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Question 1
Explain in a few sentences all of the components of the EKF, i. e., µt, Σt, g, Gt, h, Ht, Qt, Rt, Kt and
why they are needed.

Answer
The Extended Kalman Filter depends on the definition of the following components:

µt: This is the estimate for the mean of the distribution of the state x at time t computed by the EKF. In
mobile robotics applications the state x typically includes the pose of the robot, the path of the robot
and/or the location of the landmarks.

Σt: This is the estimate for the covariance matrix of the distribution of the state x at time t computed by
the EKF.

g(u, x): This function estimates the current state xt from the control u and previous state variables xt−1. In
mobile robotics applications this function often defines the motion model of the system.

Gt: The Jacobian matrix of g evaluated at the previous estimate of the state namely:

Gt =
∂g

∂x

∣∣
x=µt−1

h(x): This function estimates the measurement zt from the current state variables xt. In mobile robotics
applications this function defines the measurement model of the system, such as range and bearing of
a landmark.

Ht: The Jacobian matrix of h evaluated at the current estimate of the state from prediction only, namely:

Ht =
∂h

∂x

∣∣
x=µ̄t

Qt: This is the covariance matrix (assumed to be known) of the zero-mean Gaussian error that corrupts
the prediction of the state, i.e., the present state variables are given by the prediction of the function g
plus some noise. This is necessary as in reality every prediction model is subject to some additional
noise (e.g., imperfections in the terrain, wheel slippage, etc.).

Rt: This is the covariance matrix (assumed to be known) of the zero-mean Gaussian error that corrupts
the measurements, i.e., the measurement is given by the function h plus some noise. This is necessary
as any measurement is subject to some noise (e.g., accuracy of the sensor, systematic errors, etc.).

Kt: This is the Kalman Gain, which indicates the balance between the predictions from the motion model
g and the corrections from the measurement model h, which together gives the new estimate on
the distribution of the state x. The Kalman Gain is time dependent, because it is a function of the
predicted covariance at time t.
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Question 2
A robot is moving along the middle of a corridor with a given accurate map, as depicted in figure 1.

Figure 1: Accurate map of a corridor with three rooms

At some of the given locations xi the robot takes a measurement of the distance zk, using a laser beam.
Every measurement is corrupted only with additive Gaussian noise N (µ, σ) with µ = 0m and σ = 1m.
The scanner range is 80m. The measured distances are z1 = 1.1m, z2 = 2.1m, z3 = 8.6m, z4 = 9.4m.
The correspondence between zk and xi is unknown.

(a) For each measurement, determine the most likely robot pose by calculating the probabilities for each
position given the measurement using Bayes’rule. Assume an uniform distributed prior. The evidence
term (denominator) can be neglected, but the probabilities should be scaled such that

∑4
i=1 P (xi|z) =

1.

(b) The robot believes that taking measurements at the positions x2 and x3 is in general three times as
likely as doing so at x1 and x4. Use this prior information to recalculate the probabilities of (a).

(c) Because people are present in the corridor, a faulty measurement of z = 1m can occur in 33% of the
cases, no matter the actual distance. How does this change the results of (a) and (b).

Answer
(a) The most likely position for a given measured distance z, can be calculated by

argmax
i

(P (xi|z) = argmax
i

(
P (z|xi)P (xi)

P (z)
)

because we are calculating the maximum value, and P (z) is constant, we can ignore this value.
Because there is an uniform distributed prior, P (xi) will be 1

4 for all i. So, the most likely position
can be calculated with

argmax
i

( 1
4P (z|xi))

With the given map, one would expect at the given positions (x1, · · · , x4) the observations h(xi) =
(z̄1 = 1m, z̄2 = 4m, z̄2 = 7m, z̄4 = 10m). P (z|xi) can be calculated from the difference between
the observed measurement zk and the expected measurement zi at location zi:

