

Probabilistic Robotics Graph SLAM

MSc course Artificial Intelligence 2017

https://staff.fnwi.uva.nl/a.visser/education/ProbabilisticRobotics/

Arnoud Visser Intelligent Robotics Lab Informatics Institute Universiteit van Amsterdam

A.Visser@uva.nl

Images courtesy of Sebastian Thrun, Wolfram Burghard, Dieter Fox, Michael Montemerlo, Dick Hähnel, Pieter Abbeel and others.

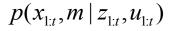
Simultaneous Localization and Mapping

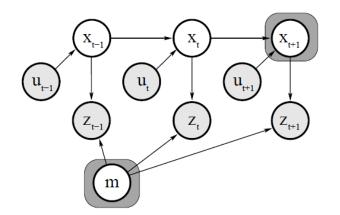
A robot acquires a map while localizing itself relative to this map.

Online SLAM problem

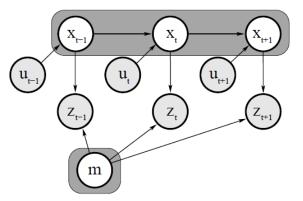
Full SLAM problem

 $p(x_t, m | z_{1:t}, u_{1:t})$





Estimate map *m* and current position x_t



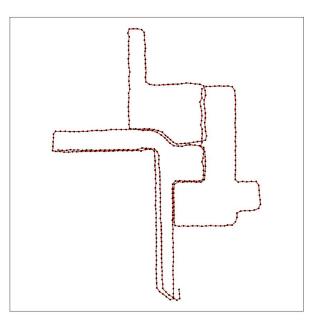
Estimate map *m* and driven path $x_{1:t}$

Graph SLAM

GraphSLAM extends the state vector y with the path $x_{0:t}$

$$y_{0:t} = (x_0 x_1 \cdots x_t m_{1,x} m_{1,y} s_1 \cdots m_{N,x} m_{N,y} s_N)^T$$

Example: Groundhog in abandoned mine: *every 5 meters a local map*



State estimate

GraphSLAM requires inference to estimate the state

$$\widetilde{\mu}_{0:t} = \widetilde{\Omega}^{-1}\widetilde{\xi}$$

The state is estimated from the *information matrix* Ω and vector ξ , the canonical representation of the *covariance* and *mean*.

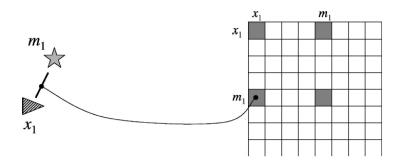
Benefits:

- **D** Uncertainty is easy represented (Ω =0)
- □ Information can be integrated by addition, without direct inference

The state estimated μ_t requires inversion of the *information matrix* Ω , which is done off-line

Acquisition of the *information matrix*

The observation of a landmark m_1 introduces an constraint:



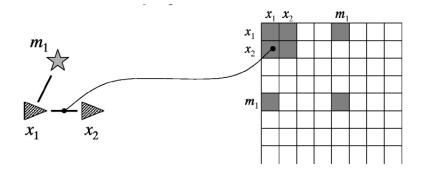
The constraint is of the type:

$$(z_t^i - h(x_t, m_j))^T Q_t^{-1}(z_t^i - h(x_t, m_j))$$

Where $h(x_t, m_j)$ is the measurement model and Q_t the covariance of the measurement noise.

Acquisition of the *information matrix*

The movement of the robot from x_1 to x_2 also introduces an constraint:



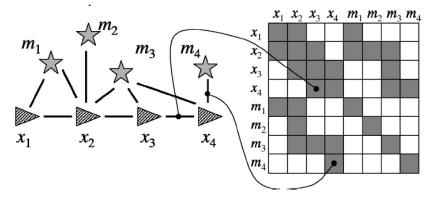
The constraint is of the type:

$$(x_t - g(u_t, x_{t-1}))^T R_t^{-1}(x_t - g(u_t, x_{t-1}))$$

Where $g(u_t, x_{j-1})$ is the motion model and R_t the covariance of the motion noise.

