Jetpack 6.0
installed on top. The UGV Rover originally came with docker image running
the code dedicated to the UGV Rover. Docker is a system that separates your
code from the operating system, because in a docker image a prepared Linux
installation with a variety of installed packages can be loaded. In principal a
good idea, but because the manufacturer of the robot didn’t prepared, main-
tained and documented the docker image after the launch, we will use the UGV
Rover drivers directly from the Nvidia Jetpack environment.

The UGV Rover drivers are implemented as ROS nodes. ROS stands for
Robot Operating System, which is actually not an operating system, but mid-
dleware running above the OS. ROS has become the actual standard in robotic
research & development; nearly every modern robot supports ROS. The idea
of ROS is that a number of nodes are launched, each publishing one or more
topics. For the UGV Rover such topics can be the pan-tilt camera images, or
the current voltage level. Other nodes are not publishing but listening, which
means that you can give them input. For the UGV Rover robot this is for
instance the cmd_vel and led_ctrl (see Table 1).

/camera_info /parameter_events
/cmd_vel /processed_image
/image_raw /rosout

/image_raw/compressed /ugv/joint_states

/image_raw/compressedDepth | /ugv/led_ctrl
/image_raw/theora /voltage

/joy

Table 1: An overview of ROS topics published by the UGV rover

In the next section we will go step-by-step through the commands to start
the robot and ROS-nodes. After that we will give a troubleshoots with tricks to
use if one of those steps fails. This instructions has the precondition that you
installed ROS humble at your laptop, as already described in Sec. 5

/camera_info
/parameter_events
/cmd_vel
/processed_image
/image_raw
/rosout
/image_raw/compressed
/ugv/joint_states
/image_raw/compressedDepth
/ugv/led_ctrl
/image_raw/theora
/voltage
/joy

3 Start the UGV rover

Note that you build up a connection between your laptop and the UGV rover.
Commands from your laptop are given in green, commands given from the UGV
rover are given in blue. First thing is to connect to the robot.

You could directly login to the robot with the following command:

$ ssh jetsonOROVER_IP

At the UGV rover, you are at the Ubuntu 22.04.5 environment. You can
check the ethernet connections with the command

You can get ID-information specific to your RAE robot with the following
command:

At the moment we recommend to use the wifi_vislab as accesspoint (both
for the UGV rover and your laptop).

When both the UGV rover and laptop are connected you can check the
wireless connection with the ping command

$ ping ROVER_IP

And equivalent from the robot-side:

At the UGV Rover, it is time to start some of the ROS-nodes. Before you do
that, make sure that the ROS_.DOMAIN_ID to be equal to your group-number
GROUP_ID (equal to the white sticker on your UGV rover). After that, launch
the ROS-nodes from the UGV rover

The most fundamental node is ugv_bringup, which can be started with the
command:

This nodes publishes some internal readings, for instance the voltage, which
should become lower than 9V. It can be checked with:

Now we want also to be able to control the actuators of the robot. That is
done with another node, which can be started with:

Now you should be able to turn on the leds of the UGV rover by sending
the following message:

When you have ROS also installed at your laptop, and you are in the same
domain, you should be able to turn the LEDs off remotely.

\ source /opt/ros/humble/setup.bash

\ export ROS_DOMAIN_ID=GROUP_ID

\ ros2 topic pub /ugv/led_ctrl std_msgs/msg/Float32MultiArray "{
data: [0,0]}" -1

The LED-headlights should light up white, and turn off with the last mes-
sage.

Now you should also be able to control the pan-tilt of the camera, with the
following message:

\ ros2 topic pub /ugv/joint_states sensor_msgs/msg/JointState "{
name: [’pt_base_link_to_pt_linkl’,pt_linkl_to_pt_link2],
position: [0.52,0.26]}" -1

This will drive the pan-tilt camera to the position with the pan at 30° and
the tilt at 15° (the message defines angles in radians). Last, but not least, is to
control the wheels. It is wise to lift the robot up from the table before giving
this command. The robot can drive off the table before you have typed the stop
command.

