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Question 1

This question is based on the environment for knowledge-based agents introduced in ’Artificial Intelligence
- A Modern Approach’[1]. Thewumpus world is a cave consisted of rooms connected by passageways.
Lurking in the cave is the terrible wumpus, but we ignore the beast for this question. An agent would enter
this cave in search for a piece of gold, but also this reward isnot in scope for this question. Only relevant is
the knowledge that some rooms contain bottomless pits that will trap anyone who wanders in these rooms.
A sample wumpus world of 4x4 is given in Figure 1.
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Figure 1: A typical wumpus world. The agent is in the bottom left corner. Further there are three pits, a
wumpus and a piece of gold. (Courtesy Russell and Norvig [1]). Note: in this problem you may forget the
wumpus, the stench and the piece of gold. Concentrate on the pits and the occurrence of a breeze.

The agent will perceive aBreezein a room directly (not diagonally) adjacent to a pit. The world is
partially observable, the agent give only partial information about the world. For example, Figure 2 shows
a situation in which each of the three reachable squares - [1,3], [2,2], and [3,1] - might contain a pit. Pure
logical inference can conclude nothing about which square is most likely to be safe, so a logical agent might
have to choose randomly. We will see that a probabilistic agent can do much better than the logical agent.

The relevant properties of the wumpus world of Figure 2 is theprior information that (1) a pit causes
breezes in all neighboring squares, and (2) each square other than [1,1] contains a pit with probabilitypi,j =
0.2. The agent has moved around in the environment and collectedthe observationsz = ¬b1,1 ∧ b1,2 ∧ b2,1

about the presence of breezebi,j and the evidencee = ¬p1,1 ∧ ¬p2,1 ∧ ¬p1,2 about the presence of a pit
pi,j . To make a decision for the next square to go to, we are interested in the probabilities ofP(P1,3|e, z),
P(P2,2|e, z), andP(P3,1|e, z). If we concentrate on calculatingP1,3 and call this thequery-square, the
other two probabilitiesP2,2, P3,1 can be calculated equivalently. The wumpus world can than bedivided
up in 4 regions: thequery-square we like to know the probability from, theknown-squares were we have
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Figure 2: After perceiving a breeze in both [1,2] and [2,1], the logical agent is stuck - there is no save place
to explore (Courtesy Russell and Norvig [1]). Note: probability can be used to show that some places are
less safe than others.

evidencee from, the frontier the probabilities are conditioned by observationsz from and theother-squares
behind the frontier. One can now argue that the other squarescannot cause the detection of a breeze in the
known-region; the observationz is independent of the state ofother iff the state ofknown, query and
frontier is given.
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Figure 3: Division of the state space in the regionsknown, frontier, query andother (Courtesy Russell
and Norvig [1]).

Based on this division of regions, the following inference can be made:

P(P1,3|e, z) ≡ P(query|known, z)

= η
∑
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∑

other
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∑
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P (other)

= η
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∑
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Notice that the expressionP(z|query, known, frontier) is a filter, with value 1 when the observation
z = ¬b1,1 ∧ b1,2 ∧ b2,1 can be explained by enough pits in the frontier-query combination (between 1
and 3 pits), and value 0 otherwise. There are in total 5 configurations of the frontier consistent with this
observation (see Figure 4 and only for those 5 configurationP (frontier) should be calculated.
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Figure 4: Configuration of the frontier variablesP2,2 andP3, 1 which are consistent with the observation
z = ¬b1,1 ∧ b1,2 ∧ b2,1 (Courtesy Russell and Norvig [1]): (a) three configurationswith P1,3 = true and
(b) two configurations withP1,3 = false

The resulting probability indicates that based on the observations and evidence the change on a pit for
square [1,3] is31%:

P(query|known, z) = η
′

〈0.2(0.04 + 0.16 + 0.16), 0.8(0.04 + 0.16)〉 ≈ 〈0.31, 0.69〉 (1)

(a) Show that the square [2,2] contains a pit with a probability of roughly86%.

(b) In the previous calculation the prior probability of a pit was estimated with probability0.2, indepen-
dently of the presence of pits of the other squares. Suppose now instead thatN/5 pits are scattered
at random among theN squares other than [1,1]. Are the variablesPi,j andPk,l still independent?
What is the joint distributionP(P1,1, . . . , P4,4) now? Redo the calculation for the probabilities of
pits in [1,3] and [2,2].

Question 2

For this question you have to rely on a distance-only sensor.You try to locate your friend using her cell
phone signals. Suppose that on the map of Amsterdam, the Science Park is located atm0 = (10, 8)T , and
your friend’s home is situated atm1 = (6, 3)T . You have access to the data received by two cell towers. You
have access to the data received by two cell towers, which arelocated at the positionsx0 = (12, 4)T and
x1 = (5, 7)T , respectively. The distance between your friend’s phone and the the towers can be computed
from the intensities of your friend’s cell phone signals. The distance measurements are distributed by white
Gaussian noise with variancesσ2

0 = 1 for tower 0 andσ2
1 = 1.5 for tower 1. You receive the distance

measurementsd0 = 3.9 andd1 = 4.5 from the two towers.

(a) Make a drawing of the situation.

(b) At which of the two places is your friend more likely to be? Explain your calculations.

(c) Now, suppose you have prior knowledge about your friend’s habits which suggest that your friend is
currently is at home with probabilityP (at home) = 0.7, at the university withP (at university) =
0.3 and at any other place withP (other) = 0. Use this prior knowledge to recalculate the likelihoods
of b).
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Question 3

A common drive model for indoor robots isholonomic. A holonomic robot has many controllable degrees
of freedom as the dimension of its configuration (or pose) space. Here, you are asked to generalize the
velocity model of Section 5.3 of the ’Probabilistic Robotics’ book [2] to a holonomic robot operating in the
plane. Assume the robot can control its forward velocity, anorthogonal sidewards velocity, and a rotational
velocity. Let us arbitrarily give sidewards motion to the left positive values, and sideward motions to the
right negative values.

(a) State a mathematical model for such robot, assuming its controls are subject to independent Gaussian
noise.

(b) Provide a procedure for calculatingp(xt|ut, xt−1).

(c) Provide a sampling procedure for samplingxt ≈ p(xt|ut, xt−1).

Success!
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