Acquisition of the *information matrix*

After several steps, a dependence graph appears with several constraints:



The resulting information matrix is quite sparse.

The sum of all constraints in the graph has the form:

$$J_{\text{GraphSLAM}} = x_0^T \ \Omega_0 \ x_0 \ + \ \sum_t (x_t - g(u_t, x_{t-1}))^T$$
$$R_t^{-1} \ (x_t - g(u_t, x_{t-1}))$$
$$+ \ \sum_t \sum_i (z_t^i - h(y_t, c_t^i, i))^T$$
$$Q_t^{-1} \ (z_t^i - h(y_t, c_t^i, i))$$

Probabilistic Robotics Course at the Universiteit van Amsterdam

Simplifying acquisition

By a Taylor expansion of the motion and measurement model, the equations can be approximated:

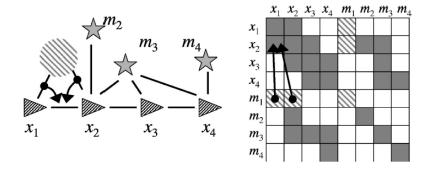
$$\begin{split} \Omega & \longleftarrow \Omega + \begin{pmatrix} 1 \\ -G_t \end{pmatrix} R_t^{-1} \left(1 - G_t\right) \\ \xi & \longleftarrow \xi + \begin{pmatrix} 1 \\ -G_t \end{pmatrix} R_t^{-1} \left[g(u_t, \mu_{t-1}) + G_t \ \mu_{t-1}\right] \end{split}$$

$$\Omega \longleftarrow \Omega + H_t^{iT} Q_t^{-1} H_t^i$$

$$\xi \longleftarrow \xi + H_t^{iT} Q_t^{-1} [z_t^i - h(\mu_t, c_t^i, i) - H_t^i \mu_t]$$

Reducing the dependence graph

Removal of the observation of a landmark m_1 changes the constraint between x_1 to x_2 :



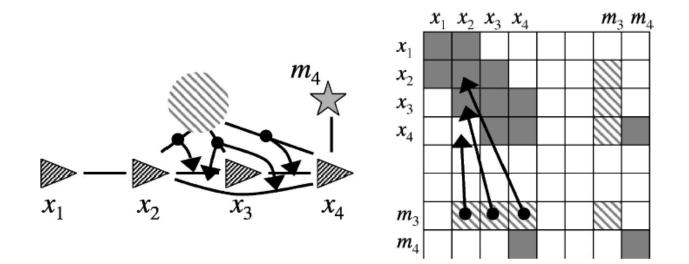
The constraint is changed by the following subtraction:

$$\widetilde{\Omega} = \Omega_{x_{0:t}, x_{0:t}} - \sum_{j} \Omega_{x_{0:t}, j} \Omega_{j, j}^{-1} \sum_{j} \Omega_{j, x_{0:t}}$$

This is a form of variable elimination algorithm for matrix inversion

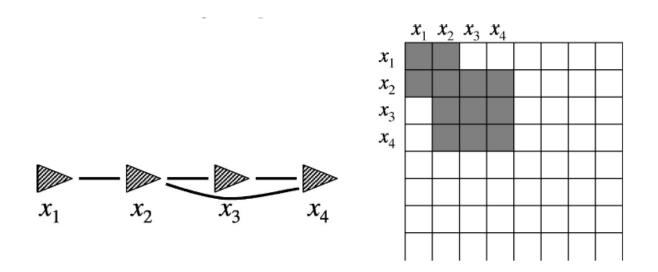
Reducing the dependence graph

Removal of the observation of a landmark m_2 introduces a new constraint between x_2 to x_4 :



Reducing the dependence graph

The final result:



The resulting *information matrix* is much smaller. This reduction can be done in time linear in size *N*

