

Probabilistic Robotics The Sparse Extended Information Filter

MSc course Artificial Intelligence 2017

https://staff.fnwi.uva.nl/a.visser/education/ProbabilisticRobotics/

Arnoud Visser
Intelligent Robotics Lab
Informatics Institute
Universiteit van Amsterdam

A.Visser@uva.nl

Images courtesy of Sebastian Thrun, Wolfram Burghard, Dieter Fox, Michael Montemerlo, Dick Hähnel, Pieter Abbeel and others.

Simultaneous Localization and Mapping

A robot acquires a map while localizing itself relative to this map.

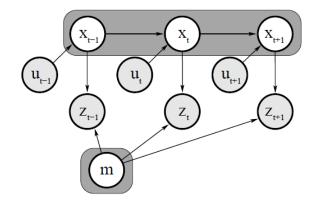
Online SLAM problem

Full SLAM problem

$$p(x_t, m | z_{1:t}, u_{1:t})$$

$$(u_{t-1})$$
 (u_t)
 (u_{t+1})
 $(u_{t+1}$

$$p(x_{1:t}, m | z_{1:t}, u_{1:t})$$



Estimate map m and current position x_t

Estimate map m and driven path $x_{1:t}$

SEIF SLAM

SEIF SLAM reduces the state vector y again to the current position x_t

$$y_t = \left(x_t m_{1,x} m_{1,y} s_1 \cdots m_{N,x} m_{N,y} s_N\right)^T$$

This is the same state vector *y* as EKF SLAM

State estimate

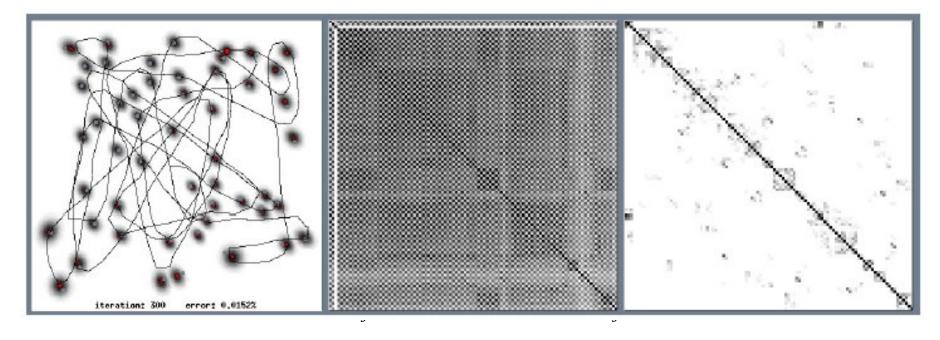
SEIF SLAM requires every timestep inference to estimate the state

$$\widetilde{\mu}_t = \widetilde{\Omega}^{-1} \widetilde{\xi}$$

The state estimated is also done by GraphSLAM, as a post-processing step.

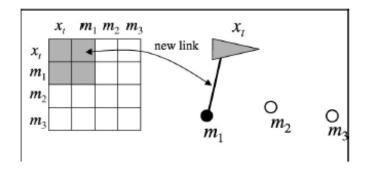
Sparseness of *Information Matrix*

After a while, all landmarks are correlated in EKF's correlation matrix



The normalized information matrix is naturally sparse; most elements are close to zero (but none is zero).

The observation of a landmark m_1 introduces a constraint:

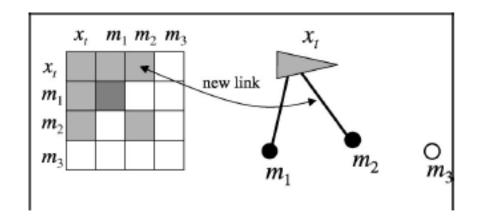


The constraint is of the type:

$$H_t^T Q_t^{-1} H_t$$

Where $h(x_t, m_j)$ is the measurement model and Q_t the covariance of the measurement noise.

