

## Probabilistic Robotics Overview

MSc course Artificial Intelligence 2017 http://staff.fnwi.uva.nl/a.visser/education/ProbabilisticRobotics/

> Arnoud Visser & Emiel Hoogeboom Informatics Institute Universiteit van Amsterdam A.Visser@uva.nl

#### **Probabilistic Robotics**

Probabilistic robotics is a subfield of robotics concerned with the on the **algorithms** to couple the **perception** and **control** part. It relies on **statistical techniques** for representing information and making decisions. By doing so, it accommodates the uncertainty that arises in most contemporary robotics applications.

#### Structure of the course

- ☐ Lectures on Monday & Wednesday
- □ Practical Session on Tuesday & Thursday

#### Goals for the Course

- Insight in the mathematical foundation of the techniques and algorithms applied in the field
- Experience with the derivation of models from clear problem descriptions
- Practical experience with applying the techniques to datasets & "real robots"

### Literature

- Sebastian Thrun, Wolfram Burgard and Dieter Fox, Probabilistic Robotics, The MIT Press, 2005.
- □ http://www.probabilistic-robotics.org/



# Grading

- □ 1/2 exam grades, 1/2 assignments grade
- Exam grade: final exam
- Exams will be "open-book"

## Some practical issues

- ☐ Try to keep up with reading the chapters
- Ask questions whenever something in the lecture or the book is not clear to you
- ☐ Slides will become available online:

http://staff.fnwi.uva.nl/a.visser/education/ProbabilisticRobotics

# **Assignments**

- Exercises from the book
- Matlab-exercises
- Python-exercises



## Topics covered in the course

- Robot Motion and Perception
- Localization
- Mapping
- **■** Exploration

# Mapping & Exploration @ RoboCup



## The Book

- Part I: The Basics
  - Introduction
  - State Estimation & Recursive Filters
  - Robot Motion
  - Robot Perception
- Part II: Localization
  - Markov and Gaussian
  - Grid And Monte Carlo
- Part III: Mapping
  - Occupancy Grid Mapping
  - Simultaneous Localization and Mapping
  - Advanced SLAM algorithms
- Part IV: Planning and Control
  - Approximate POMDP Techniques
  - Exploration

#### **Sebastian Thrun**

☐ Former Director of the Stanford AI Lab



- Winner of the DARPA Grand Challenge 2005
- Founder of the Google X lab
- Builder of the interactive museum tour-guide robot Rhino Minerva

## **Currently**





Kıtty **/**// Hawk

#### ABOUT KITTY HAWK

Our mission is to make the dream of personal flight a reality. We believe when everyone has access to personal flight, a new, limitless world of opportunity will open up to them. At Kitty Hawk, we engineer, design and build safe, fun, easy-to-fly aircraft.

# **Wolfram Burgard**

☐ Head of the research lab for Autonomous Intelligent Systems at the Universität Freiburg



- ☐ Supervisor of Sebastian Thrun
- ☐ Initiator of the interactive museum tour-guide robot Rhino / Minerva
- ☐ Advisor in the NurseBot project

## **Dieter Fox**

■ Director of the Robotics and State Estimation Lab at the University of Washington



- Student of Sebastian Thrun
- □ Programmer of the interactive museum tour-guide robot Rhino / Minerva
- RoboCup Aibo League veteran

# **Impact**



Sebastian Thrun Stanford Verified email at stanford.edu Cited by 81800 Artificial Intelligence Robotics



Wolfram Burgard
Professor of Computer Science, University of Freiburg
Verified email at Informatik.uni-freiburg.de
Cited by 55861
Artificial Intelligence Robotics



Dieter Fox
Professor of Computer Science and Engineering, University of Washington
Verified email at cs.washington.edu
Cited by 49935
Robotics Artificial Intelligence Computer Vision

## Common background: Museum Tour-guides



Rhino, Bonn, 1997



Minerva, Washington, 1998