Updating the full state estimate from the path

There is now an estimate of the path robot

$$\widetilde{\mu}_{0:t} = \widetilde{\Omega}_{0:t}^{-1} \widetilde{\xi}$$

This requires to solve a system of linear equations, which is not linear in size *t* due to cycles (loop closures!). When found, the map can be recovered. For each landmark m_j : $\mu_j = \Omega_{j,j}^{-1} (\xi_j + \Omega_{j,0:t} \tilde{\mu}_{0:t})$

In addition, an estimate of the covariance $\Sigma_{0:t}$ over the robot path is known (but not over the full state *y*)

Full Algorithm

The previous steps should be iterated to get a reliable state estimate μ :

Algorithm GraphSLAM_known_correspondence($u_{1:t}, z_{1:t}, c_{1:t}$): 1: 2: $\mu_{0:t} =$ **GraphSLAM_initialize** $(u_{1:t})$ 3: repeat $\Omega, \xi =$ GraphSLAM_linearize $(u_{1:t}, z_{1:t}, c_{1:t}, \mu_{0:t})$ 4: $\tilde{\Omega}, \tilde{\xi} = \mathbf{GraphSLAM_reduce}(\Omega, \xi)$ 5: $\mu, \Sigma_{0:t} = \mathbf{GraphSLAM_solve}(\tilde{\Omega}, \tilde{\xi}, \Omega, \xi)$ 6: 7: until convergence 8: return μ

Full Algorithm

The algorithm can be extended for unknown correspondences:

Algorithm GraphSLAM($u_{1:t}, z_{1:t}$): 1: 2: initialize all c_t^i with a unique value 3: $\mu_{0:t} =$ **GraphSLAM_initialize** $(u_{1:t})$ 4: $\Omega, \xi =$ GraphSLAM_linearize $(u_{1:t}, z_{1:t}, c_{1:t}, \mu_{0:t})$ $\tilde{\Omega}, \tilde{\xi} = \mathbf{GraphSLAM_reduce}(\Omega, \xi)$ 5: $\mu, \Sigma_{0:t} =$ **GraphSLAM_solve** $(\tilde{\Omega}, \tilde{\xi}, \Omega, \xi)$ 6: 7: repeat for each pair of non-corresponding features m_i, m_k do 8: $\pi_{i=k}$ = GraphSLAM_correspondence_test 9: $(\Omega, \xi, \mu, \Sigma_{0:t}, j, k)$ 10: if $\pi_{i=k} > \chi$ then for all $c_t^i = k$ set $c_t^i = j$ 11: 12: $\Omega, \xi =$ **GraphSLAM_linearize** $(u_{1:t}, z_{1:t}, c_{1:t}, \mu_{0:t})$ $\tilde{\Omega}, \tilde{\xi} = \mathbf{GraphSLAM_reduce}(\Omega, \xi)$ 13: $\mu, \Sigma_{0:t} = \mathbf{GraphSLAM_solve}(\tilde{\Omega}, \tilde{\xi}, \Omega, \xi)$ 14: 15: endif 16: endfor until no more pair m_j , m_k found with $\pi_{j=k} < \chi$ 17: 18: return μ

Correspondence test

Based on the probability that m_i corresponds to m_k :

1: Algorithm GraphSLAM_correspondence_test(
$$\Omega, \xi, \mu, \Sigma_{0:t}, j, k$$
):
2: $\Omega_{[j,k]} = \Omega_{jk,jk} - \Omega_{jk,\tau(j,k)} \Sigma_{\tau(j,k),\tau(j,k)} \Omega_{\tau(j,k),jk}$
3: $\xi_{[j,k]} = \Omega_{[j,k]} \mu_{j,k}$
4: $\Omega_{\Delta j,k} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}^T \Omega_{[j,k]} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$
5: $\xi_{\Delta j,k} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}^T \xi_{[j,k]}$
6: $\mu_{\Delta j,k} = \Omega_{\Delta j,k}^{-1} \xi_{\Delta j,k}$
7: $return |2\pi \ \Omega_{\Delta j,k}^{-1}|^{-\frac{1}{2}} \exp \{-\frac{1}{2} \ \mu_{\Delta j,k}^T \ \Omega_{\Delta j,k}^{-1} \ \mu_{\Delta j,k}\}$

A robot deployed in a previous flooded coal mine:

Sebastian Thrun *et al.*, Autonomous Exploration and Mapping of Abandoned Mines, IEEE Robotics and Automation Magazine 11(4), 2005.