\ ros2 topic pub --once /cmd_vel geometry_msgs/msg/Twist "{linear
: {x: 2.0, y: 0.0, z: 0.0}, angular: {x: 0.0, y: 0.0, z:
1.831"

To ugv_driver activated the actuators of the UGV rover, for the sensors you
have to start another node:

This node will published both the raw camera feed, as the rectified version
where the distortion found at calibration is already corrected. You can visualize
both streams with the following commands:

\ ros2 run image_view image_view --ros-args --remap image:=/
image_raw &
\ ros2 run image_view image_view --ros-args --remap image:=/

image_rect &

https://docs.ros.org/en/noetic/api/std_msgs/html/msg/Float32MultiArray.html
https://docs.ros.org/en/noetic/api/std_msgs/html/msg/Float32MultiArray.html
https://docs.ros.org/en/noetic/api/sensor_msgs/html/msg/JointState.html

4 Troubleshooting

4.1 Connection to the RAE robot

When you cannot connect to the robot:

Make sure that you and the robot are on the same wifi-access point. You
can check a connection with:

$ ping 192.168.55.1

If that doesn’t work, connect a USB-C cable directly to your laptop and
login via the USB:

$ ssh root@192.168.55.1

At the UGV Rover, you are at the bare Ubuntu 22.04. Check the wifi-
connection with:

4.2 The ROS2 nodes

The launch file of ROS is quite extensive, with several nodes starting up, in-
cluding several info-message that look like error-messages.

Yet, it is not uncommon that the following command fails (for instance
because the battery level is too low):

This can be checked at both your robot and at your laptop side:

$ export ROS_DOMAIN_ID=42
$ ros2 topic list

When there are more than two topics, including \cmd_vel, you could try at
the robot:

The wheels of the robot should start turning. You can stop them again with:

If this works, you could try the same commands at the laptop side.

When the response of ros2 topic list is only the two default ROS topics,
the bringup has failed:

Often, your best option is to shutdown your robot, give it some rest while
you recharge its battery

5 Installation

5.1 Ubuntu 22.04

Every ROS version is tightly coupled with a specific Ubuntu version. There are
some initiatives to make ROS more platform independent, but most initiatives
are experimental at best. When you have another OS than Ubuntu 22.04, we
can recommend the RoboStack approach (see Sec. 5.3)

For ROS humble on Ubuntu 22.04, we follow the steps of Official setup.

5.1.1 Set locale

Make sure you have a locale which supports UTF-8.

locale # check for UTF-8

sudo apt update && sudo apt install locales

sudo locale-gen en_US en_US.UTF-8

sudo update-locale LC_ALL=en_US.UTF-8 LANG=en_US.UTF-8
export LANG=en_US.UTF-8

locale # verify settings

5.1.2 Add the ROS 2 apt repository

You will need to add the ROS 2 apt repository to your system.

sudo apt install software-properties-common
sudo add-apt-repository universe

sudo apt update && sudo apt install curl -y

export ROS_APT_SOURCE_VERSION=$(curl -s https://api.github.com/
repos/ros-infrastructure/ros-apt-source/releases/latest |
grep -F "tag_name" | awk -F\" ’{print $4}’)

curl -L -o /tmp/ros2-apt-source.deb "https://github.com/ros-
infrastructure/ros-apt-source/releases/download/${
ROS_APT_SOURCE_VERSION}/ros2-apt-source_${
ROS_APT_SOURCE_VERSION}.$(. /etc/os-release && echo
$VERSION_CODENAME) _all.deb" # If using Ubuntu derivates use
$UBUNTU_CODENAME

sudo dpkg -i /tmp/ros2-apt-source.deb

5.1.3 Install ROS 2 packages

ROS 2 packages are built on frequently updated Ubuntu systems. It is always
recommended that you ensure your system is up to date before installing new
packages.

https://docs.ros.org/en/humble/Installation/Ubuntu-Install-Debs.html

sudo apt update
sudo apt upgrade

sudo apt install ros-humble-desktop
sudo apt install ros-dev-tools

Don’t forget to add the setup script to your environment

Replace ".bash" with your shell if you’re not using bash
Possible values are: setup.bash, setup.sh, setup.zsh
source /opt/ros/humble/setup.bash