P (zk|xi) = N (zk − h(xi)|σ) =
1√
2π
e−

(zk−z̄i)2

2
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taking into account the Gaussian noiseN (µ, σ) with σ = 1m. So, for each combination of zk and xi
the following calculation can be made:

p(x1|z1) = 1
4P (z1|x1) = 1

4
1√
2π
e−

(1.1−1)2

2 = 0.0992 → P (x1|z1) ' 0.99 ←

p(x2|z1) = 1
4P (z1|x2) = 1

4
1√
2π
e−

(1.1−4)2

2 = 0.0015 → P (x2|z1) ' 0.01

p(x3|z1) = 1
4P (z1|x3) = 1

4
1√
2π
e−

(1.1−7)2

2 = 2.8× 10−9 → P (x3|z1) ' 0.00

p(x4|z1) = 1
4P (z1|x4) = 1

4
1√
2π
e−

(1.1−10)2

2 = 6.3× 10−19 → P (x4|z1) ' 0.00

p(x1|z2) = 1
4P (z2|x1) = 1

4
1√
2π
e−

(2.1−1)2

2 = 0.0545 → P (x1|z2) ' 0.77 ←

p(x2|z2) = 1
4P (z2|x2) = 1

4
1√
2π
e−

(2.1−4)2

2 = 0.0164 → P (x2|z2) ' 0.23

p(x3|z2) = 1
4P (z2|x3) = 1

4
1√
2π
e−

(2.1−7)2

2 = 6.1× 10−7 → P (x3|z2) ' 0.00

p(x4|z2) = 1
4P (z2|x4) = 1

4
1√
2π
e−

(2.1−10)2

2 = 2.8× 10−15 → P (x4|z2) ' 0.00

p(x1|z3) = 1
4P (z3|x1) = 1

4
1√
2π
e−

(8.6−1)2

2 = 2.9× 10−14 → P (x1|z3) ' 0.00

p(x2|z3) = 1
4P (z3|x2) = 1

4
1√
2π
e−

(8.6−4)2

2 = 2.5× 10−6 → P (x2|z3) ' 0.00

p(x3|z3) = 1
4P (z3|x3) = 1

4
1√
2π
e−

(8.6−7)2

2 = 0.0277 → P (x3|z3) ' 0.43

p(x4|z3) = 1
4P (z3|x4) = 1

4
1√
2π
e−

(8.6−10)2

2 = 0.0374 → P (x4|z3) ' 0.58 ←

p(x1|z4) = 1
4P (z4|x1) = 1

4
1√
2π
e−

(9.4−1)2

2 = 4.8× 10−17 → P (x1|z4) ' 0.00

p(x2|z4) = 1
4P (z4|x2) = 1

4
1√
2π
e−

(9.4−4)2

2 = 4.6× 10−8 → P (x2|z4) ' 0.00

p(x3|z4) = 1
4P (z4|x3) = 1

4
1√
2π
e−

(9.4−7)2

2 = 0.0056 → P (x3|z4) ' 0.06

p(x4|z4) = 1
4P (z4|x4) = 1

4
1√
2π
e−

(9.4−10)2

2 = 0.0833 → P (x4|z4) ' 0.94 ←

The indication← in the calculation above indicates the maximum for each location, so the most likely
location for observations (z1 = 1.1m, z2 = 2.1m) is identified as x1 and for (z3 = 8.6m, z4 = 9.4m)
is identified as x4.

(b) The robot modifies its prior belief, which results in different values for P (xi). This new priors are
respectively P (x1) = P (x4) = 1

8 and P (x2) = P (x3) = 3
8 . Although P (zk|xi) are the same

numbers as calculated in (a), the likelihoods p(xi|zk) and the normalization have to be recalculated:

