
Programmable Java Camera
Report Java Camera Project 27-01-04

Students :

Reena Mahabir
9935584

rkmahabi@science.uva.nl

Sebastian Eigenmann
0061476

eigenman@science.uva.nl

Gerben de Vries
0033383

gkdvries@science.uva.nl

Tim van Oosterhout
0021490

tim.vanoosterhout@student.uva.nl

Roald Hopman
0017957

rhopman@science.uva.nl

Project Leader :
Peter van Lith
peter@lithp.nl

Teacher :
Arnoud Visser

arnoud@science.uva.nl

mailto:rkmahabi@science.uva.nl
mailto:eigenman@science.uva.nl
mailto:gkdvries@science.uva.nl
mailto:tim.vanoosterhout@student.uva.nl
mailto:rhopman@science.uva.nl
mailto:peter@lithp.nl
mailto:arnoud@science.uva.nl

Abstract

Using a Java chip and a simple camera, a hardware camera can be created which is
completely programmable in Java. This is beneficial because in many education and
developer environments, Java is the language of choice. In this paper we will describe the
software simulation of the hardware JavaCam and some algorithms we developed to
demonstrate the usage of it.

Introduction

There is a growing interest in the application of small low-cost programmable camera
systems for a variety of applications. Most camera systems depend on a frame grabber
and software that runs on a PC. Developers of embedded applications are interested in
using the same technology. Because the power of an embedded system is much lower
than that of desktop or notebook PCs alternatives need to be found to allow a fair amount
of processing power on such small systems.
Image processing usually involves computational intensive algorithms. They are
therefore programmed in low-level languages. On first look the Java programming
language isn’t fit for this kind of application. The introduction of dedicated hardware
Java chips however changes this.

When the project was started, there was a hardware prototype of the JavaCam. However,
this prototype is still under development, so we had to work on the software simulation of
the JavaCam. The simulation of the JavaCam uses a standard Webcam on a PC and a
Java Framework to simulate the hardware.

The main goal of our project was to get a deeper understanding of the architecture,
organization, operation and possible problem areas of developing image analysis
software for a variety of applications.
To get familiar with the system, we first implemented some basis algorithms like Motion
Detection en Edge Detection.
After we got acquainted with the software simulation we could implement more
advanced algorithms and could extend and improve the existing system. Because of the
short time we had for this project we succeeded only in implementing Optical Flow.

 2

Program Structure

Our project was to develop image processing demo applications that were to run in a
given framework. This framework was created to visualise the processed images and
provide a way to test the algorithms without using the actual JavaCam. Instead, a local
USB video capture device can be used as a video source. The framework was
implemented in Java using the open source software development environment Eclipse,
and used some custom graphics packages. This implementation was functional, but not
well structured and contained some bugs. We decided to restructure the software without
straying from the framework so that our new GUI and system would still meet the
original criterion that the image processing tasks would be able to run unmodified on
both a pc and the hardware JavaCam (Figure 1). This meant that we had to remember that
certain parts should operate more or less independently, and communicate in a restricted
manner. The hardware contains an FPGA (Field Programmable Gate Array) and a Java
Chip that do not share the same memory, so we could not pass objects between the
different parts, only bytes. Since the JavaCam is still in its development phase and
moreover contains a programmable FPGA we still had some freedom in design and
synchronisation. We tried to make the design more modular. For example, we created a
Camera interface instead of a camera object, so that the video functionality could easily
be extended to read other types of cameras as well. Other video sources might also be
possible, such as a noise generator or and file reader. We also defined the roles of the
individual objects more strict. The result is a more stable and flexible core and two
versions of the GUI that can be used side by side.

