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Abstract

This paper focuses on Distributed

Perception Networks [3,4] initialization and
incorporation of information coming from
humans. In this paper we describe our
results from the Design and Organization of
Autonomous Systems project which is part
of the Masters Multi Modal Intelligent
Systems at University of Amsterdam.
For this project we designed, implemented
and experimented with several extensions
for the Distributed Perception Network
(DPN), in order to use it in an interactive
response system for crisis management.

1 Introduction

When there is a crisis, there will be lots of
emergency troops trying to help. Police,
fireguards and medical personnel will be all
over the place. Accurate and up-to-date
information is crucial for making good
decisions. But often there are not enough
sensors in an area to fulfill that need.
However, there may be numerous people
near the scene who could provide valuable
information. For example, on the sixth floor
of a building 2 out of 15 smoke detectors are
being triggered. Are these detectors
malfunctioning or is the sixth floor on fire?
Perhaps a gas has been released that triggers
the smoke detectors. Several scenarios could
be possible, but none of them with a definite
certainty. Our system detects that and
contacts persons near the potential fire to
gather more information. Those persons may
be in another room not knowing what's
happening. But there may be some who
actually see the fire. They respond to the
system and with that extra information, it is
calculated that fire is the most probable
cause. Within minutes the fireguards enter
the building and extinguish the fire.

Our goal is to provide useful advice to
experts in the control room or teams on
location.

The following chapters are organized as
follows. In chapter two our system design is
discussed. Chapter Three covers the systems
performance. Our conclusion can be found
in chapter Four. We end with a discussion in
chapter five.

1.1 Distributed Perception Network

A DPN is a multi-agent based approach to
fusion of heterogeneous and distributed data.
There are two types of nodes in the network:
Sensor Agents (SA) and Fusion Agents
(FA). The sensor value is represented by a
Boolean value in the SA. A Fusion Agent
fuses the values of several agents, either
Sensor- or Fusion- agents. This results in a
probability, for the Fusion Agent. In the
DPN, Bayesian inferences can be made. So
one can think of a DPN as a distributed
version of a Bayesian network, where the
Fusion Agents represent concepts, which are
the cause of the concepts that are
represented by Sensor Agents. So nodes in
the network close to leaf nodes typically
represent lower level concepts than concepts
close to the root concept (e.g. the concept
‘concept’). All Agents may reside on
geographically distinct locations.
Communication is done via a Yellow Pages
agent. [3,4]

2 System design

In order to get a feeling for what modules
have to be designed to create a system like
we discussed in the introduction, lets take a
look at the flow of the system, as we would
like it to be:

A certain sensor on a certain location
registers a sudden change in value. This
causes the Concept Manager Agent to create
the DPN (for details see chapter 2.1). Then,
a Human Agent is added to each Fusion
Agent present in the DPN. The task of this
Human Agent is to gather more information
about the concept that is represented by the
Fusion Agent. It does this by contacting the
Callcenter. The Callcenter maintains a



priority queue of queries from Human
Agents. It selects a query, and then
determines which humans are suitable to
contact in order to retrieve an answer to the
query (naturally depending, among other
properties, on the location of the human). It

contacts the humans by sending an SMS
to the mobile phones of the selected humans.
The Callcenter then gathers the answers and
decides if the answer to the query is yes or
no, and sends it back to the Human Agent
that was responsible for sending the query to
the Callcenter. The Human Agent then
Incorporates this new information in the
network. This flow of the system clearly
identifies three modules that have to be
designed: the Concept Manager, the Human
Agents and the Callcenter. This chapter is
devoted to these modules.

2.1 Concept Manager Agent

The DPN software currently only supports
one kind of initialization method. This
method relies one a human controller to
select certain hypotheses and let the DPN
spawn their corresponding world-models.
The human controller can choose this initial
hypothesis based on information such as a
911 call. This method can suffice for many
real-world problems. The ideal situation
however is that the DPN system itself can
choose and spawn this initial hypothesis. As
part of our research we have looked at
possible initialization methods for a DPN.
The initialization methods can be divided
into three groups: top-down, bottom-up and
hybrid. In the next section the most
important methods are briefly discussed.
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Figure 1, System design.




2.1.1 DPN Initialization methods

1) Human initiated top-down.