p(x1|z1) = 1
8P (z1|x1) = 1

8
1√
2π
e−

(1.1−1)2

2 = 0.0496 → P (x1|z1) ' 0.96 ←

p(x2|z1) = 3
8P (z1|x2) = 3

8
1√
2π
e−

(1.1−4)2

2 = 0.0022 → P (x2|z1) ' 0.04

p(x3|z1) = 3
8P (z1|x3) = 3

8
1√
2π
e−

(1.1−7)2

2 = 4.1× 10−9 → P (x3|z1) ' 0.00

p(x4|z1) = 1
8P (z1|x4) = 1

8
1√
2π
e−

(1.1−10)2

2 = 3.1× 10−19 → P (x4|z1) ' 0.00

p(x1|z2) = 1
8P (z2|x1) = 1

8
1√
2π
e−

(2.1−1)2

2 = 0.0272 → P (x1|z2) ' 0.53 ←

p(x2|z2) = 3
8P (z2|x2) = 3

8
1√
2π
e−

(2.1−4)2

2 = 0.0264 → P (x2|z2) ' 0.47

p(x3|z2) = 3
8P (z2|x3) = 3

8
1√
2π
e−

(2.1−7)2

2 = 9.1× 10−7 → P (x3|z2) ' 0.00

p(x4|z2) = 1
8P (z2|x4) = 1

8
1√
2π
e−

(2.1−10)2

2 = 1.4× 10−15 → P (x4|z2) ' 0.00

p(x1|z3) = 1
8P (z3|x1) = 1

8
1√
2π
e−

(8.6−1)2

2 = 1.4× 10−14 → P (x1|z3) ' 0.00

p(x2|z3) = 3
8P (z3|x2) = 3

8
1√
2π
e−

(8.6−4)2

2 = 3.8× 10−6 → P (x2|z3) ' 0.00

p(x3|z3) = 3
8P (z3|x3) = 3

8
1√
2π
e−

(8.6−7)2

2 = 0.0416 → P (x3|z3) ' 0.69 ←

p(x4|z3) = 1
8P (z3|x4) = 1

8
1√
2π
e−

(8.6−10)2

2 = 0.0187 → P (x4|z3) ' 0.31
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p(x1|z4) = 1
8P (z4|x1) = 1

8
1√
2π
e−

(9.4−1)2

2 = .48× 10−17 → P (x1|z4) ' 0.00

p(x2|z4) = 3
8P (z4|x2) = 3

8
1√
2π
e−

(9.4−4)2

2 = 6.7× 10−8 → P (x2|z4) ' 0.00

p(x3|z4) = 3
8P (z4|x3) = 3

8
1√
2π
e−

(9.4−7)2

2 = 0.0084 → P (x3|z4) ' 0.17

p(x4|z4) = 1
8P (z4|x4) = 1

8
1√
2π
e−

(9.4−10)2

2 = 0.0417 → P (x4|z4) ' 0.83 ←

The indication ← in the calculation above indicates the maximum for each location, so the best
estimate has only changed for z3: the most likely location for observations (z1 = 1.1m, z2 = 2.1m)
is still x1, for (z3 = 8.6m) now x3 and for (z4 = 9.4m) still x4.

(c) In section 6.3 this type of measurement error was described as Unexpected objects. The mea-
surements should now be modelled with the weighted average of two distributions: phit(z|xi) and
pshort(z|xi). The weight zshort is given (0.33), so the weight zhit is (1− zshort) = 0.67. Together,
the estimate of the posterior becomes:

P (z|xi) =
(
zhit
zshort

)T
·
(
phit(z|xi)
pshort(z|xi)

)
In the case of a faulty measurement the observation z = 1.0m is independent of the location. So

pshort(z|xi) = 1√
2π
e−

(zk−1.0)2

2 . For the distribution phit(z|xi) the results of (a) and (b) can be used.
So for the first case (p(x1|z1) in question 2a) the calculation is as follows (with for both phit and
pshort an expected observation z̄ = 1m:

p(x1|z1) = 1
4P (z1|x1) = 1

4 (zhit · phit(z|x1) + zshort · pshort(z|x1))

= 1
4 (0.67 · 1√

2π
e−

(zi−1)2

2 + 0.33 · 1√
2π
e−

(zi−1.0)2

2 )

After normalization, the probabilities for each of the combination is:

P (x1|z1) ' 0.50 ←
P (x2|z1) ' 0.17
P (x3|z1) ' 0.16
P (x4|z1) ' 0.16

P (x1|z2) ' 0.39 ←
P (x2|z2) ' 0.25
P (x3|z2) ' 0.18
P (x4|z2) ' 0.18

P (x1|z3) ' 0.19
P (x2|z3) ' 0.19
P (x3|z3) ' 0.29
P (x4|z3) ' 0.33 ←

P (x1|z4) ' 0.19
P (x2|z4) ' 0.17
P (x3|z4) ' 0.19
P (x4|z4) ' 0.46 ←

The indication← in the calculation above indicates the maximum for each location, so even with a
faulty sensor the estimate for question 2a is not changed; the most likely location for observations
(z1 = 1.1m, z2 = 2.1m) is still x1 and for (z3 = 8.6m, z4 = 9.4m) still x4.