Figure 1 – Hardware prototype of the JavaCam

Figure 2a – Swing GUI Interface Figure 2b – Swt GUI Interface

 3

The GUI

The original GUI was implemented using the org.eclipse.swt packages, which are
provided with the Eclipse development environment. These packages provide a
framework for developing applications that interact closely with the underlying operating
system and hardware. To ensure stability, there are a number of restrictions on the
operations you can perform on these objects. For instance, a thread that creates a Display
object (org.eclipse.swt.widgets.Display) automatically becomes the user-interface thread.
This thread is not allowed to make another Display object until it disposes the first one,
and no thread is allowed to interact with the Display but the user-interface thread. This
means synchronising the display with other threads such as timers or data collectors is
disallowed. Extending a Display is also not allowed. Restrictions like these give us less
freedom in our design.
A more pressing issue to move away from the Eclipse packages was that it seemed to
contain bugs. One annoying bug is in the Scrollable object
(org.eclipse.swt.widgets.Scrollable). We don’t use this object directly, but an extension,
namely a Canvas object. This object is responsible for drawing the processed camera
images. The bug is that it keeps accumulating new buffer data without releasing the old
data. As a result, the application may take up several hundred megabytes of memory if it
is run for a while. Some other minor issues also made the program less stable.
One last reason to move away from the Eclipse packages and use the javax.swing
package instead is that it is a standard package provided with most distributions of the
java SDK and runtime environment. Therefore, apart from the necessary JMF package if
you want to capture video, no additional packages need to be installed.
Moreover, developers could still use the Eclipse environment, but also have the choice to
use their own familiar tools and they look quite the same (Figure 2a-2b).

The System

The underlying system has been reworked in an object oriented structure, with proper
data hiding and a minimal amount of public functions. Most of the old code is still in the
software, but some methods have been moved to other objects to make the structure more
intuitive. Some pieces of code were removed, notably duplicate functions with different
names, others were modified, for instance functions that directly access variables that are
now hidden. The final product still takes into account the hardware design of the
JavaCam, for instance only byte instructions are passed from and to the section that is to
run in the FPGA. Below is a top-down description of the structure.

 4

The GUI (mainForm or mainFormSwing) handles all the user interaction and drawing of
the processed images. It maintains a JPB object, which models the Java Programmable
Board. A virtual machine runs on the hardware board that can communicate with the pc

over a socket. If a local camera is
used, we need to communicate with
that instead of handling the socket.
To implement this functionality we
created a JPBvm interface that is
implemented by SocketHandler and
LocalJPBvm.
The SocketHandler has not been
properly implemented yet, because
we have no means of testing it with
an actual java camera. However, the
byte instructions are defined in the
interface and used by the
LocalJPBvm as well, so that
consistent behaviour should easily be
achieved. The LocalJPBvm keeps a
reference to a CameraHandler,
which is responsible for maintaining
several buffers for the algorithms to
work on. An algorithm specifies a
buffer it wants to use for input and
which one to use for output.
Optionally, a third buffer can be
specified if the algorithm needs to
store in between result. Because of
this, algorithms can re-use certain

c
i
t
s
t
b
I
m
h
d
i
w
p
s

Figure 3 – UML diagram of the software JavaCam

operations and even complete
algorithms could be chained. New

amera images are fed in a pre defined buffer and another is used to retrieve processed
mages. So the starting and ending buffer are pre defined, but these buffers are available
o use in any way the algorithm sees fit while it runs. The actual processing is done by
etting the X and Y position and then calling a function that performs the actual pixel
ransfer and manipulation on a relevant block of pixels instead of manipulating an entire
uffer.
n hardware, the CameraHandler runs on the FPGA and so has access to the working
emory for the buffers and to the camera input. The local version of the CameraHandler

as a reference to an object that implements the Camera interface. Through this interface,
ifferent types of camera can be accessed in a uniform way. At this point we have
mplemented a LocalCam, which generates random coloured noise, and a USBCam,
hich accesses a video capture device through the Java Media Framework. Another
ossible camera would be a camera model that reads video files. On the JavaCam, a
pecial Camera would have to be created to access the JavaCam hardware.

