

Probabilistic Robotics The Sparse Extended Information Filter

MSc course Artificial Intelligence 2018

https://staff.fnwi.uva.nl/a.visser/education/ProbabilisticRobotics/

Arnoud Visser Intelligent Robotics Lab Informatics Institute Universiteit van Amsterdam A.Visser@uva.nl

Images courtesy of Sebastian Thrun, Wolfram Burghard, Dieter Fox, Michael Montemerlo, Dick Hähnel, Pieter Abbeel and others.

Simultaneous Localization and Mapping

A robot acquires a map while localizing itself relative to this map.

Online SLAM problem

Full SLAM problem

 $p(x_t, m \mid z_{1:t}, u_{1:t})$

Estimate map *m* and current position x_t

Estimate map *m* and driven path $x_{1:t}$

SEIF SLAM

SEIF SLAM reduces the state vector y again to the current position x_t

$$y_t = (x_t m_{1,x} m_{1,y} s_1 \cdots m_{N,x} m_{N,y} s_N)^T$$

This is the same state vector y as EKF SLAM

State estimate

SEIF SLAM requires every timestep inference to estimate the state

$$\widetilde{\mu}_t = \widetilde{\Omega}^{-1}\widetilde{\xi}$$

The state estimated is also done by GraphSLAM, as a post-processing step.

Sparseness of *Information Matrix*

After a while, all landmarks are correlated in EKF's correlation matrix

The normalized information matrix is naturally sparse; most elements are close to zero (but none is zero).

The observation of a landmark m_1 introduces a constraint:

The constraint is of the type:

$$H_t^T Q_t^{-1} H_t$$

Where $h(x_t, m_j)$ is the measurement model and Q_t the covariance of the measurement noise.

Probabilistic Robotics Course at the Universiteit van Amsterdam

The observation of a landmark m_2 introduces another constraint:

The *information vector* increases with the term:

$$H_t^T Q_t^{-1}(z_t^i - h(\overline{\mu}_t) + H_t \mu_t)$$

The movement of the robot from x_1 to x_2 also introduces an constraint:

The constraint is now between the landmarks m_1 and m_2 (and not between the path x_{t-1} to x_t):

$$\overline{\Omega}_t = [G_t \Omega_{t-1}^{-1} G_t^T + F_x^T R_t F_x]^{-1}$$

Which can be simplified to

$$\overline{\Omega}_t = \Phi_t - \kappa_t$$

Probabilistic Robotics Course at the Universiteit van Amsterdam

The *information matrix* can become really sparse by applying a *sparsification step*:

This is done by partition the set of features into three disjoint subsets:

$$m = m^+ + m^0 + m^-$$

Where m^- is the set of passive features and $m^+ \cap m^0$ is the set of active features. The number of features that are allowed to remain active (set m^+) is thresholded to guarantee efficiency.

Network of features

Approximate the sparse information matrix with the argument that not all features are strongly connected:

Updating the current state estimate

The current state estimate $\hat{\mu}_t$ is needed every timestep:

$$\widetilde{\mu}_t = \widetilde{\Omega}_t^{-1} \widetilde{\xi}$$

Yet, from the current state estimate only subset is needed:

$$y_{t} = \left(x_{t} \cdots m_{1,x}^{+} m_{1,y}^{+} s_{1}^{+} \cdots m_{2,x}^{+} m_{2,y}^{+} s_{2}^{+} \cdots\right)^{T}$$

i.e. the robot position x_t and the locations of the active landmarks m^{+}

This can be done with an iterative hill climbing algorithm:

$$\mu_i \leftarrow \left(F_i \Omega F_i^T\right)^{-1} F_i [\xi - \Omega \mu + \Omega F_i^T F_i \mu]$$

Where F_i is a projection matrix to extract element *i* from matrix Ω .

Full Algorithm

The algorithm combines the four steps; two updates and two approximations:

Algorithm SEIF_SLAM_known_correspondences($\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, u_t, z_t, c_t$) $\overline{\xi}_t, \overline{\Omega}_t, \overline{\mu}_t = \text{SEIF}_motion_update(\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, u_t)$ $\widetilde{\mu}_t = \text{SEIF}_update_state_estimate(\overline{\xi}_t, \overline{\Omega}_t, \overline{\mu}_t)$ $\xi_t, \Omega_t = \text{SEIF}_measurement_update(\overline{\xi}_t, \overline{\Omega}_t, \widetilde{\mu}_t, z_t, c_t)$ $\widetilde{\xi}_t, \widetilde{\Omega}_t = \text{SEIF}_sparsification(\xi_t, \Omega_t)$ return $\widetilde{\xi}_t, \widetilde{\Omega}_t, \widetilde{\mu}_t$

