Robot Paradigms

Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann, Dirk Haehnel, Mike Montemerlo, Nick Roy, Kai Arras, Patrick Pfaff and others

Robotics: General Background

- Autonomous, automaton
 - self-willed (Greek, auto+matos)
- Robot
 - Karel Capek in 1923 play R.U.R. (Rossum's Universal Robots)
 - labor (Czech or Polish, robota)
 - workman (Czech or Polish, robotnik)

The Robot

The word *robot* was introduced in 1920 in a play by Karel Capek called R.U.R

Asimov's Three Laws of Robotics

- A robot may not injure a human being, or, through inaction, allow a human being to come to harm.
- 2. A robot must obey the orders given it by human beings except when such orders would conflict with the first law.
- A robot must protect its own existence as long as such protection does not conflict with the first or second law.

[Runaround, 1942]

Electro

Westinghouse Motor Man, 1939 youtube

Erica

English Conversation

Intelligent Conversational Android 2016

Unimate robot arm - 1961

Tesla assembly line, 2012

Robotic Evolution

AIMA p. 901

The physical grounding hypothesis

'To build an intelligent system it is necessary to have its representations grounded in the physical world.'

i.e.:

- 'The world is its own best model; its always exactly up to date and contains always every detail there is to know.' [†]
- [†] Rodney A. Brooks, 'Elephants Don't Play Chess', Robotics and Autonomous System 6 (1990).

Trends in Robotics Research

• inaccurate models, inaccurate sensors

Classical / Hierarchical Paradigm

- 70's
- Focus on automated reasoning and knowledge representation
- STRIPS (Stanford Research Institute Problem Solver): Perfect world model, closed world assumption
- Find boxes and move them to designated position

Stanford Research Institute

Stanford CART '73

Stanford AI Laboratory / CMU (Moravec)

Classical Paradigm Stanford Cart

- 1. Take nine images of the environment, identify interesting points in one image, and use other images to obtain depth estimates.
- 2. Integrate information into global world model.
- 3. Correlate images with previous image set to estimate robot motion.
- 4. On basis of desired motion, estimated motion, and current estimate of environment, determine direction in which to move.
- 5. Execute the motion.

Trends in Robotics Research

• inaccurate models, inaccurate sensors

Reactive / Behavior-based Paradigm

- No models: The world is its own, best model
- Easy successes, but also limitations
- Investigate biological systems
- Best-known advocate: Rodney Brooks (MIT)

Classical Paradigm as Horizontal/Functional Decomposition

Reactive Paradigm as Vertical Decomposition

Characteristics of Reactive Paradigm

- Situated agent, robot is integral part of the world.
- No memory, controlled by what is happening in the world.
- Tight coupling between perception and action via behaviors.
- Only local, behavior-specific sensing is permitted (ego-centric representation).

Behaviors

- ... are a direct mapping of sensory inputs to a pattern of motor actions that are then used to achieve a task.
- ... serve as the basic building block for robotics actions, and the overall behavior of the robot is emergent.
- ... support good software design principles due to modularity.

Subsumption Architecture

- Introduced by Rodney Brooks '86.
- Behaviors are networks of sensing and acting modules (augmented finite state machines AFSM).
- Modules are grouped into layers of competence.
- Layers can subsume lower layers.
- No internal state!

Level 1: Wander

Level 2: Follow Corridor

Potential Field Methodologies

- Treat robot as particle acting under the influence of a potential field
- Robot travels along the derivative of the potential
- Field depends on obstacles, desired travel directions and targets
- Resulting field (vector) is given by the summation of primitive fields
- Strength of field may change with distance to obstacle/target

Primitive Potential Fields

Attractive

Repulsive

Tangential

Corridor following with Potential Fields

- Level 0 (collision avoidance) is done by the repulsive fields of detected obstacles.
- Level 1 (wander) adds a uniform field.
- Level 2 (corridor following) replaces the wander field by three fields (two perpendicular, one uniform).

Characteristics of Potential Fields

Suffer from local minima

- Backtracking
- Random motion to escape local minimum
- Procedural planner s.a. wall following
- Increase potential of visited regions
- Avoid local minima by harmonic functions

Characteristics of Potential Fields

- No preference among layers
- Easy to visualize
- Easy to combine different fields
- High update rates necessary
- Parameter tuning important

Reactive Paradigm

- Representations?
- Good software engineering principles?
- Easy to program?
- Robustness?
- Scalability?

Discussion

- Imagine you want your robot to perform navigation tasks, which approach would you choose?
- What are the benefits of the reactive (behavior-based) paradigm? How about the deliberate (planning) paradigm?
- Which approaches will win in the long run?

Trends in Robotics Research

• inaccurate models, inaccurate sensors

Hybrid Deliberative/reactive Paradigm

Combines advantages of previous paradigms

- World model used for planning
- Closed loop, reactive control

The result: Finite State Automata

FSM is a simplification of the world

[†] Sebastian Thrun '1996-2006 Autonomous Robots', 50 years Artificial₁₋₃₆ Intelligence Symposium, Bremen.

Searching for correlations in data

[†] Sebastian Thrun '1996-2006 Autonomous Robots', 50 years Artificial₁₋₃₇ Intelligence Symposium, Bremen.

Probabilistic Robotics

