
Aibo Project 2004 - German Team Report

Brammert Ottens bottens@science.uva.nl
Aron Abbo aabbo@science.uva.nl

Peter Johan van der Meer pjmeer@science.uva.nl
Manfred Stienstra mstnstra@science.uva.nl

January 29, 2004

University of Amsterdam

Abstract

This document describes an evaluation of the German Team soft-
ware framework which was built for the Four Legged League, RoboCup
2003. It also includes a comparison to the Carnegie Mellon University
framework.

1 Introduction

For us, playing soccer is something we learned as a kid. Some became better
at it than others, but we can all follow the ball, predict where it is going
and kick it in the right direction. We can even play a match against each
other.

Since 1997 the academic community took up the task to create robots
with the same soccer capabilities as us humans. Every year the RoboCup
games are held, so researchers can test their teams in a real environment.
One of the leagues in The RoboCup is the Sony four legged league. In this
league, teams of four Aibo robots play soccer against each other, and since
a couple of years it is customary for the competitors to release their code
after the games. This way people can use the work done by others and learn
from each other.

The Dutch have competed in some of the other leagues before, but a
Dutch team has yet to enter the four legged league. This is about to change,
and in order to avoid unnecessary work, the Dutch team wants to adopt an
architecture from another team to use as a starting point.

Our task is to analyse the architecture used by the German Team 2003[5].
This analysis will deal with the modularity of the architecture, the func-
tionality, the compatibility, the ease of understanding, the adaptability, the
utilities and the documentation.

1



Figure 1: Evolve walking agent, a state machine example

After this we have to compare our findings with the findings of the other
group, which analysed the CMU team framework. In other words, we have
to say which one is better suited as a starting point for the Dutch team.
And last but not least, we will also point out some parts of the software
that can be improved.

We have decided to concentrate on the architecture of the framework and
the tools. Information about installation details, modules and algorithms
can be found in our technical document[7] and in the German Team technical
document[1].

2 Architecture

2.1 Functional architecture

The main goal of the German Team is creating a team of aibos that can play
soccer and solve challenges created by the RoboCup organisation. In order
to achieve these goals the robot can use one of 10 different behaviours. More
information on the different behaviours can be found in the documentation
of the German Team which can be generated from the source code in Visual
Studio. The basic idea behind all the behaviours is that they are modelled
as finite state machines, see figure 1. In each state the robot will perform one
of the basic behaviours. These basic behaviours are for example a behaviour

2



Figure 2: The German Team architecture

that lets the robot walk to a certain point on the field without hitting
obstacles, kick a ball or do nothing. Again more information on the different
basic behaviours can be found in the generated documentation.

For the soccer playing agent, there are four different sub-agents: goalie,
striker, defensive supporter and offensive supporter. The role of the goalie is
assigned once each game, but the rest of the robots can change roles during
the game. The robot that can reach the ball the fastest will be the striker.
The other robots will be supporters. Every robot sends the information
necessary to perform the role assignment over the WLAN to all the other
robots every cycle. If, for some reason, the WLAN is down all three robots
will become striker.

The information send by the robot to the other robots also contains its
own location. Knowledge of other robots’ positions is useful for avoiding
collisions and for tactical planning. Each robot determines it’s own location
in the world. This is the most accurate. If a player cannot receive the
position of another player he will use his vision. If a robot cannot see the
ball for some time, the (estimated) ball position will also be communicated.
The level of coöperation is similar to that of the CMU team.

2.2 Operational Architecture

The German Team has chosen a hierarchical architecture, as can be seen in
figure 2.

3



All the decisions are made by the module behaviour control. Each rect-
angle in the picture has it’s own classes in the implementation. The ovals are
packages of data that can be sent to other modules. Whether the modules
are truly independent of each other, will be discussed below.

2.3 Implementation Architecture

2.3.1 Modules

A process consists of a grouping of modules. Modules are implemented to
perform different tasks and have well defined interfaces. Typical tasks for
modules are reading the data from sensors, extracting features from the
sensor data, taking decision based on these features and making the robot
act upon decisions. Because the interfaces are well defined it’s easy to replace
a module, which allows a convenient way of testing several solutions for a
task. The code in general is highly modular, functions are well separated or
grouped into an appropriate class. This also allows a good maintainability
of the code.