5

The LocalJPBvm also maintains a UserTask, which is a thread that is designed to run
asynchronously from the main application. A UserTask specifies the complete
algorithms, by specifying per algorithm the aforementioned input and output buffers and
calling the manipulation functions in CameraHandler. Which algorithm is executed gets
passed to the UserTask on creation by the LocalJPBvm, which receives this instruction in
the form of a byte specified in the JPBvm interface. The byte instructions are passed by
the mainForm as an argument to a function call. For the remote version using
SocketHandler, this function would, being unable to create the remote UserTask itself,
send this byte over the socket to the JavaCam, which would receive it in its own JPBvm
which would in turn then be able to create the UserTask. Theoretically, several UserTask
could be running at the same time, but for them to perform useful tasks would require
algorithms that would be specifically designed for this, since they operate on the same
buffers. A UserTask always performs its algorithm only once, and it is the JPBvm’s task
to make sure that the UserTask runs every time a new frame is requested.
Finally, the USBCam handles a video capture device through use of the Java Media
Framework. On creation the USBCam searches for an available camera and captures it. If
it is not being used anymore its dispose() method is called to release the camera and make
it available again to other applications. Once it has acquired a camera, USBCam registers
itself to be notified anytime a new frame is available. It holds a reference to a frame, the
contents of which are copied to a buffer, which will be returned when a new image is
requested, so that the contents of the frame can be safely changed while maintaining the
integrity of the returned buffer. In the process of copying, the contents of the frame are
locked. On notification, USBCam waits for the frame to be unlocked (which it usually
already is, since normally more frames become available than are requested) and updates
it to contain the new frame, regardless whether a new frame is requested or not, so that it
always contains the latest available frame.

Algorithms

The algorithms we implemented are Motion Detection, Edge Detection and Optical Flow.
When dealing with image processing Convolution is necessary in most of the previous
mentioned algorithms. In the following sections we will describe in detail the algorithms
we implemented.

Convolution
Convolution is a function (usually) on a small coefficient scheme (kernel) and a larger
coefficient scheme (image). A general convolution is described by equation 1.1.

A convolution howeve
choose to not do a con

∑∑ −−=
k l

lkgljkifjigf),(),(),)(*(

Equation 1 - Convolution, from [5]
r leads to a problem: what to do with the edge pixels? You can
volution there. Or you can give the imaginary pixels (outside the

6

edge pixel), which you need, some value. We chose to not convolve edge pixels.
Therefore our convoluted images generally have a black border.

The problem we have with doing the convolution is to create good kernels. Due to
hardware demands our kernels need to be represented by bytes. But this means that most
kernels would increase the intensity of an image, since they sum up to far more than one.
So we need a good ‘normalization factor’ to divide the computed pixel value with. When
we don’t do this our computed images would end up with values far out of the range of 0
to 255 (due to the byte size). We can’t normalize an image afterwards, because this
would mean saving an image as integers (which can take far bigger values) first. This is
not hardware friendly.
Our convolution algorithm has the option to either convolve with the RGB or the black
and white version of the image. Black and white is however recommendable as this is
faster and most algorithms are designed for black and white images.

Motion Detection
To calculate and visualize motion in a real time environment at least two consecutive
frames are necessary. The basic idea behind motion detection is to compare two frames
and visualize the difference. The first step in our approach was to average the three
valued R, G and B images (with size M-by-N) of the color input into a one valued
grayscale image (with size M-by-N).

∑∑
= =

++=
M

x

N

y
BBGGRR yxIyxIyxIyxI

1 1
)),(),(),((

3
1),(

Equation 2 - RGB to black and white taken from [5]

This was done to get a hold on all the information of the camera sensors (R, G and B) and
to average out possible fluctuations in one of the three color channels. The second step in
our motion detection algorithm is to subtract two consecutive grayscale frames I1 and I2
into a new frame IDif which contains the absolute values of the differences between I1 and
I2.

∑∑
= =

−=
M

x

N

y
Dif yxIyxIabsyxI

1 1
12)),(),((),(

Equation 3 - absolute difference between to frames, taken from [1]

The absolute values are taken because the difference can take on negative values
depending on when in time the difference occurred. This information is irrelevant
because we are interested in difference and not when it occurred.
The next step that is taken in our algorithm is to deal with noise. To achieve a robust
algorithm that is stable against image noise. To this end we constructed a 3-by-3
averaging kernel which is convolved with IDif to IavgDif.