In this method a human controller receives a
warning that a particular concept may be
happening at a certain location. The
controller then decides to let the DPN
software spawn a world model for that
concept at a certain location. As said before
this method may suffice for many real-world
applications.

2) Sensor initiated top-down

In this method an artificial intelligent
manager takes the role of the human
controller. This manager chooses a set of
hypotheses to spawn based on alarm signals
coming from sensors (this sensor also can be
911 calls interpreted by a speech recognition
system). There is one big disadvantage of
this approach. Namely that at some point the
system must choose a set of hypotheses to
spawn based on the initial sensor readings.
For this choice we have to use some sort of
pattern classifier. The problem with most
pattern classifiers is that they heavily rely on
examples. Because the DPN system is
designed for disaster scenarios, good
examples are very rare. Another approach is
to use the native Bayesian networks of the
DPN to calculate initial probabilities for the
top concepts. The problem with this
approach is that the initial evidence is very
minute and can therefore not provide enough
information for complex top concepts.

3) Sensor initiated bottom-up

In the following section this method will be
discussed more thoroughly. The basic idea is
that when a (sensor) agent receives enough
evidence from its sensor(s)/children to say
with certainty that its concept is not false, it
activates all agents that have this (sensor)
agent as its child. This method is applied
until top concepts are reached.

2.1.2 Proposal

We propose a DPN design that can handle
methods 1 and 2 combining the native top-
down spawning with a new bottom-up
method. It is based on the following
assumption: Only a increase in certainty for
the True value of a agent can contribute in
the increase in certainty for the True value
of its parent. Another assumption we make
is that all agents are already present within
the system or that they can be created on
demand.

Our proposal adds a Concept Manager
Agent (CMA) to the existing building
blocks. The concept manager can be one
program or it can be distributed throughout
the system. The CMA facilitates a Bottom-
up construction method for the DPN.

The CMA is able to receive messages of
all agents that are assigned to this CMA
(Assignment can be based on location).

The CMA stores the name , position and
Partial world model for each agent assigned
to this CMA. The CMA mechanism for
bottom up construction is described below.

1) A sensor is monitoring its environment
and sends its data to its Sensor-agent.

2) At a particular moment the sensor data
may provide enough evidence for the sensor
agent to set its value to true.

3) It then sends a message to the Concept
manager. This message contains the concept
that has become true. The sensor type, id
and location.

4) The concept manager has a table of all
agents that are present within the system.
For every agent it also has stored its local
world model. Based on this information the
Concept manager can select all agents that
have the particular sensor Agent as one of its
possible children.

5) The Concept manager will then send a
activation message to all these agents.

6) When the agents receive the activation
messages they will spawn the world models
that are needed to gather the information for
this agent. This spawning uses the native
DPN top-down approach [3,4].



7) When there is enough evidence to
determine with certainty that the agent value
is not false then again a message is sent to
the CMA with the concept, agent type, id
and location. and the process starts again
from step 4. this goes on until concepts are
reached that have no parents e.g. top-
concepts.
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This mechanism is very flexible. It builds
upon the already existing top-down
spawning and adds on top of this a Bottom-
up spawning method. It is even possible to
start spawning form an agent that is some
where in the middle of a world-model.
When this agent is activated (for example
through a interpreted 911 call) it will gather
its information in the usual top-down
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Figure 2, DPN initialization.



mechanism. When there is enough evidence
to determine with certainty that the agent
value is not false then again a message is
sent to the CMA and starts the bottom-up
mechanism.

2.2 Fusion Agents & Human Agents

The task of the Concept Manager was to
spawn the correct DPN, given a change in
sensor value(s). There is a preselection made
in order to determine which concepts in the
DPN need extra attention. This preselection
is based on the certainty of a concept: if, for
example, the concept ‘fire’ is true with a
probability of 0.5, then we actually know
nothing about it, and assign maximal
uncertainty to it. In DPN-terminology this
concept is in fact a Fusion Agent, since it
fuses information from its children in the
network and determines its own probability,
given the child probabilities.