Most of the functionality of the robot can be found in the modules, how-
ever the robot behaviour is described in another way. The Extensible Agent
Behaviour Specification Language XABSL[4] is an XML based behaviour
description language that is executed by the runtime system XabslEngine
on the Aibo. The engine parses and executes the intermediate code that was
generated from XABSL documents. XABSL uses hierarchies of behaviour
modules, called options. These contain state machines for decision making.
A rooted directed acyclic graph, also called the option graph is used to acti-
vate and parameterise one of the basic behaviours, which is then executed.
The terminal nodes of the graph are called basic behaviours. Beginning from
the root option, each active option has to activate and parameterise another
option on a lower level in the graph or a basic behaviour. The symbols
from the XML specification are used to describe the options and states to
the variables and functions of the agent platform. While options and their
states are represented in XML, the basic behaviours are written in C++.
XABSL allows for creation of complex behaviour patterns in a declarative
manner which are easy to extend. It’s also possible to integrate behaviour
control with learning facilities based on parameters.

2.3.2 Main Processes

The program consists of two processes that run concurrently, the motion
process and the cognition process. The communication between these two
processes uses Aperios message queues. The German team has written re-
ceiver and sender classes, and a process can be both a sender and a receiver.
The information that is send is wrapped into packages.

4



It is rather easy to implement another process structure. The Germans
just recently started using this process layout. How you can change the
process layout is described in the German Team technical report[1].

Communication There is one package for the communication from the
Cognition process to the Motion process, and one package for the communi-
cation from the Motion process to the Cognition process. All these packages
are streams from one process to another, so they can easily be adapted or
replaced if other information has to be sent. There is a config file that de-
scribes communication links between the processes. This is just plain text,
so it is easily changed, and is not dependent on the Aibo used.

For the communication between the operating system and the processes
the German team also uses the sender/receiver method. The cognition pro-
cess receives sensor information from the operating system in two different
packages. One for the image taken by the camera and one for the rest of
the sensors. The Motion process sends the joint angles to the operating sys-
tem through a special sender. In this sender all the names of the joints are
defined, so if the names of the joints change with a new Aibo, this sender
is the only part of the code that has to be adjusted. If there is a change in
the number of sensors, a change also has to be made in one other class. Of
course the implementation of the motion has to be changed too, but that is
inherent to a change in joints and is not caused by the used architecture.

Synchronisation is achieved by a blocking mechanism. The Cognition
process awaits the sensor data. It only jumps into main when it has received
all the sensor data. The motion process awaits a request by the operating
system for new joint angles. For the between process information there is
no blocking. The processes don’t await new information, but work with the
old until they receive new information. This new information is received at
the start of the main process. All the processes will always work with the
most recent information because of this construction.

The Function of the Processes The cognition process will first analyse
the sensor data and decide what kind of behaviour is appropriate, after this
the Motion process will convert this into a motion the robot can perform.
The performance of a module in one process is not dependent on the imple-
mentation of a module in the other process. As long as the interface stays
the same, nothing bad will happen if one of the modules is changed dras-
tically. No functions from one module in one process are called by another
module in the other process.

The cognition process consists of the perception layer, the object mod-
elling layer and the behaviour control. The Motion process consists of the
motion control layer.

There are two more processes, the debugger and the logger, but these

5



processes are only for development and are not put into the release version.
The communication also uses the sender/receiver method. We will discuss
the debugging in more detail later on.

Remarks If you look at the code it is easy to understand what is hap-
pening. The processes just load some modules, execute these modules and
send the data. All the real work is done in the modules themselves. The
only problem that can be foreseen is that it might be possible for the com-
munication between the processes to become a bottleneck when more data
is to be send between the processes. A shared memory structure might then
be faster, despite the locking procedures that than have to be implemented.
Because the processing power could increase in future Aibos the streams will
probably become the bottleneck rather than the overhead from the locking
mechanisms.

3 Platform Interface

In this section we will give a short description of the hardware and operating
system requirements of the German Team soccer code.

3.1 Operating System Independence

There is a very rigid and explicitly stated combination of OS and software
that is needed to compile. These requirements are:

• Microsoft Windows 2000/XP

• Microsoft Visual C++ 6.0 SP5

• Cygwin 1.3.22: A Unix-emulator for windows.

• CygIPC 1.13-2 : Provides Inter-Process Communications services for
Cygwin.

• GTK+ 1.3: A multi-platform toolkit for creating graphical user inter-
faces.

Compiling modules for the Aibo means we have to use a cross compiler,
and Sony provides a cross compiler only for Cygwin. The German team
decided at some point to use Windows specific libraries for the tools, so
they had to use a Windows IDE (in this case Visual Studio). In order to
still use a single environment to build the system, they had to create a
number of makefiles and scripts. These scripts prove to be a little shaky.
Right now, only the simulator Robot Control (which will be described under
Tools) is compiled by Visual Studio; the other segments of the code are sent

6



to Cygwin for compilation. For this part of the code, Visual Studio can also
be bypassed altogether by running the build scripts directly.