A robot created a 3D model of the coal mine:

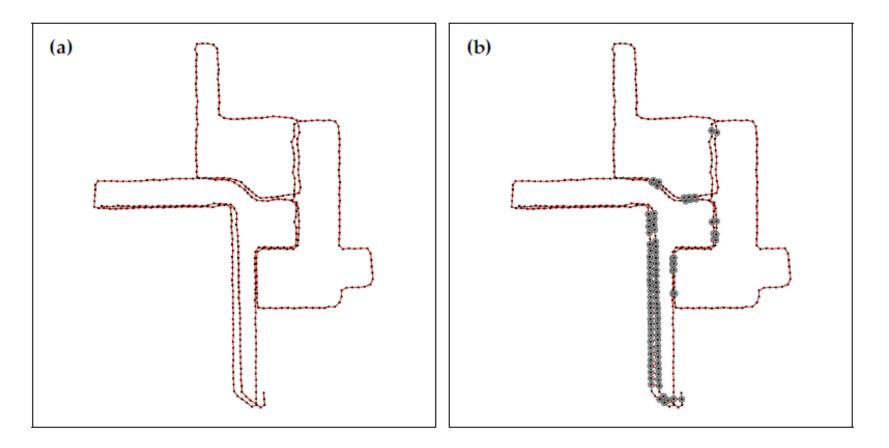
The Carnegie Mellon Robotic Mine Mapping Project

Sebastian Thrun, Michael Montemerlo, Dirk Haehnel, Rudolph Triebel, Wolfram Burgard, Red Whittaker

sponsored by: DARPA IPTO (MARS)

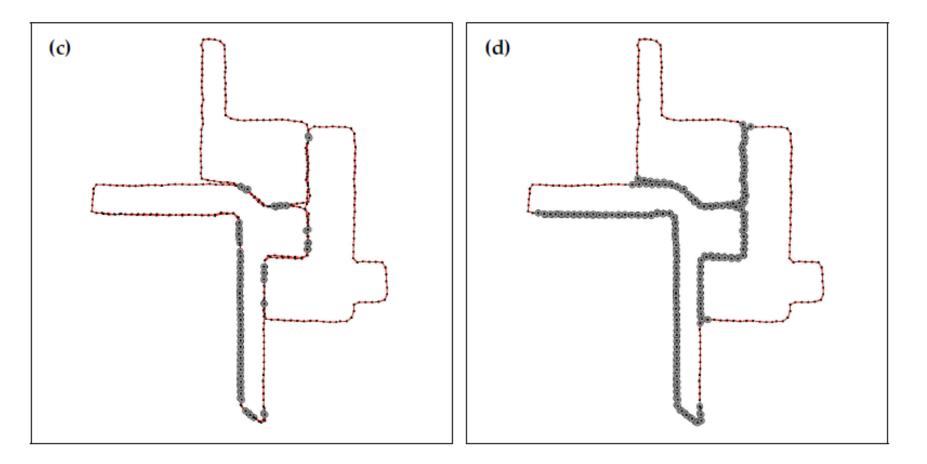
Sebastian Thrun *et al.*, Autonomous Exploration and Mapping of Abandoned Mines, IEEE Robotics and Automation Magazine 11(4), 2005.

