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Question 1
A student takes a multiple-choice examination where each question has exactly m possible answers. As-
sume that a student knows the correct answer to a proportion p of all the questions; if he does not know the
correct answer, he makes a random guess.

You, as teaching assistant, have to grade this exam. You observe that question two is correctly answered
(z2 = true) by this student. What was the probability that the student was guessing based on this observa-
tion? Derive the formula for the conditional probability and calculate the actual percentage for p = 0.5 and
m = 4.

Question 2
The extended Kalman filter localization algorithm in section 7.4 of the textbook depends on a multivariate
Gaussian representation of uncertainty in the motion and measurement model. Noise enters the equations
through the addition of a (hopefully) small factor. It is important to understand that this is always an
approximation: real systems never experience zero-mean white Gaussian noise. For an extended Kalman
filter this approximation is made with an first-order Taylor expansion. For each of the noise sources below,
briefly describe how the zero-mean white Gaussian noise assumption fails for a classical Kalman filter, and
to what extend the EKF approximation solves this problem.

• odometry error in a differentially steered wheeled robot due to a mismatch in wheel size

• odometry error in a wheeled robot due to wheel slippage

• sonar errors due to multipath reflections

• temperature dependent drift in a rate gyro

Question 3
Consider a world with only four possible robot locations: X = x1, x2, x3, x4. Consider a Monte Carlo
localization algorithm which may use N samples among this locations. Initially, the samples are uniformly
distributed over those locations. As usual, it is perfectly acceptable if there are less particles as locations.
Let Z be a Boolean sensor variable characterized by the following probabilities:

p(z|x1) = 0.8 p(¬z|x1) = 0.2
p(z|x2) = 0.4 p(¬z|x2) = 0.6
p(z|x3) = 0.1 p(¬z|x3) = 0.9
p(z|x4) = 0.1 p(¬z|x4) = 0.9
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Monte Carlo uses these probabilities to generate particle weights, which are subsequently normalized
and used in the resampling process. For simplicity, let us assume we only generate one new sample in the
resampling process, regardless of N . This sample might correspond to any of the four locations in X . Thus,
the sampling process defines a probability distribution over X . With N = ∞ this distribution is equal to
true posterior.

a) Calculate the evidence probability.
Calculate both P (Z = z) and P (Z = ¬z) based on the prior uniform distribution.

b) Calculate the true posterior.
Based on the prior uniform distribution, calculate the conditional probabilty p(X|z) for each of the locations
X = x1, x2, x3, x4 and normalize this to the true posterior.

c) Calculate the propability that a particle is resampled
Assume that you use only two particles N = 2. There are 24 = 16 possible combinations possible. The
following table contains values which could be used to calculate the resampling probability.

number samples probability p(z|s) weights probability of resampling
of sample set for each sample s for each sample s for each location xi

1 x1 x1
1
16

4
5

4
5

1
2

1
2

1
16 0 0 0

2 x1 x2
1
16 ··

2
5

6
9

3
9

1
24

1
48 0 0

3 x1 x3
1
16 ··

1
10

8
9 ··

. . . 0 1
144 0

4 x1 x4
1
16 ··

1
10 ·· ··

. . . 0 0 . . .
5 x2 x1

1
16

2
5 ·· ·· ··

. . . . . . . . . 0
6 x2 x2

1
16 ·· ·· ·· ··

. . . 1
16 . . . . . .

7 x2 x3
1
16 ·· ··

4
5 ··

. . . . . . 1
80 . . .

8 x2 x4
1
16 ·· ·· ·· ·· . . . . . . . . . . . .

9 x3 x1 ··
1
10 ··

1
9 ··

. . . 0 . . . 0
10 x3 x2 ·· ·· ·· ·· ·· . . . . . . . . . . . .
11 x3 x3 ·· ·· ·· ·· ·· . . . . . . . . . . . .
12 x3 x4 ··

1
10 ·· ··

1
2

. . . . . . . . . 1
32

13 x4 x1 ·· ·· ·· ·· ·· . . . . . . . . . . . .
14 x4 x2 ·· ·· ··

1
5 ··

. . . 1
20 . . . . . .

15 x4 x3 ·· ··
1
10 ·· ·· . . . . . . . . . . . .

16 x4 x4 ··
1
10

1
10 ··

1
2 0 0 0 1

16

. . . 73
240 . . . . . .

d) Is a particle filter biased?
Compare the answer of b) and c). Are the two probability distributions the same? In which direction a
particle filter with 2 particles is biased? Explain this difference.
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Question 4
Consider a robot that operates in a triangular environment with three types of landmarks, as illustrated in
Figure 1:

Figure 1: A triangular environment

Each arc is a location and each location has two different landmarks, each with a different color. Let us
assume that in every round the robot can only inquire about the presence of one landmark type: either the
one labeled ”r”, the one labeled ”g” or the one labeled ”b”.

a) Clockwise
Suppose that robot first fires the detector for ”b” landmarks and moves clockwise to the next arc. What
would be the optimal landmark detector to use next?

b) Counterclockwise
How would the answer change if the robot moved counterclockwise to the next arc?

Success!

Acknowledgements
One question is based on an exercise from the Probability Theory refresher in Falko Bause’s book[1].
Another question is based on an exercise from the Robotics chapter of Russell and Norvig [2].
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