The required programs and program versions are, as said before, quite
rigid. A different version of one of the needed software components could
result in hard-to-fix compilation errors and crashes during runtime.

Another factor that complicates the platform independence is Depend.
This is a speed optimised preprocessor, written in C, which can calculate
the dependencies in a certain setup of modules. Since the memory on the
Aibo is quite limited, it is critical to be able to determine which source files
are needed and which are not.

Several assumptions are made about the OS and the file system lay-
out that are not documented: In fact, there is little or no documentation
available for Depend at all.

3.2 Robot and Simulation Independence

One of the main goals of the architecture of the German Team was to main-
tain platform independence between robots and simulations. They were not
only motivated to do this because a simulation can greatly speed up testing
and debugging: Other reasons were that it also improved modularity, and
before 2003 there team also had to take into account that there was a non-
disclosure agreement in effect for the Open-R SDK. Thus, they had to keep
the modules that communicated with Open-R strictly separated from the
other ones.

4 Tools

4.1 Requirements

If you want to develop for a certain platform, the right tools are essential.
There are a few tools which would really speed up the development, namely a
debugger, a profiler and a tool to inspect higher level behaviour. Because the
Aibo has limited output functionality we probably want to do this remotely.
If some task proves to be cumbersome, you might want to automate this. We
also would like to be able to replay entire games and, because uploading code
to the Aibo is time consuming, running modules on our PC in a simulator.
The final requirement is the need for configuration assistance; the number
of parameters in the Aibo can be extensive and assistance in the form of a
tool can be very helpful.

The German Team has written a number of tools for these purposes;
RobotControl, SimGT2003, Router and the Motion Net Code Generator[1].
We will now look at how they perform these tasks.

7



4.2 Interaction

In order to receive information about the state of modules, we need a process
to handle the communication about the debug information. The framework
has two types of requests, a debug request and a solution request. The re-
quests are issued by software on the PC and routed to the correct module
by the debug process, and the data received from the module is routed back
to the PC. Debug requests turn debug keys on and off, solution requests
turn entire modules on and off. If a debug key is turned on, a module will
write associated values to the message queue in the debug process.

4.3 Debugging

RobotControl allows us to look at the output the modules give when certain
debug keys are activated. The advantage of this method is that it allows us to
look at all the values in the code, even complete images. The disadvantage is
that we can’t monitor arbitrary values, so we need to create a debug key for
each value we want to look at and program it into the debugging framework.
In case of a crash we have to fall back on a Perl script provided by Sony for
evaluating stack dumps.

4.4 Profiling

RobotControl also enables us to profile the various modules; this is done by
a slightly modified version of the debug key solution. The time between two
C++ Macro calls is sent to RobotControl by the process which starts the
module. RobotControl allows us to view these timings and it can calculate
the mean of a arbitrary number of measurements. The disadvantage in this
method is again the lack of flexibility.

4.5 Simulating

Both RobotControl and SimGT2003 use an inverse kinematics simulator
to visualise a game with Aibos. SimGT2003 is primarily a simulator and
RobotControl is more an observation tool. SimGT2003 can be used to sim-
ulate entire games, RobotControl can be used to playback log files from
the Aibo. Both programs function pretty well. SimGT2003 has a very im-
portant shortcoming, it doesn’t do collision detection. This means it can’t
simulate kicks and Aibos can move freely trough each other. The level of
detail in SimGT2003 is very high, it can even emulate the buttons on the
Aibo. This makes porting the simulator to a new Aibo more difficult because
the button actions have to be reprogrammed.

The user interface for both tools is not always clear, for example in a
particular dialog box a long list of buttons is presented without dividing

8



them in functional groups. In another dialog a drop-down menu is shown
without the parameter you’re changing next to it.

4.6 Automated Processes

Because the behaviour control uses XML files that need to know about
the movements, the movements have to be in XML too. The movement
control works by calling methods on the movement module. In order to work
efficiëntly with these two representations the German Team has written a
tool called the Motion Net Code Generator. This tool converts a common
joint angle representation to C++ source files and XML descriptions, which
can be used in the various components.

The scenarios in the SimGT2003 simulator can be scripted in the console
command language, this allows for automated tests.