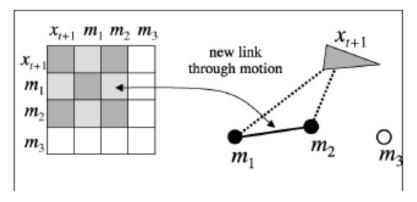
The observation of a landmark m_2 introduces another constraint:



The *information vector* increases with the term:

$$H_{t}^{T}Q_{t}^{-1}(z_{t}^{i}-h(\overline{\mu}_{t})+H_{t}\mu_{t})$$

The movement of the robot from x_1 to x_2 also introduces an constraint:



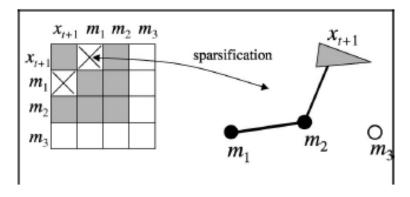
The constraint is now between the landmarks m_1 and m_2 (and not between the path x_{t-1} to x_t):

$$\overline{\Omega}_{t} = [G_{t}\Omega_{t-1}^{-1}G_{t}^{T} + F_{x}^{T}R_{t}F_{x}]^{-1}$$

Which can be simplified to

$$\overline{\Omega}_t = \Phi_t - \kappa_t$$

The *information matrix* can become really sparse by applying a *sparsification step*:



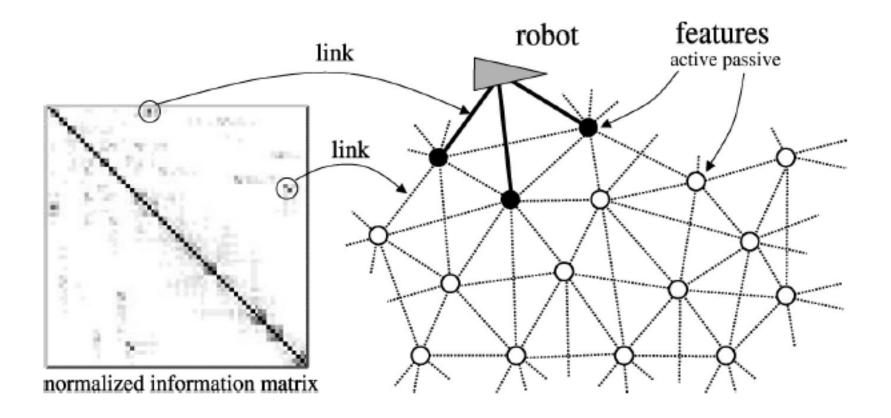
This is done by partition the set of features into three disjoint subsets:

$$m = m^+ + m^0 + m^-$$

Where m^- is the set of passive features and $m^+ \cap m^0$ is the set of active features. The number of features that are allowed to remain active (set m^+) is thresholded to guarantee efficiency.

Network of features

■ Approximate the sparse information matrix with the argument that not all features are strongly connected:



Updating the current state estimate

The current state estimate $\hat{\mu}_t$ is needed every timestep:

$$\widetilde{\mu}_t = \widetilde{\Omega}_t^{-1} \widetilde{\xi}$$

Yet, from the current state estimate only subset is needed:

$$y_t = (x_t \cdots m_{1,x}^+ m_{1,y}^+ s_1^+ \cdots m_{2,x}^+ m_{2,y}^+ s_2^+ \cdots)^T$$

i.e. the robot position x_t and the locations of the active landmarks m^{+}

This can be done with an iterative hill climbing algorithm:

$$\mu_i \leftarrow (F_i \Omega F_i^T)^{-1} F_i [\xi - \Omega \mu + \Omega F_i^T F_i \mu]$$

Where F_i is a projection matrix to extract element i from matrix Ω .