This is not the case with the priors of question 2b, they dominate the answer now that the measure-
ment is less certain:
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P (x1|z1) ' 0.30
P (x2|z1) ' 0.31 ←
P (x3|z1) ' 0.30
P (x4|z1) ' 0.10

P (x1|z2) ' 0.21
P (x2|z2) ' 0.40 ←
P (x3|z2) ' 0.30
P (x4|z2) ' 0.10

P (x1|z3) ' 0.10
P (x2|z3) ' 0.29
P (x3|z3) ' 0.45 ←
P (x4|z3) ' 0.17

P (x1|z4) ' 0.10
P (x2|z4) ' 0.30
P (x3|z4) ' 0.33 ←
P (x4|z4) ' 0.27

The indication← in the calculation above indicates the maximum for each location, so with a faulty
sensor and a 3× more likely belief for x2 and x3 the most likely location for observations (z1 =
1.1m, z2 = 2.1m) becomes x2 and for (z3 = 8.6m, z4 = 9.4m) the most likely location becomes
x3.

Question 3
Assume you have a robot equipped with a sensor capable of measuring the distance and bearings to land-
marks. The sensor furthermore provides you with the identity of the observed landmarks. A sensor mea-
surement z = (zr, zθ)T is composed of the measured distance zr and the measured bearing zθ to the
landmark with signature l. Both the range and the bearing measurements are subject to zero-mean Gaussian
noise with variances σ2

r and σ2
θ . The range and the bearing measurements are independent from each other.

A sensor model models the probability of a measurement z of landmark l observed by the robot from pose
x. Design a sensor model p(z|x, l) for this type of sensor.

Answer
The likelihood model for the sensor has the following form assuming that the range and the bearing mea-
surements are independent given the pose

p(z|x, l) = p(zr, zθ|x, l) = N (zr − ẑr, σ2
r)N (zθ − ẑθ, σ2

θ)

where ẑr is the expected range measurement, ẑθ is the expected bearing measurement and N (·, σ2) is
the zero mean Gaussian distribution.

Question 4
Suppose an indoor robot uses sonar sensors with a 15 degree opening cone, mounted on a fixed height so
that they point out horizontally and parallel to the ground. This is a common configuration for an indoor
robot. Discuss what happens when the robot faces an obstacle whose height is just below the height of the
sensor (for example, 15 cm below). Specially, answer the following questions:

(a) Under what conditions will the robot detect the obstacle? Under what conditions will it fail to detect
it? Be concise.
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(b) What implications does this all have for the binary Bayes filter and the underlying Markov assump-
tion? How can you make the occupancy grid algorithm fail?

(c) Based on your answer to the previous question, can you provide an improved occupancy grid map-
ping algorithm that will detect the obstacle more reliably than the plain occupancy grid mapping
algorithm?

Answer:

(a) The robot will detect the obstacle when it is further away, and will fail to detect to obstacle when it is
close to the robot. Most of the signal in the main cone of an sonar sensor will pass over the obstacle,
although reflections from side lobs (with a much lower signal) still have a chance to be detected
(because nearby reflections give a stronger signal). Yet, the main cone will only hit the obstacle at
the cone is expanded to 15cm, which is at slightly more than a meter (1.14m = 0.15/tan(15o/2)).

(b) This will result in many faulty updates of the Bayes Filter, resulting that the occupancy grid con-
verges to free space, even when obstacles have been seen before. This is a violation of the Markov
assumption, which assumes that the state (occupancy grid) aggregates all previous information, so
that no history has to be maintained.

(c) Aggregating the number of times the number of times a hit or a miss is observed for each grid cell (a
likelihood field), would provide an improved occupancy grid mapping algorithm for this situation.

Question 5
GraphSLAM and the Sparse Extended Information Filter both model the state with an information matrix
Ω and information vector ξ, and both see off-diagonal elements in the information matrix Ω as constraints.
Yet, both algorithms reduce the number of constraints in a completely different way.

(a) Explain in your own words the difference between the reduction of constraints between GraphSLAM
and the Sparse Extended Information Filter.