 7

111
111
111

9
1

=avgKernel

Equation 4 - averaging kernel, taken from [2]

This new image is then compared per pixel against a threshold (which is found
experimentally). Our algorithm contains at the moment to thresholds one for “lighter”
motion and one for “heavier” motion. If a certain pixel in the IavgDif image falls into the
“lighter” motion threshold this pixel will be colored green and for the “heavier” motion it
will be colored in red. If the pixel in question is below these thresholds it will get the
original R, G and B values from image I2.

⎪
⎩

⎪
⎨

⎧

<
>

<<
=

20),(
30),(

30),(20
),(

2 avgDif

avgDif

avgDif

out

IifyxI
yxIifred

yxIifgreen
yxI

Equation 5 - threshold function

Edge Detection

Edge detection comes in many flavors. In our project we chose to start with edge
detection based on the first derivative of an image. The variant we implemented is known
as Sobel’s edge detector [7].
The Sobel edge detector uses two masks to calculate an approximation of the first
derivative in the X-direction and in the Y-direction by convolving with those masks.
After calculating these, the norm of the X-derivative and the Y-derivative is taken, this is
called the magnitude. A magnitude above a certain threshold indicates an edge pixel.

121
000
121

101
202
101

−−−
=

−
−
−

= yx ss

Equation 6 - Sobel masks, taken from [7]

22),(),(yxsyxsM yx +=

Equation 7 – Magnitude, taken from [7]

This edge detector however has problems locating the edges. To locate edges we need to
take a look at more advanced edge detectors, who take into account the second order
derivative of an image.

 8

The first candidate for this is the Marr edge detector. This detector is based on the
Laplacian of an image [5]. The Laplacian gives an approximation of the second order
derivative of an image. It is however very sensitive to noise. Therefore it is a good idea to
first blur your image using a Gaussian Kernel. Luckily this can even be done in one step,
by convolving a Laplacian kernel with a Gaussian and then convolving the image with
this kernel, which is known as the Laplacian of the Gaussian.

Equation

In the convolved image we hav
derivative changes sign. A zero
we better localize the position o
pixel p with each of its neighbo
the other is above zero, then we
is closer to zero then the neigh
This makes sure that the ed
continuous, edge. Next we look
Sobel’s mask’s or Gaussians as
the gradient is above a certain
due to noise.

A better edge detector is the Ca
edges at the zero-crossings of th

wwf

The various f’s are calculated b
need Gx, Gy, Gxy, Gxx and Gyy. F
with a normal G, this blurs i
detected the same way as in the

Equation 10 - two

01210
10201
22822
10201
01210

−−−
−−
−−
−−

−−−

 8 - Laplacian of Gaussian, taken from [8]
e to look for the zero-crossings, this is where the second
 crossing indicates a peak in the first derivative. This way
f an edge. Finding a zero crossing is done by comparing a
rs, including diagonals. If one of them is below zero and
 have a possible zero crossing. We also need to check if p
bor we found, if this is the case then p is a zero crossing.
ge we are going to find best approximates the real,
 at p in the first derivative (calculated using for instance
 with the Canny edge detector) to see if the magnitude of
threshold. This filters out weak edges, which are mostly

nny edge detector [5]. Canny’s edge detector localizes the
e fww.

yyyxyyxxxx fffffff 22 2 ++=

Equation 9 - taken from [5]

y convolving with derivatives of the Gaussian kernel. We
or better performance, the entire image is first convolved

t, and that way removes noise. The zero crossings are
 Marr edge detector.

-d
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
−

=
2

22

22),(σσ
yx

eyxG

imensional Gaussian function, taken from [9]
9

Since the Canny and Marr edge detectors make use of Gaussian kernels we have the
standard deviation σ parameter. A standard deviation of σ=1 detects pixel wide edges. A
bigger σ would detect wider edges, so more global image features. A complete edge
detector would use different values of σ on the same image and integrate these values into
one edge detected image.