Correspondences are discovered:

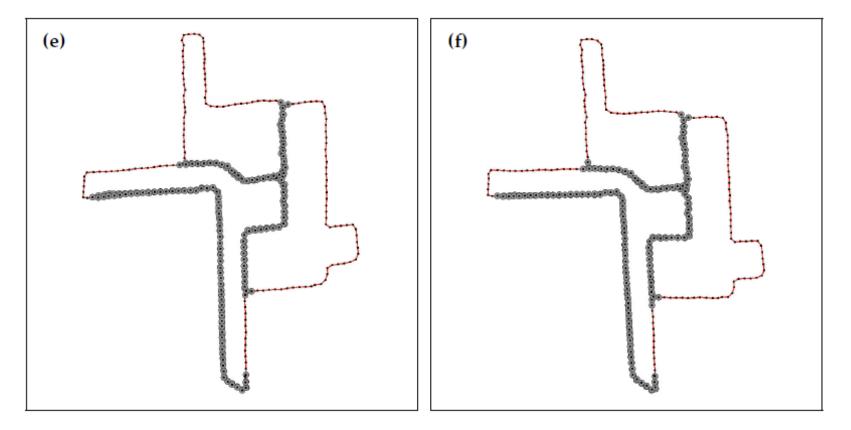


Sebastian Thrun *et al.*, Autonomous Exploration and Mapping of Abandoned Mines, IEEE Robotics and Automation Magazine 11(4), 2005.

Correspondences are propagated and dissolved:



Iterations stops when data associations induce no further changes:

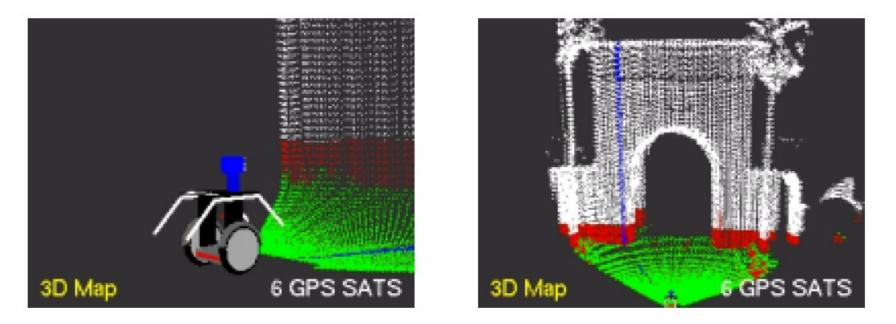


Segway exploring outdoors:

The Stanford Segbot Project

Sebastian Thrun and Micheal Montemerlo, The Graph SLAM Algorithm with Applications to Large-Scale Mapping of Urban Structures, International Journal on Robotics Research 25(5/6), p. 403-430, 2005

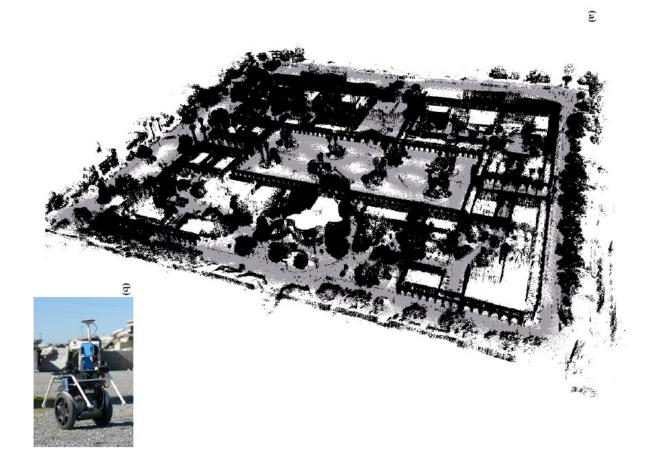
Segway with vertically mounted laserscanner:



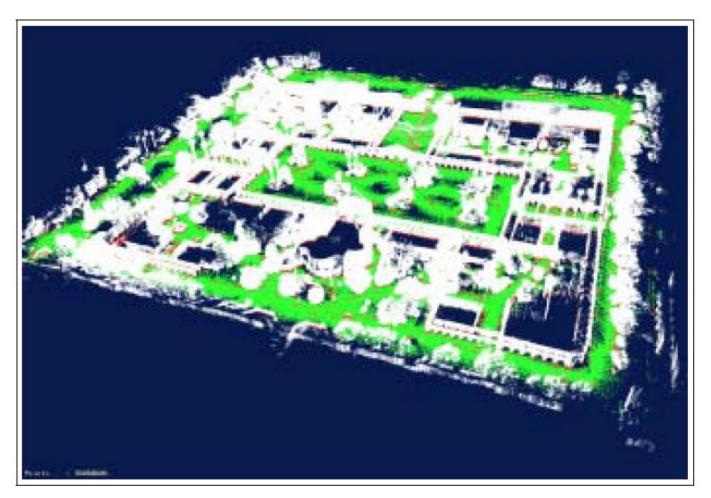
Green is ground, red obstacles, white structures above the robot