(b) The Sparse Extended Information Filter conditions away all passive features m−, by assuming
m− = 0. Why is this done? What would be the update equation if these features would not be
conditioned away? Would the result be more accurate or less accurate? Would the computation be
more or less efficient? Be consise.

Answer:

(a) GraphSLAM reduces constraints by removing links between robot poses and observed features, by
adding the observed constraints to the corresponding link between the involved robot poses. In con-
trary, SEIF reduces constraints by removing contraints from the links between robot poses, instead
adding those constraints to links between nearby (active) features.

(b) For an Information Filter, assuming m− = 0 is equivalent with the observation that no information is
available, which is a valid for features not nearby (passive landmarks). So this approximation allows
to ignore dependencies between passive landmarks and robot poses. This makes the information
matrix Ω sparse. Without this sparsification step is SEIF is equivalent with an Extended Information
Filter, as described in chapter 3; an approach which is only useful for localization on a limited number
of landmarks but doesn’t scale to full online SLAM. The sparsification step makes the result less
accurate but faster to compute. Most computation gain originates from the calculation of the inverse
of the Information Matrix Ω, which can be calculated much faster for a sparse matrix.
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Question 6
You have a robot which received the following map:

Figure 2: A map of environment with 4 rooms. Courtesy Kevin P. Murphy [1]

This map is a occupancy map, with four possible labels for each grid cell (closed doors - red, open
doors - green, walls- black, free space - white). The robot has a sensor on board, which can only detect
if there is an obstacle to the nearby horizontal and vertical grid cells. This means that there are 42 = 16
different observations zt possible. In the following table those observations are indicated, with as example
one location where that observation could be made.

m55 + · · · m32 + · · · m98 + · · · m83 + · · ·

m28 + · · · m29 + · · · m77 + · · · m92 + · · ·

m99 + · · · m75 + · · · m53 + · · · m25 + · · ·

∅ ∅ ∅ ∅

Note that the four later observations do not occur, because an open door is also perceived as no obstacle.

(a) Calculate the probability for each of the observations z1···16 to be measured on this map.

Answer:
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m55 +m88 m32 +m82 +m73 +m78 m98 +m93 +m38 +m57 m79 +m89 +m38

→ P (z1) = 2
44 → P (z2) = 4

44 → P (z3) = 4
44 → P (z4) = 3

44

m28 +m78 m23 +m29 +m73 +m59 m22 +m27 +m72 +m77 m92 +m79 +m52

→ P (z5) = 2
44 → P (z6) = 4

44 → P (z7) = 4
44 → P (z8) = 3

44

m99 +m33 +m39 +m95 m75 +m35 +m65 +m85+ m53 +m54 +m56 +m58 +m94 m25

m42 +m47 +m69 +m45

→ P (z9) = 4
44 → P (z10) = 8

44 → P (z11) = 5
44 → P (z12) = 1

44

∅ ∅ ∅ ∅
→ P (z13) = 0

44 → P (z14) = 0
44 → P (z15) = 0

44 → P (z16) = 0
44

As a final check, we apply the rule of Total Probability
∑16
k=1 P (zk) = 1 to see if no location mij is

forgotten. Fortunatelly 2 + 4 + 4 + 3 + 2 + 4 + 4 + 3 + 4 + 8 + 5 + 1 = 44.

(b) There is a small draft, with manifest itself for this environment in a small chance Pc that an open door
closes. How should such a state-change be included in the description of the world, in respectively a
Kalman Filter, an Extended Kalman Filter and a Particle Filter?

Answer:
This small draft is a state transition xt1 → xt, independent from any control ut. For a Kalman Filter this

can be modelled in the state transition matrix At, because the small chance Pc effects the first two elements
of the tuple (closed doors - red, open doors - green, walls- black, free space - white): redt = Pc ∗ greent−1

and greent = (1− Pc) ∗ greent−1. For the Extended Kalman Filter the state transition can be included in
the function g(). For the Kalman filter it should be included in the state transition probability P (xt|ut, xt−1)
on line 4 of Table 4.3 of the textbook.