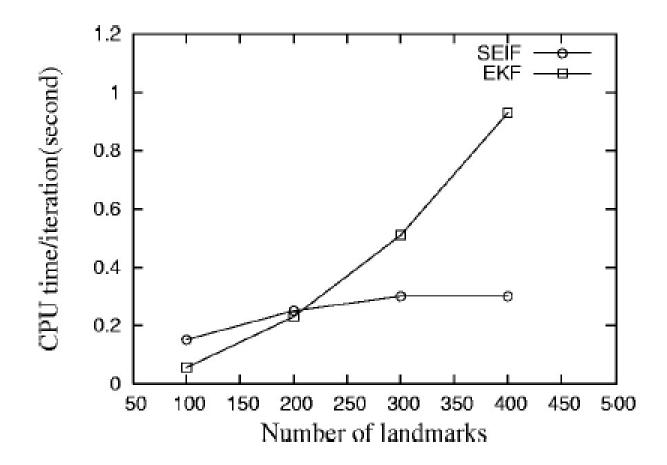
Full Algorithm

The algorithm combines the four steps; two updates and two approximations:

```
Algorithm SEIF_SLAM_known_correspondences(\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, u_t, z_t, c_t)
\overline{\xi}_t, \overline{\Omega}_t, \overline{\mu}_t = \text{SEIF}_{motion\_update}(\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, u_t)
\widetilde{\mu}_t = \text{SEIF}_{update\_state\_estimate}(\overline{\xi}_t, \overline{\Omega}_t, \overline{\mu}_t)
\xi_t, \Omega_t = \text{SEIF}_{measurement\_update}(\overline{\xi}_t, \overline{\Omega}_t, \overline{\mu}_t, z_t, c_t)
\widetilde{\xi}_t, \widetilde{\Omega}_t = \text{SEIF}_{sparsification}(\xi_t, \Omega_t)
return \widetilde{\xi}_t, \widetilde{\Omega}_t, \widetilde{\mu}_t
```

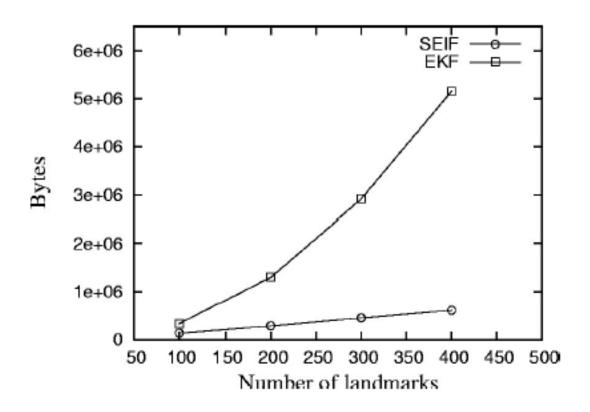
The effect of sparsification

The computation requires 'constant' time:



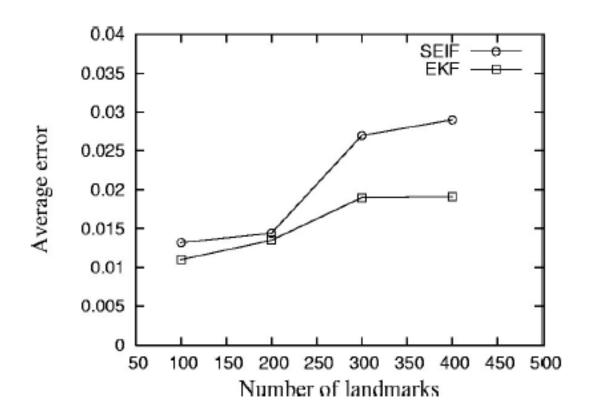
The effect of sparsification

The memory scales linearly:



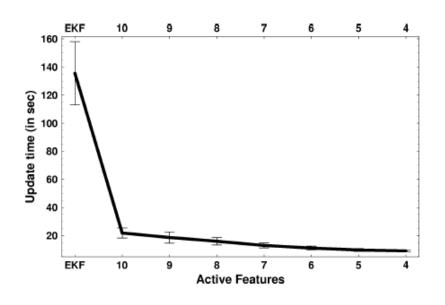
The effect of sparsification

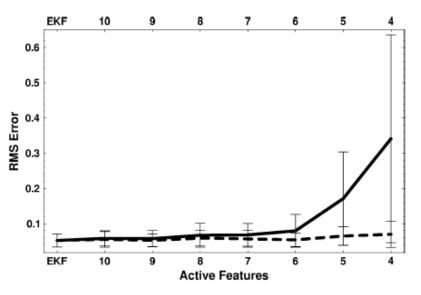
The prize is less accuracy, due to the approximation:



The degree of sparseness

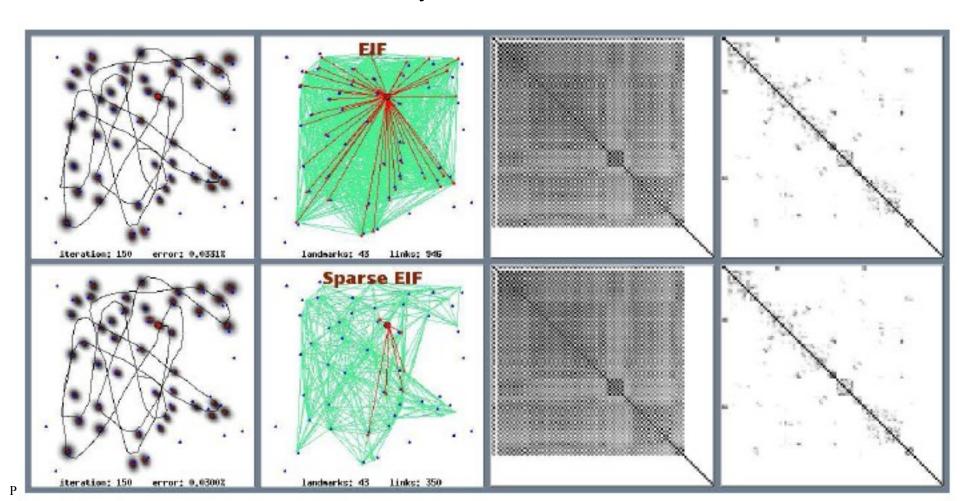
By choosing the number of active features, accuracy can be traded against efficiency:





Effect of approximation

The effect of sparsification is less links between landmarks, more confidence, but nearly same information matrix:



Full Algorithm

To extend the algorithm for unknown correspondences, an estimate for the correspondence is needed:

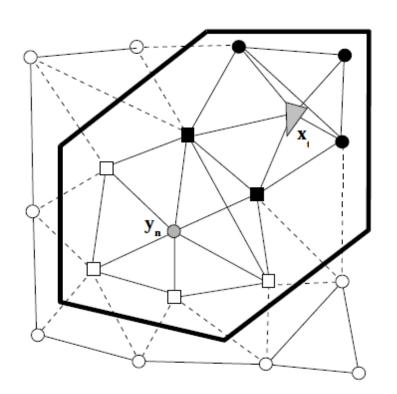
$$\hat{c}_{t} = \underset{c_{t}}{\operatorname{argmax}} p(z_{t} \mid z_{1:t-1}, u_{1:t}, \hat{c}_{1:t-1}, c_{t})$$

$$\hat{c}_{t} = \underset{c_{t}}{\operatorname{argmax}} \int p(z_{t} \mid y_{t}, c_{t}) p(y_{t} \mid z_{1:t-1}, u_{1:t}, \hat{c}_{1:t-1}) dy_{t}$$

$$\hat{c}_{t} = \underset{c_{t}}{\operatorname{argmax}} \int \int p(z_{t} \mid x_{t}, y_{c_{t}}, c_{t}) p(x_{t}, y_{c_{t}} \mid z_{1:t-1}, u_{1:t}, \hat{c}_{1:t-1}) dx_{t} dy_{c_{t}}$$

Estimating the correspondence

To probability $p(x_t, y_{c_t} | z_{1:t-1}, u_{1:t}, \hat{c}_{1:t-1})$ can be approximated by the Markov blanket of all landmarks connected to robot pose x_t and landmark y_{c_t}



Correspondence test

Based on the probability that m_i corresponds to m_k :

Algorithm SEIF_correspondence_test($\Omega, \xi, \mu, m_j, c_k$)

$$B = B(j) \cup B(k)$$

$$\Sigma_B = (F_B \Omega F_B^T)^{-1}$$

$$\mu_B = \Sigma_B F_B \xi$$

$$\Sigma_\Delta = (F_\Delta \Omega_B F_\Delta^T)^{-1}$$

$$\mu_\Delta = \Sigma_\Delta F_\Delta \xi_B$$

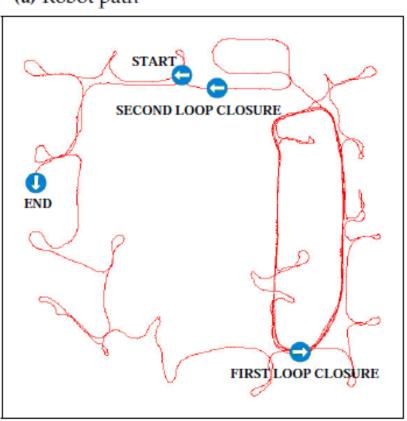
$$\text{return } \det(2\pi \Sigma_\Delta)^{-\frac{1}{2}} \exp\{-\frac{1}{2}\mu_\Delta^T \Sigma_\Delta^{-1} \mu_\Delta\}$$