The implementation of Sobel’s Edge Detector was rather straight forward. It is a matter
of convolving every pixel with the two masks, and then calculates its magnitude. The
selection of a good threshold is difficult. This depends on the camera and the lighting
available.

Marr’s Edge Detector is implemented by convolving with a 5 by 5 Laplacian of Gaussian
Kernel, as given in equation 8. The zero crossings are calculated as described. However,
the first derivative isn’t used to check for a peak. We implement a threshold on the
absolute difference between the pixel and the neighbor with which it has a zero crossing.
This difference needs to be above a certain level, which is the case when the first
derivative is big. So the behavior is essentially the same, it however saves us from
computing the first derivative, which is computationally heavier. This way the Marr Edge
detector is even faster then the Sobel edge detector.
For the canny edge detector we need to convolve with a lot of different Gaussian kernels.
Fortunately all except one of them can be done one dimensionally. This saves on
computation. The blurring 5 by 5 kernel G, can be split up in a horizontal and vertical
kernel. Gx, Gy, Gxx and Gyy are all 5 by 1 or 1 by 5 kernels respectively. Only the Gxy
kernel is 5 by 5. When we have all the different convolutions done on a pixel we can
calculate the fww using equation 9. The same zero crossings detection is then used as for
the Marr Edge Detector.
We have only computed edges with the Marr and Canny Edge Detectors using σ=1.
Doing computations for different σ would be to computationally expensive. It is however
very easy to expand the program with kernels with other σ.

Optical Flow
After implementing Motion Detection, we wanted to know the direction and speed of a
pixel within a small time interval. This is what the Optical Flow algorithm does.
First, we assume that the color conservation of a pixel over a small time interval holds
true. Color conservation means that when looked at a small time interval, the color of the
pixel remains the same.

Normalized rgb introduces two independent quantities to represent color properties of a
spectrum, for example rgb uses r and g (or any other pair of the r,g and b quantities). In
the normalized rgb system, the two independent quantities representing color properties
of a spectrum are defined as different ratios of the RGB quantities. The quantities we use
are r and g, so the color conservation assumption implies

 10

,0

0

=
∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

t
gv

y
gu

x
g

t
rv

y
ru

x
r

Equation 11 – color conservation assumption, taken from [1]

where
x
g
∂
∂ ,

x
r
∂
∂ denote the derivative of the g and r components in the x direction and

y
g
∂
∂

,
y
r
∂
∂ denote the derivative of the g and r components in the y direction.

t
g
∂
∂ ,

t
r
∂
∂ denote

the derivative in time of the g and r components.

This system is well determined and its solution provides an estimate of the image flow
where u represents the estimated image flow in the x direction and v the estimated image
flow in the y direction.

First we have to normalize the RGB values into rgb using the following equations:

),(),(),(
),(

),(

,
),(),(),(

),(),(

yxIyxIyxI
yxI

yxI

yxIyxIyxI
yxIyxI

GBR

G
g

GBR

R
r

++
=

++
=

Equation 12 - RGB conversion to rgb, taken from [6]

The first derivative in the x, y and t direction can be calculated with the convolution
using the following kernels:

111
111
111

9
1_

101
202
101

_

121
000
121

_

=

−
−
−

=

−−−
=

Kernelderivativet

Kernelderivativey

Kernelderivativex

Equation 13 - kernels, taken from [2]

 11

To calculate the optical flow we need two consecutive frames with a small time interval.

KernelderivativetyxIyxIAbsyxI

KernelderivativeyyxIyxIyxI

KernelderivativexyxIyxIyxI

rrrderivativet

rrrderivativey

rrrderivativex

_*))),(),((((),(

_*)),(),((),(

_*)),(),((),(

_1_2__

_2_1__

_2_1__

−=

+=

+=

Equation 14 – derivatives, taken from [2]

The same calculations are used for the derivative of the g component.
Now that we have the values of the derivatives in x,y and t direction, we can calculate u
and v by solving the linear system of equation 11. u and v can now be used to visualize
the optical flow.