The robot is not only equipped with a range sensor which can detect nearby obstacles, but in addition
also with a microphone. The robot hears a door bang, and knows for sure that one of the four open doors is
now closed. So, each of the four new maps are as likely:

(c) Design a policy to determine the robot’s location by executing an minimum of combinations of
(ui, zi) when the first observation is z0 is equal to observation that can be made at m29.
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Figure 3: Four possible maps of environment with an additional closed door
.

Answer:
The first observation z0 = z13 can for each of the four worlds made on four different locations. In

addition, in the third world wc of Fig. 3 the observation can also be made at fifth location m78. So, the
robot can be at 17 different world-location combinations. For all 17 locations the robot can move without
danger into two directions: u1 =↑ or u1 =→. When u1 =↑ is chosen the next observation at t = 1
is already unique for one location (m)58 in all possible worlds. For the other 13 possible world-location
combinations additional moves u and observations z are needed. The same is true for the other choice
u1 =→, but we will work out the branch for u1 =↑, because for this branch a combination of moves and
observations can be created which is safe to be executed in all cases:

wa −m23 : (z0 = z13, u1 =↑, z1 = z7, u2 =→, z2 = z8) ∴ m32 at t = 2 (1)

wa −m29 : (z0 = z13, u1 =↑, z1 = z5, u2 =→, z2 = z3) ∴ m38 at t = 2 (2)

wa −m59 : (z0 = z13, u1 =↑, z1 = z11) ∴ m58 at t = 1 (3)

wa −m73 : (z0 = z13, u1 =↑, z1 = z7, u2 =→, z2 = z2, u3 =→, z3 = z8) ∴ m92 at t = 3 (4)

wb −m23 : (z0 = z13, u1 =↑, z1 = z7, u2 =→, z2 = z2, u3 =→, z3 = z10) ∴ m42 at t = 3 (5)

wb −m29 : (z0 = z13, u1 =↑, z1 = z5, u2 =→, z2 = z3) ∴ m38 at t = 2 (6)

wb −m59 : (z0 = z13, u1 =↑, z1 = z11) ∴ m58 at t = 1 (7)

wb −m73 : (z0 = z13, u1 =↑, z1 = z7, u2 =→, z2 = z2, u3 =→, z3 = z8) ∴ m92 at t = 3 (8)

wc −m23 : (z0 = z13, u1 =↑, z1 = z7, u2 =→, z2 = z2, u3 =→, z3 = z10) ∴ m42 at t = 3 (9)

wc −m29 : (z0 = z13, u1 =↑, z1 = z5, u2 =→, z2 = z3) ∴ m38 at t = 2 (10)

wc −m59 : (z0 = z13, u1 =↑, z1 = z11) ∴ m58 at t = 1 (11)

wc −m73 : (z0 = z13, u1 =↑, z1 = z7, u2 =→, z2 = z2, u3 =→, z3 = z8) ∴ m92 at t = 3 (12)

wc −m78 : (z0 = z13, u1 =↑, z1 = z5, u2 =→, z2 = z1) ∴ m86 at t = 2 (13)

wd −m23 : (z0 = z13, u1 =↑, z1 = z7, u2 =→, z2 = z2, u3 =→, z3 = z10) ∴ m42 at t = 3 (14)

wd −m29 : (z0 = z13, u1 =↑, z1 = z5, u2 =→, z2 = z3) ∴ m38 at t = 2 (15)

wd −m59 : (z0 = z13, u1 =↑, z1 = z11) ∴ m58 at t = 1 (16)

wd −m73 : (z0 = z13, u1 =↑, z1 = z7, u2 =→, z2 = z2, u3 =→, z3 = z8) ∴ m92 at t = 3 (17)

So, the minimum policy to localize in this possible worlds is a sequence (z0, u1 =↑, z1, u2 =→
, z2, u3 =→, z3) combined with the the following decision tree:
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1: procedure LOCALIZE(sequence)
2: s← 0
3: while s <=length(sequence) do
4: ut = sequence(++s)
5: execute(ut)
6: zt = sequence(++s)
7: if zt == z1 then return m86

8: if zt == z3 then return m38

9: if zt == z8 and s > 5 then return m92

10: if zt == z8 then return m32

11: if zt == z10 then return m42

12: if zt == z11 then return m58

Success!
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