4.7 Configuration and Calibration

Most of the configuration is done with plain text configuration files, some
of the files can be created and maintained with the RobotControl tool. You
can save folders with configuration files in the Build directory and copy them
with a copy tool to the memory stick. This allows you to maintain multiple
configuration profiles and upload them to an Aibo. The copy script doesn’t
look very robust and in some cases didn’t work for us.

Calibration is done by creating a colour table for the Aibo, this colour
table has to be in YUV space. RobotControl provides two tools to create
this colour table. One in HSI, optimised for fast creation of the colour table,
and on in YUV, optimised for precision.

5 Documentation

The documentation available for the German Team framework consists of a
technical document, several papers and API documentation. The technical
document is a complete overview of the framework.

In Visual Studio it’s possible to generate an HTML API reference manual
by making use of Doxygen. This generated manual also allows visualisation
of the relations between the various elements by means of include dependency
graphs, inheritance diagrams and collaboration diagrams. Comments in the
code are formatted for parsing by Doxygen and since the documentation is
extracted directly from the source code, only one source of documentation
has to be maintained.

The technical report gives an overview of all the modules, the tools
and gives in depth explanation about the behaviour XML, installation,
sender/receiver functionality and the streams library. The documentation

9



for SimGT2003 and RobotControl is more a user manual than technical
documentation.

The documentation handles the complete scope of the framework, and
is of good quality. Especially the API documentation is very clear and the
use of the images is a very helpful addition.

6 German Team framework vs. CMU framework

Now that we’ve looked at some of the strengths and weaknesses of the
German Team software, we can make a comparison to the CMU software.
We had a talk with the group examining the CMU software, read their
evaluation[6] and came up with the following differences.

6.1 Modularity

The German Team software is very modular, the modules are separated at
conceptual level and have very little inter modular constraints. The CMU
software seems to be a lot less modular. It still has modules, but these
modules call parts of other modules.

The lack of modularity makes it hard to implement other wanted features
of the framework: such as easily replaceable modules or having multiple
modules being able to perform the same task.

A drawback of rigid modularity might be the ease of communication.
Because the communication channels are predefined, you have to fit all the
communication into these channels. There is, for example, no nice way to
bypass the communication for a high speed interface.

The German Team uses a separate module for behaviour and evalu-
ates behaviour programs during execution, this makes implementation and
activation of new behaviours very easy. The German Team behaviour is ex-
pressed in XML, the CMU software has behaviour expressed in C++ code.
The only drawback of evaluating the behaviour programs in runtime is that
it costs a little processor power, but the expressiveness is the same as C++
code. It even makes dynamic role changing possible.

6.2 Maintenance and Changes

Sometimes changes need to be made to the code. For example, Sony might
release a new model, or the rules of the RoboCup could change. It’s im-
portant that these changes can be incorporated into the framework without
too much effort. The modularity of the code makes this a little easier, but
it turns out some things take quite some time to adjust. Another factor in
the maintainability is the size of the code base. The German Team soft-
ware has a very large portion of the code expressed in XML. Code, header
files and XML are around 300,000 lines, while the CMU software only has

10



around 100,000 lines. This difference is mostly because of SimGT2003 and
RobotControl.

When we were looking at the code, we found some assumptions about
the robot which turned out not to be true any more for the new Aibo. The
biggest problem people will have porting to the new Aibo will be the change
in the joints in the neck and head. In the ERS-210, the Aibo had a tilt in
the neck and a roll and pan in the head. The ERS-7 has a second tilt in
the head instead of the roll. The assumption that the head could tilt, roll
and pan was found in multiple modules, from the math through the image
processing to the data structures in the localisation modules. Without this
assumption the code would become too general and probably slow. The
CMU software makes the same assumption.

6.3 Tools

Both frameworks have basic tools for debugging and monitoring the Aibos.
The main difference between the two is the interface to the tools. While
CMU uses command line tools, the German Team uses graphical user inter-
faces. The German Team has a visualisation component which makes the
choice for a GUI a logical one. The CMU seems to have taken a more ad
hoc attitude, creating small command line tools to perform tasks which turn
out to be tedious. Unfortunately the CMU tools don’t match the German
Team tools in functionality and quality.

One of the drawbacks of using a GUI is platform independence: it’s much
more difficult to build a GUI that works on multiple operating systems than
creating command line tools which do the same. The type of interface on
programs is a matter of taste. Although a graphical simulator is a big
advantage of the German Team framework.