Sebastian Thrun and Micheal Montemerlo, The Graph SLAM Algorithm with Applications to Large-Scale Mapping of Urban Structures, International Journal on Robotics Research 25(5/6), p. 403-430, 2005

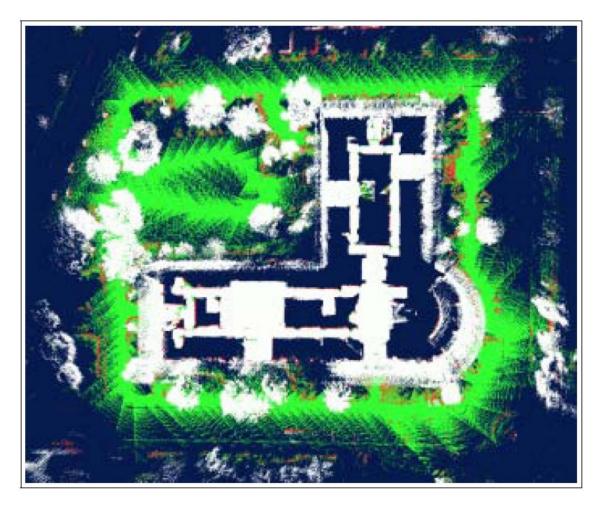
3D map of the Stanford campus:



Color coded 3D map of the Stanford campus:

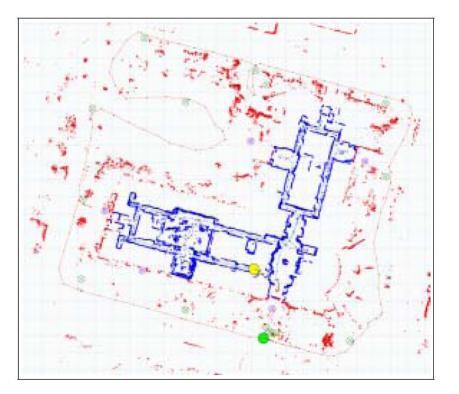


Top view of 3D map of the Stanford campus:



Effect of GPS on indoor mapping:

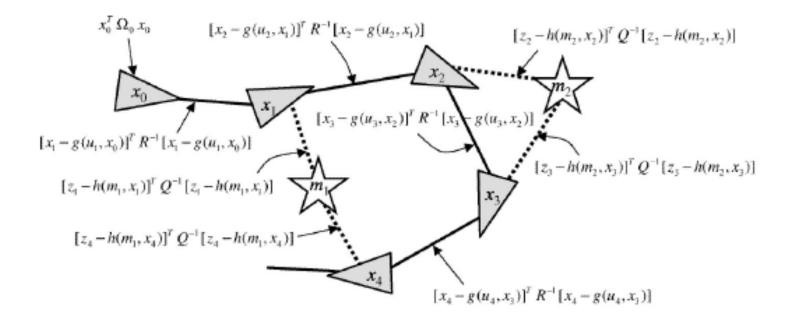




Resumé

Use a graph to represent the problem:

- Every node in the graph corresponds to a pose or an observation of the robot during mapping
- Every edge between two nodes corresponds to the spatial constraints between them



Conclusion

GraphSLAM:

- Solves the Full SLAM problem as post-processing step
- Creates a graph of soft constraints from the data-set
- By minimizing the sum of all constraints the maximum likelihood estimate of both the map and the robot path is found
- The algorithm works in iterating three steps: construction, reduction, solving remaining equations

 $p(x_{1:t}, m | z_{1:t}, u_{1:t})$