So now we know that each Fusion Agent
that has passed the selection of the Concept
Manager represents a concept of which we
would like to have more information in
order to be able to say that it is true or false.
A plausible way of thinking about a concept
is to view it as a hypothesis, e.g. think of the
concept ‘fire’ as the hypothesis ‘there is
fire’. It then is the task of a Human Agent to
gather information that answers the question
‘is there a fire?’. For the design of the
Human Agent we must be aware of the
definition of agents:

“An agent is anything that can perceive its
environment through sensors and act upon
that environment through actuators. An
agent that always tries to optimize an
appropriate performance measure is called
a rational agent.” [1,2]

For each present Fusion Agent, a Human
Agent is created. A Human Agent takes over
the role of the fusion node in the Fusion
Agent (the hypothesis). It then must interact
with the Callcenter, in order to obtain
information about the hypothesis. This
makes the environment of a Human Agent
two fold:

- A Human Agent should be able to
perceive the Fusion Agent and update
the probability of the hypothesis.

- A Human Agent should be able to
perceive the Callcenter, and it should
be able to send a query to the
Callcenter.

The actionspace of a Human Agent consists
of two actions: he can choose to send a
query to the Callcenter, or he can choose not
to do so. The goal of a Human Agent is to
remove uncertainty about the hypothesis: if
he knows that a hypothesis is true or false,
its goal is reached and the performance
measure should be maximal.

Callcenter

Environment

Figure 3, Human agents.

So one might wonder why a Human Agent
should ever choose not to contact the
Callcenter. This is because the queue of
waiting queries from Human Agents can
become a bottleneck of the system. Note that
a real life application of this system might
consist of thousands of Fusion Agents,
which can all be activated at the same time.
Since in our system the Callcenter gathers
information via a SMS interface, it will not
be a very good idea to send thousands
SMS’s at the same time. This potential
bottleneck affects the Human Agent’s
preference of being in the world state in
which his query is waiting in the queue of
the Callcenter.



An agent’s preference for a certain world
state is represented by a utility function. For
a Human Agent, this function takes two
parameters:

- The certainty of the hypothesis

- The queue that was mentioned above

The certainty of a hypothesis is computed
by first defining a gaussian distribution over
the possible probabilities of a hypothesis.
We do this by setting the mean of the
distribution on 0.5 and the standard
deviation on 0.25. What we then get is
actually a measure of uncertainty: a very
low (e.g. 0.1) or very high (e.g. 0.9)
probability leads us to belief with low
uncertainty that a hypothesis is false or true,
respectively. As we stated earlier in this
section, a probability of 0.5 leads to
maximal uncertainty, which is why this
value is taken to be the mean of the
distribution. In order to get a sensible
certainty measure of a probability, we then
substract the normalized uncertainty from 1:

1 T |

Uncert(p) = N(0.5, 0.25)(p)
Cert (p) = 1.0 —( Uncert(p) / Uncert(0.5) )

To be convinced that this is a sensible
certainty measure, we verify that:

- Cert(0.5) =0

- Cert(0) = Cert(l) = 0.87

- Cert(0.2) = Cert(0.8) = 0.51

- Cert(0.3) = Cert(0.7) = 0.27

This is in fact the function that the
Concept Manager used to select uncertain
concepts, with a ‘certainty threshold” of 0.5:
above this value there is enough certainty,
whereas a lower certainty activates a Fusion
Agent. Note that the normalization
procedure makes sure that a probability of
0.5 results in a certainty of 0, but not that a
probability of 1 (or 0) results in a certainty
of 1. This is because the domain of the
distribution is larger than the interval [0,1].
As long as a sensible threshold value is
chosen, this does not matter.
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utility

Since a preselection of concepts has
already been made by the Concept Manager
based on the above formula, it is not feasible
for a Human Agent to use it in a similar
way: we already know that the certainty is
below the threshold. Therefore, a Human
Agent gives a  slightly  different
interpretation to the certainty measure.
Instead of testing the certainty to a
threshold, it uses the actual value of the
uncertainty as a priority measure. (High
uncertainty — high priority)

Now we have all ingredients to construct
the utility function of a Human Agent.
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We compute the utility for an agent i by
simply summing the priority of agent i and
the inverse of the length of the queue:

Utility(i) = priority(i) + ( 1/ length(queue) )

A threshold value is used to decide if the

utility is high enough to contact the
Callcenter. We have set this to 1: a
hypothesis with maximal uncertainty /

priority will always be sent to the data
source, whereas a hypothesis with a lower
priority may be sent, depending on the
queue size.

utility
[ 1 threshold

04

priority

Figure 5, Utility function for a Human Agent.