6.4 Ease of Learning and Documentation

The first impression we got from the documentation of both frameworks was
that the German Team documentation was much better. Later on, the other
group found out the documentation was spread out over a large number of
sources. Both code bases are well documented, the German Team has a little
advantage on this point because it can generate HTML documentation from
source.

The learning curves for both frameworks aren’t very steep. If we had to
choose, we would vote in favour on the German Team framework because
the technical document is a very good way to get to know the system.

The documentation about installing the compilation software and com-
piling the code is quite clear and provides a step-by-step explanation of the
actions needed to get the Aibos up and running.

11



7 Conclusions and Possible Improvements

7.1 Conclusion

The German team have a couple of important strengths. The code is clean
and is highly modular. Graphical simulators are included that can be used
for monitoring the Aibos and debugging purposes. Elaborate documentation
is written and the code itself is well documented also, allowing a fast learning
curve for people unfamiliar with the project. XABSL facilitates creating
complex extensible agent behaviour solutions instead of just using C++.If
we compare the software package of the German team to that of the CMU
team, the German teams software package is better in the end.

7.2 Improvements

There are a couple of items we feel that can be improved.
Some of the vision algorithms used seem rather crude[3] at first sight.

No colour-invariant features are used in general. Scan lines with a dis-
tance between them are being used to detect objects by looking at colour
sequences of pixels. This is caused by real-time requirements. Calculating
and scanning lines, edge finding, colour classification and recognising objects
is computationally expensive if done frequently on the 400Mhz MIPS pro-
cessor used in the ESR-210. The new model Aibo the ESR-7 has a 567Mhz
MIPS processor which allows space for testing new algorithms.

Inter process-communication is achieved by using message-queues. If
more communication would take place (e.g. from image-processing) this
could become a bottleneck. A shared memory structure might be faster,
despite the locking mechanisms that have to be used.

Compiling the code for the Aibo was done using the Cygwin Unix emu-
lator and a MIPS cross-compiler supplied for that platform. It would have
been easy if the MIPS cross-compiler had also been supplied for other plat-
forms (Unix/Linux) as you really have to know what you are doing if you
want to make one yourself. In order to facilitate generation of dependencies
between source files and binaries a simple pre processor called Depend was
used. A little more documentation would have been useful as the source
code had to be in a native windows directory. It’s easy to make the mistake
of supplying a Unix directory, in which case the Depend program doesn’t
function properly.

12



References

[1] Thomas Röfer, E.A. Technical document RoboCup 2003, 2003,
http://www.robocup.de/germanteam/GT2003.pdf.

[2] Röfer, T., Dahm, I., Düffert, U., Hoffmann, J., Jüngel, M.,
Kallnik, M., Lötzsch, M., Risler, M., Stelzer, M., Ziegler, J.,
GermanTeam 2003, 2003, In: 7th International Workshop on
RoboCup 2003 (Robot World Cup Soccer Games and Confer-
ences), Lecture Notes in Artificial Intelligence, Padova, Italy, 2004 /
http://www.robocup.de/germanteam/tdp03.pdf.

[3] Jüngel, M., Hoffmann, J., Lötzsch, M., A real-time auto-adjusting
vision system for robotic soccer, 2004, n: 7th International Work-
shop on RoboCup 2003 (Robot World Cup Soccer Games and Con-
ferences), Lecture Notes in Artificial Intelligence, Padova, Italy, 2004 /
http://www.informatik.hu-berlin.de/

[4] Lötzsch, M., Bach, J., Burkhard, H.-D., Jüngel, M., Designing agent
behavior with the extensible agent behavior specification language
XABSL, 2004, In: 7th International Workshop on RoboCup 2003
(Robot World Cup Soccer Games and Conferences), Lecture Notes in
Artificial Intelligence, Padova, Italy, 2004 / http://www.informatik.hu-
berlin.de/

[5] Röfer, T, An Architecture for a National RoboCup Team, 2003, In:
Kaminka, G. A., Lima, P. U., Rojas, R. (Eds.): RoboCup 2002:
Robot Soccer World Cup VI. Lecture Notes in Artificial Intelligence
/ http://www.tzi.de/kogrob/papers/robocup03.pdf

[6] Patrick de Oude, Tim van Erven, Jochem Liem, Tim
van Kasteren, Evaluation of CMPack 2003, January 2004,
http://gene.science.uva.nl/ poude/doas/paper cmpack03.pdf

[7] Ottens, B., Abbo, A., van der Meer, P.J., Stien-
stra, M., Aibo Project 2004 - Technical Report, 2004,
http://carol.science.uva.nl/ mstnstra/projects/2004/aibo

13