5.2 Installing UGV-drivers

The development of ROS is always in a workspace, in this case the ugv_ws,
which typically is installed in your home-directory:

cd
git clone -b ros2-humble-develop https://github.com/waveshareteam
/ugv_vs.git

Before you can build this workspace, you first have to install some depen-
dencies

sudo apt-get install ros-humble-nav2-msgs ros-humble-map-msgs

sudo apt-get install ros-humble-nav2-costmap-2d

sudo apt-get install ros-humble-rosbridge-suite

sudo apt-get install ros-humble-nav2-bringup

sudo apt-get install ros-humble-usb-cam ros—-humble-depthai-*

sudo apt-get install ros-humble-joint-state-publisher-*

sudo apt-get install ros-humble-robot-localization

sudo apt-get install ros-humble-imu-tools

sudo apt-get install ros-humble-cartographer-ros

sudo apt-get install ros-humble-apriltag ros-humble-apriltag-msgs
ros-humble-apriltag-ros

sudo apt-get install ros-humble-ros-gz

In addition, add export UGV_MODEL=ugv_rover and export LDLIDAR_MODEL
=1d19 to your ~/.bashrec file.

source ~/.bashrc

Now you can build the code in ugv_ws:

cd “/ugv_ws
colcon build --cmake-args -Wno-dev --packages-select cartographer
costmap_converter_msgs explore_lite

colcon build --cmake-args -Wno-dev --packages-select
openslam_gmapping slam_gmapping ——executor sequential

colcon build --cmake-args -Wno-dev --packages-select
rf2o0_laser_odometry robot_pose_publisher teb_msgs vizanti
vizanti_cpp vizanti_demos vizanti_msgs vizanti_server

colcon build --cmake-args -Wno-dev --packages-select
ugv_base_node ugv_interface ugv_bringup ugv_chat_ai
ugv_description ugv_gazebo ugv_nav ugv_slam ugv_tools
ugv_vision ugv_web_app --symlink-install

source install/setup.bash

To be checked: are there no ros-humble-* for none of those packages?
Should they all be installed from source? Moved the package ugv_base_node
ugv_interface to be in the last part (with the ugv-drivers), which works.

5.3 RoboStack

If you have an Ubuntu 24.04, Ubuntu 20.04, Windows or Mac laptop, we rec-
ommend to use RoboStack.

For ROS humble in a RoboStack environment, we follow the steps of Official
setup.

For Unix-like platforms like Mac & Linux

curl -L -0 "https://github.com/conda-forge/miniforge/releases/
latest/download/Miniforge3-$(uname)-$(uname -m).sh"
bash Miniforge3-$(uname)-$(uname -m).sh

Choose all default options. Activate conda with:

eval "$"/miniforge3/bin/conda shell.bash hook)"

Next step is to install Mamba

conda install mamba -c conda-forge

Next is to create an environment to install the ROS packages in:

hhttps://robostack.github.io/GettingStarted.html
hhttps://robostack.github.io/GettingStarted.html

mamba create -n ros_humble_env python=3.11
mamba init

source ~/.bashrc

mamba activate ros_humble_env

this adds the conda-forge channel to the new created
environment configuration

conda config --env --add channels conda-forge

and the robostack channel

conda config --env --add channels robostack-staging

remove the defaults channel just in case, this might return an
error if it is not in the list which is ok

conda config --env --remove channels defaults

mamba deactivate

Next, install ROS humble

mamba activate ros_humble_env
mamba install ros-humble-desktop

Now, you have the same functionality as ROS humble running on Ubuntu
22.04, as long as you don’t forget to use the environment created:

mamba activate ros_humble_env

In this environment you should install any other ros-humble-* package with
mamba instead of apt-get

mamba install ros-humble-x*

For instance, the dependencies of the ugv_ws:

mamba install ros-humble-nav2-msgs ros-—humble-map-msgs ros-humble
-nav2-costmap-2d

mamba install ros-humble-image-geometry

mamba install ros-humble-rosbridge-suite

mamba install ros-humble-nav2-bringup

mamba install ros-humble-joint-state-publisher—*

mamba install ros-humble-robot-localization

You can always come back to your usual environment with:

mamba deactivate

10

	Introduction
	UGV Rover robot
	Start the UGV rover
	Troubleshooting
	Connection to the RAE robot
	The ROS2 nodes

	Installation
	Ubuntu 22.04
	Set locale
	Add the ROS 2 apt repository
	Install ROS 2 packages

	Installing UGV-drivers
	RoboStack