2.3 Callcenter: Contacting humans

To make the system not only work on paper,
but also in practice, there are quite some
challenges that should be solved. A more
final version of the system should be tested
extensively with real humans in order to
fine-tune the parameters. We came up with a
list of challenges that we think can make or
break the system.

C1) floodin

An easy way would be contacting all
humans after the slightest change. However,
this could mean that you’ll be contacted
hundreds of times a day. We assume people
will cooperate, but when they’re flooded
with questions, they won’t respond to any of
them.

Alarm No Alarm

Disaster + Very bad!

No Disaster

Annoying |+

(C2) people background

In some scenarios extensive knowledge is
available about the causes. This knowledge
can be very specific and detailed. The
average person would not be capable of
answering all these questions. Also, the
response of a doctor to a medical question
gives you more accurate information than
the response of an 8 year old.

(C3) interpreting results

How many answers do you need in order to
be certain enough about an outcome? Is it
enough if only one person responds? Or
would you like to have at least ten people
confirming that outcome? And what would
you do if half of the people confirm the
question, and the others deny it? When there
may be a fire in a building and a kid
confirms it, but ten adults deny it, would you
like to take the risk to assume there is no
fire?

(C4) signal dominance

There is also the aspect of time. A smoke
detector gets triggered and our system asks
several persons if there is fire. The first ten
minutes one hundred people respond that

they don’t see a fire. But in the eleventh
minute there are ten positive responses
coming in. If you would take the average,
the outcome will be negative. But maybe it
took some time for the smoke to travel
through the building and only just now
people are seeing it.

(C5) urgency

When a question comes in, we would like to
ask those persons who would give the most
accurate answer. But how many should we
contact? In a hospital there are lots of
persons with medical knowledge, but should
we contact them all? Maybe we would
already be satisfied if only five of them
responded. So we contact five of them. But
after thirty minutes only two responded. The
need for that information was urgent, so
perhaps if we had contacted ten, we would
have gotten five results within a reasonable
time.

(C6) how to contact

What is the best way to contact persons?
Will yes-no questions suffice?

2.3.1 Our approach
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Figure 6, Callcenter design.



The question manager receives a question
from the human agent. He selects the most
important ones and asks the callcenter to get
an answer. If only general knowledge is
required, the question will be broadcasted.
Otherwise experts who are near will be
contacted directly. After a while responses
are coming in and when the answer is
certain enough, it will be sent to the Human
Agent.

We tried to incorporate the challenges we've
proposed as follows:

(C1) The Human Agent only sends the most
important concepts. But there still may be
vast amounts of concepts coming in. Since
it's the callcenter's responsibility not to flood
people, it needs to select too. Right now this
is a simple threshold.

(C2) We assume it's known in which fields a
person is expert and which expertise is
needed for a concept. Given that information
and additional information like age, we
calculate the reliability of a response. A
database is used to store that information
and the location of the persons for easy
access.

(C3) When the certainty of an outcome is at
least twice as high as the negated outcome,
the system decides it's certain enough.

(C4) This hasn't been implemented.

(C5) The urgency is a number between 0
and 1 which we use as a chance to contact
an appropriate person.

(C6) SMS Cell Broadcast Service enables
messages to be sent to multiple mobile
phones located in a certain area. If we don’t
know who to ask or who are at the location
of the disaster, the system will choose to
broadcast the questions to a restricted area.
After receiving feedback, the system will
use background information about that
person to calculate the reliability of the
answer.

3 System Performance

For the purpose of testing our proposals
we have implemented a basic DPN system.
It can handle the native top-down
construction as well as the new bottom-up
construction. On top of this we added the
Human agents and the Callcenter.

In order to test our implementation we
made a small set of partial world-models,
some top concepts and a sensor scenario.
Based on our test results we observed that
the systems works as described in the
previous chapters. Due to lack of time we
could not test the system in great detail.