Evaluation

Motion Detection
After having implemented the basic steps of the motion detection algorithm the
thresholds had to be found manually by trial and error. Although it works by this method
a better idea would be to have an automatically detection of the threshold. At the moment
there are only two thresholds which can be extended into as many as are needed in the
future. The next step could be to implement different algorithms and not only the one
mentioned above. However, this simple algorithm is quite stable and robust against image
and randomly introduced noise.

Figure 4 – motion detection

Edge detection
On first look the output of the simplest edge detection algorithm, the Sobel Edge Detector
seems to be the best. All the edges we expect to see are there, if we use an adequate
threshold. The big problem however is the width of the detected edges.
Detecting the precise location of edges is what the Marr and Canny Edge Detectors where
designed for. Although a first comparison of their output with a Sobel Edge Detector
seems to be in the favor of the latter. When we look at the edges determined by both Marr

 12

and Canny we see that they are only one pixel wide, and in good alignment with the
actual edges, this is what we need, if we want to do, for instance, Hough Transforms on
this output. Looking at our example pictures (Figure 5a-5c) we see that each of the
algorithms have more or less their own edge type that they can handle well.
The problem described earlier with our convolution function, the fact that the kernels are
in bytes, is perhaps of influence on the quality of the Canny and Marr Edge Detectors. It
is hard to make sure that the end result of the convolutions maps nicely between 0 and
255. This is however necessary to have good results. Tweaking the normalize factor
parameter is the only solution.
Both the Marr and the Canny Edge Detector have a problem with noise. Selecting a good
threshold is therefore paramount to successful edge detection. Making sure that the image
is blurred helps as well. Both algorithms do this in their own way, as described earlier.
Comparing the Marr and Canny Edge Detectors is difficult. From the literature [5] it is
known that the Canny Edge Detector should perform better in detecting corners. We tend
to notice this as well. The Marr Edge Detector is however the clear computational
winner, doing only one convolution instead of the five for the Canny Edge Detector.

Figure 5a - Sobel

Figure 5b - Marr

Figure 5c - Canny

Optical Flow
After we had implemented optical flow, the visualization was not very intuitive and
mostly incorrect because of difficulties which are involved when visualizing the motion.
We tried two kinds of visualization. One with arrows and one with a color coded system
which gave every pixel a different color depending on the estimated image flow
direction. Our assumption was that the color coded system would give better results, but
as we can see in Figure 6b, you cannot see the object that moved. In the visualization
with the arrows (Figure 6a), we can the object, but the arrows point in all directions.
Because of the short time and the extensive literature around the subject of optical flow
we could not look for other algorithms for a better visualization. Although we think that
the calculations are correct future work could be invested into better visualization (Blur
and better thresholds).

 13

 Figure 6a – optical flow with arrows Figure 6b – optical flow by color

Running times (average over 100 runs) *

Algorithm Average time/run (ms) Frame rate (fps)
Motion Detection: 21 47,6
Optical Flow: 46 21,7
Sobel edge: 39 25,6
Marr edge: 46 21,7
Canny edge: 130 7,7
*Test -PC hardware:
Cpu: Athlon XP2500+
Mem: 512 MB dual channel DDR (333 MHz)
HDD: 120 GB WD 8MB cache ultra-ata/100, 7200 rpm
Video: Club 3D 9600 pro 128 MB DDR

Table 1 – Running Times
On first look these running times (Table 1) are good for this PC project. But they are too
slow for the actual JavaCam, which runs at approximately 1/50 of the speed of an
ordinary today’s PC. This would mean that Motion Detection would run at a 1 fps frame
rate.
One solution would be to have the algorithms work on averaged blocks of pixels to
effectively reduce the resolution of the processed image. For motion this would probably
be an adequate solution. However, averaging the pixels would destroy a lot of the edge
information.
The Marr Edge Detector and the Motion Detector seem well suited to implement in low
level instructions, i.e. the FPGA connected to the JavaCam. This is because they only
involve relatively simple computations (addition, subtraction, multiply and division) on
bytes and integers.
The Optical Flow algorithm makes use of floating point calculations, so this will require
a bit of conversion. This is probably doable. For instance multiply with 100 and clip the
decimals.
Both the Sobel and Canny Edge Detector use a square root in their computation. This is
more difficult to implement fast. However, exact values for the square root are not
necessary, so perhaps it is not as much a problem as we think.