Probabilistic Robotics Course at the Universiteit van Amsterdam

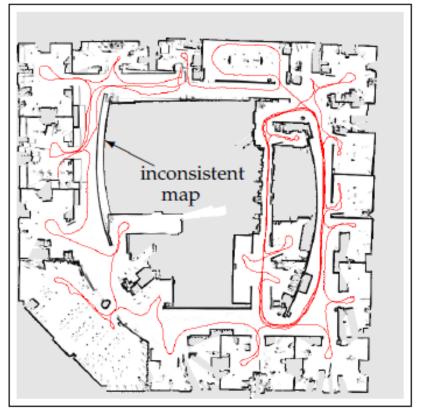
Results

MIT building (multiple loops):

(a) Robot path



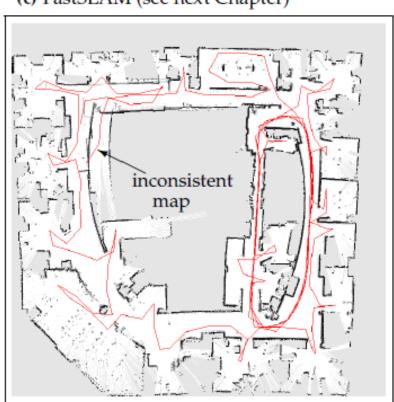
(b) Incremental ML (map inconsistent on left)



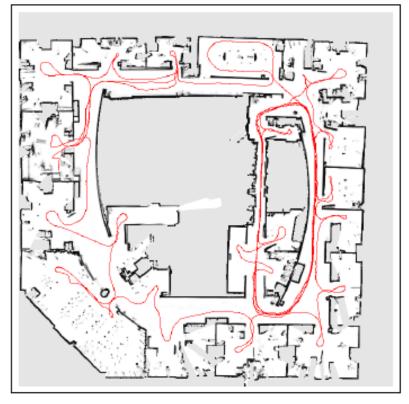
Results

MIT building (multiple loops):

(c) FastSLAM (see next Chapter)



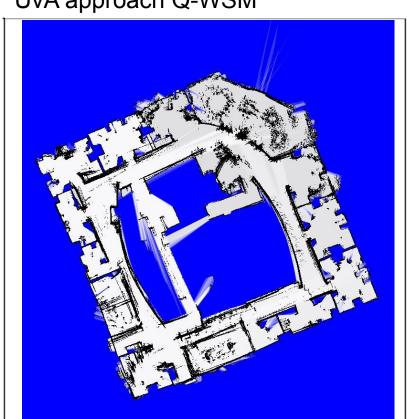
(d) SEIFs with branch-and-bound data association



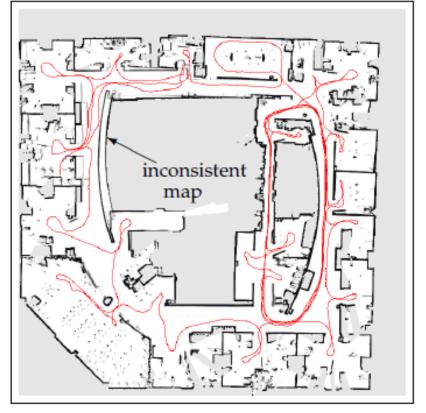
Results

MIT building (multiple loops):

UvA approach Q-WSM



(b) Incremental ML (map inconsistent on left)



Conclusion

The Sparse Extended Information Filter:

- □ Solves the Online SLAM problem efficiently.
- Where EKF spread the information of each measurement over the full map, SEIF limits the spread to 'active features'.
- All information in the stored in the canonical parameterization. Yet, an estimate of the mean $\hat{\mu}_{\iota}$ is still needed. This estimate is found with a hill climbing algorithm (and not a inversion of the information matrix).
- The accuracy and efficiency can be balanced by selecting an appropriate number of 'active features'.

$$p(x_{t}, m | z_{1:t}, u_{1:t})$$