4 Conclusions

The introduction of Human Agents in a
DPN to aid interactive response during a
crisis is a good idea. From the performance
of the system we see that the Human Agent
does its job as it should, and therefore
potentially supplying emergency troops with
valuable information about the ‘scene of
crime’.

An emergent property of the system is that
the Human Agents can detect a false alarm,
once a negative answer to a query about a
certain hypothesis is received.

An essential property that is maintained is
that the system is very flexible. At runtime,
the Concept Manager can create the DPN on
the fly: at every given moment, a change in
sensor values results in an update of the
DPN, which may result in the activation of
new Human Agents. The use of a DPN also
is a good choice, since its essentially
distributed architecture implies that the
system will easily survive a crash of one or a
bunch of Human- , Fusion- and/or Sensor-
agents (the system degradates gracefully).

The problem with the creation of the DPN
is the lack of good real-world DPN's and
concepts. This problem is being addressed
by other people within the DPN group at the
time of writing this paper.



5 Improvements & Future work

The behaviour of a Human Agent still is
subject to debate. In our system, the utility
of a Human Agent is maximal when its
hypothesis is true with a probability of 0.5.
In this situation, the Callcenter is always
queried and the priority of the query is high.
This may result in undesirable effects.
Consider for example the situation in which
a hypothesis is true with a probability of
0.75, which is due to a malfunctioning of
one of the sensors: it could be 0.9 if the
sensor was functioning right. Still, the ‘50%
hypothesis’ has a higher priority, whereas it
might be more usefull to turn it the other
way around. A big advantage however, is
that our Human Agents do not need to have
any prior knowledge about the hypothesis
that they represent. The above mentioned
effect would require a Human Agent to have
prior knowledge about the sensors, and
which concepts are affected by them, in
order to circumvent it.

We have chosen to let the utility of a
Human Agent be dependant only on the
uncertainty of a hypothesis and the length of
the queue of the Callcenter. One might think
of other things that can affect the utility like
response time, specific properties of the
location of the crisis, or allowing the queue
to also have a negative effect since in our
system a queue of size 1000 still contributes
1/1000 to the utility.

Further development should also focus on
optimizing and generalizing the current
mechanism of generating the DPN.

In order to optimize the callcenter we need
a good way to evaluate how it actually
performs. We would like to see a formula
that gives a score based on the time it takes
to get the right amount of answers, the
certainty and how many people have been
bothered.

(C1) It should be stored when and how often
a person has been called. The higher this
number, the higher the penalty of contacting

this person again.

(C2) When one question needs expertise in 5
areas, can someone who has expertise in
four of five give valuable information? We
think so. In order to incorporate this, we
propose using conventional Information
Retrieval techniques like vectors to
represent expertise and the in-product
between vectors as a measure for the quality
of an answer.

(C3) Our proposition is to associate a
concept and the amount of risk you’re
willing to take. A domain expert should
associate an amount of risk with each
question. Tests in real life should give some
values of how to weight the responses.

(C4) An algorithm which incorporates the
wanted behaviour should be developed.

(C5) The chance that one will respond and
the urgency should be incorporated. The
more urgent it is, the more willing we are to
bother people in order to get an outcome as
quickly as possible. If you would like to take
no risks, then you could already give an
outcome after two positive responses.

(C6) An SMS is easy to send, but sending a
response is tedious. Should we be satisfied
with yes-no questions? Knowing the
expertise of everyone near the event is a
handy heuristic, but how realistic is it? A lot
of privacy concerns are popping up. A
talking computer which calls is a friendlier
way of communication and could retrieve
more information. Instead of asking one
question, it could ask to describe what's
happening.

The CMA has some overlap with the
yellow pages agent. The yellow pages agent
also stores information about all concepts
that are present within the system. In a final
implementation one can decide to combine
the functionality of the Concept manager
agent and the Yellow pages agent into one
distributed agent.

We implemented our proposals in self-
made DPN system based on JavaBayes
inference graphs the next step would be to
implement our proposal into the real DPN
software.
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SMS interface

The system uses SMS messages to interact
with human observers. For this project we
opened a two way SMS service with
Clickatell. We can send and receive
messages by uploading and downloading
text files form a fip server. We tested the
interaction with a java ftp-client (JFTP, see
http://j-fip.sourceforge.net/). We observed
that the SMS service works reliable and fast.