SEIF_measurement_update

for all observed features $z_t^i = (r_t^i \phi_t^i s_t^i)$

Calculate \hat{z}_t^i, H_t^i

endfor

$$\xi_t = \bar{\xi}_t + \sum_i H_t^{i^T} Q_t^{-1} \left[z_t^i - \hat{z}_t^i + H_t^i \mu_t \right]$$

$$\Omega_t = \overline{\Omega}_t + \sum_i H_t^{i^T} Q_t^{-1} H_t^i$$

return ξ_t , Ω_t

SEIF_sparsification

Calculate
$$\breve{\Omega}_t = \Omega_t^1 - \Omega_t^2 + \Omega_t^3$$

$$\check{\xi}_t = \xi_t + \mu_t \left(\widecheck{\Omega}_t - \Omega_t \right)$$

return $\check{\xi}_t, \check{\Omega}_t$

with

$$\Omega_t^1 = p(x_t, m^+ | m^- = 0, z_{1:t}, u_{1:t}, c_{1:t})$$

$$\Omega_t^2 = p(m^+ | m^- = 0, z_{1:t}, u_{1:t}, c_{1:t})$$

$$\Omega_t^3 = p(m^+, m^0, m^- | z_{1:t}, u_{1:t}, c_{1:t})$$

SEIF_motion_update

$$\overline{\Omega}_t = \Phi_t - \kappa_t$$
$$\overline{\mu}_t = \mu_{t-1} + F_x^T \delta$$

Canonical form of

$$\bar{\Sigma}_t = G_t \Sigma_t G_t^T + F_x^T R_t F_x$$

$$\bar{\xi}_t = \xi_{t-1} + (\lambda_t - \kappa_t) \mu_{t-1} + \overline{\Omega}_t F_x^T \delta$$

return $\bar{\xi}_t, \overline{\Omega}_t, \bar{\mu}_t$

SEIF_update_state_estimate

For most map features $m^ \mu_{i,t} = \bar{\mu}_{i,t}$

For a few features
$$m^+$$

 $\mu_{i,t} = (F_i \Omega_t F_i^T)^{-1} F_i [\xi_t - \Omega_t \bar{\mu}_t + \Omega_t F_i^T F_i \bar{\mu}_t]$

For the pose

$$\mu_{x,t} = \left(F_x \Omega_t F_x^T\right)^{-1} F_x \left[\xi_t - \Omega_t \bar{\mu}_t + \Omega_t F_x^T F_x \bar{\mu}_t\right]$$

return μ_t

The effect of sparsification

The computation requires 'constant' time:

The effect of sparsification

The memory scales linearly:

The effect of sparsification

The prize is less accuracy, due to the approximation:

The degree of sparseness

By choosing the number of active features, accuracy can be traded against efficiency :

Effect of approximation

The effect of sparsification is less links between landmarks, more confidence, but nearly same information matrix:

Full Algorithm

To extend the algorithm for unknown correspondences, an estimate for the correspondence is needed:

$$\hat{c}_{t} = \underset{c_{t}}{\operatorname{argmax}} p(z_{t} \mid z_{1:t-1}, u_{1:t}, \hat{c}_{1:t-1}, c_{t})$$

$$\hat{c}_{t} = \underset{c_{t}}{\operatorname{argmax}} \int p(z_{t} \mid y_{t}, c_{t}) p(y_{t} \mid z_{1:t-1}, u_{1:t}, \hat{c}_{1:t-1}) dy_{t}$$

$$\hat{c}_{t} = \underset{c_{t}}{\operatorname{argmax}} \int \int p(z_{t} \mid x_{t}, y_{c_{t}}, c_{t}) p(x_{t}, y_{c_{t}} \mid z_{1:t-1}, u_{1:t}, \hat{c}_{1:t-1}) dx_{t} dy_{c_{t}}$$

Estimating the correspondence

To probability $p(x_t, y_{c_t} | z_{1:t-1}, u_{1:t}, \hat{c}_{1:t-1})$ can be approximated by the Markov blanket of all landmarks connected to robot pose x_t and landmark y_{c_t}

Correspondence test

Based on the probability that m_i corresponds to m_k :

Algorithm SEIF_correspondence_test($\Omega, \xi, \mu, m_i, c_k$)

$$B = B(j) \cup B(k)$$

$$\Sigma_{B} = (F_{B}\Omega F_{B}^{T})^{-1}$$

$$\mu_{B} = \Sigma_{B}F_{B}\xi$$

$$\Sigma_{\Delta} = (F_{\Delta}\Omega_{B}F_{\Delta}^{T})^{-1}$$

$$\mu_{\Delta} = \Sigma_{\Delta}F_{\Delta}\xi_{B}$$

return $\det(2\pi\Sigma_{\Delta})^{\frac{1}{2}}\exp\{-\frac{1}{2}\mu_{\Delta}^{T}\Sigma_{\Delta}^{-1}\mu_{\Delta}\}$

Results

MIT building (multiple loops):

(b) Incremental ML (map inconsistent on left)

Results

MIT building (multiple loops):

(c) FastSLAM (see next Chapter)

Results

MIT building (multiple loops):

UvA approach Q-WSM

(b) Incremental ML (map inconsistent on left)

Conclusion

The Sparse Extended Information Filter:

- □ Solves the Online SLAM problem efficiently.
- Where EKF spread the information of each measurement over the full map, SEIF limits the spread to 'active features'.
- □ All information in the stored in the canonical parameterization. Yet, an estimate of the mean $\hat{\mu}_t$ is still needed. This estimate is found with a hill climbing algorithm (and not a inversion of the information matrix).
- The accuracy and efficiency can be balanced by selecting an appropriate number of 'active features'.

 $p(x_t, m \mid z_{1:t}, u_{1:t})$