 14

Suggestions

Other methods/algorithms that could be implemented are for example: People or Object
Counting, Object Recognition, Object Tracking, Line Follower, Distance Estimation,
Particle Filters, Aggression Detection.
We also suggest Face Recognition and Pedestrian Detection. The first is relevant for
security systems. Pedestrian Detection can be build into cars.
Aggression Detection is often tried with image recognition alone. This is proven to be
very difficult. Therefore we suggest using sound as well. By combining visual and
auditory input we create better conditions for detecting aggression. Loud yelling
combined with speedy motion by some skin-colored object is perhaps a way to detect
aggression. More microphones and cameras would allow to check whether the location of
the sound and the image match up.

Conclusion

The software simulation of the JavaCam is a good way to develop image processing
algorithms in general and more specifically for the hardware Camera. Because in general,
programming in Java is easier, development is faster and less expensive.
The implementation of different algorithms has succeeded according to our expectation
although the running times indicate that on the hardware camera not very high frames
will be achievable. The resulting application is robust and extendible. Implementing new
algorithms will not be difficult. Lots can still be done, but the basis is there.

 15

References

[1] Golland, P. and Bruckstein (1997), A.M., Motion from Color, to appear in: CVGIP,
Computer Vision and Image Understanding

[2] Baltes, J. (2003), Optical Flow Algorithms, Lecture notes,
www.cs.uminatoba.ca/~jacky

[3] Hedlund, M., Jonsson, F. & Alberg, D. (2002), SMD151 – Multimedia Systems, lab
#1 motion detector, lab course report

[4] Trucco, A. and Verri, A. (1998), Introductory Techniques for 3-d Computer Vision,
Prentice Hall

[5] Van den Boomgaard, R. & Dorst, L. (2001), Machine Vision an introduction for
computer scientists, Syllabus for Machine Perception Course Universiteit van Amsterdam

[6] Gevers, Th. (2003), Multimedia Information Retrieval, Syllabus for Multimedia
Information Retrieval Course Universiteit van Amsterdam

[7] http://www.ii.metu.edu.tr/~ion528/demo/lectures/6/1/index.html

[8] http://www.efg2.com/Lab/Library/UseNet/1999/0929b.txt

[9] http://www.cpsc.ucalgary.ca/Research/vision/501/edgedetect.pdf

[10]http://www.sgi.com/software/opengl/advanced97/notes/node152.html#SECTION000
143500000000000000

[11] http://www.dai.ed.ac.uk/HIPR2/log.htm

Project url’s :

Our project website: http://kreng7.homelinux.org/cgi-bin/wiki/wiki.pl
Project course website: http://www.science.uva.nl/~arnoud/education/DOAS/

Detailed assignment:
http://www.science.uva.nl/~arnoud/education/DOAS/Project2004/CameraTeamProject.d
oc

Installation Documentation of the JavaCam software:
http://kreng7.homelinux.org/~gerben/InstallationJavaCam.doc

 16

http://www.cs.uminatoba.ca/~jacky
http://www.ii.metu.edu.tr/~ion528/demo/lectures/6/1/index.html
http://www.efg2.com/Lab/Library/UseNet/1999/0929b.txt
http://www.cpsc.ucalgary.ca/Research/vision/501/edgedetect.pdf
http://www.dai.ed.ac.uk/HIPR2/log.htm
http://kreng7.homelinux.org/cgi-bin/wiki/wiki.pl
http://www.science.uva.nl/~arnoud/education/DOAS/
http://www.science.uva.nl/~arnoud/education/DOAS/Project2004/CameraTeamProject.doc
http://www.science.uva.nl/~arnoud/education/DOAS/Project2004/CameraTeamProject.doc
http://kreng7.homelinux.org/~gerben/InstallationJavaCam.doc

