[image: image1.png]Al

[image: image2.png]Lree SYSTEAS BY

Camera Team Project
Specification of tasks te be performed by the Intelligent Camera Project
Versie 0.0 – 23-12-03
Door: Peter van Lith (RI)

Contents
3Introduction

3Project Goals

4Deliverables

4Development subjects

5Tasks to perform

5Suggested reading

Introduction
This is a first draft only. Please contribute new criteria or modifications and improvements to make sure the proper criteria will be investigated and the results will be useful to all participants.

This document describes the goals and criteria to be used in the 2004 project with the Intelligent Camera. The Intelligent Java Camera is an ongoing project between the UvA, TU Delft and Lithp Systems. Its main aim is to provide a Java Based embedded camera system that may be used autonomously and is programmable.

Current camera systems either use a PC or a fast Risc processor and dedicated hardware to perform real-time image analysis. To gain sufficient speed usually either a large portion of a standard PC’s capacity is used or dedicated hardware is used. Almost all these systems are programmed in C or C++ and after development of a system changes can generally not be made to such a system.

The project was triggered by the availability of the low-cost CMU-Cam project, where a CMOS camera chip was used with a small microcontroller to form a simple embedded camera system for robotics applications. This system performs image analysis with a frame-rate of about 17 fps and a resolution of about 80x70 pixels.

The simplicity and low cost made us wonder if the same principle could not be used to build a programmable camera, based on the newest Java chips, thus allowing a similar system, that could be made adaptable and was programmable by non C programmers.

In its current form the Java Camera works, but at a speed that is too low for practical purposes. Therefore a new hardware interface is currently under development, allowing hardware-based pixel processing using task- and data parallel programming.

The main aim of the Camera Project is to develop a first series of small demo applications that can be used as building blocks and testing modules for the Java Camera project. A design needs to be made for a small demo application for a number of areas, each developed by one or two students. The architecture of the system is to be used as a basis, which currently also allows a standard USB camera to be programmed in Java on a PC for ease of development. The developed software may be run on the autonomous camera later on, without modification, when using the same architecture.

Project Goals

The main goal of the Camera Project is to develop a number of small demo applications, using the principle of task- and data parallel processing.

The main goals of the UvA project is to have students gain a deeper understanding of the architecture, organization, operation and possible problem areas of developing image analysis software for a variety of applications. The result of each demo should be working software, a report on the difficulties during development and a presentation of the results of the project.
Each team will provide a report, in which the selected application is described, including the used and installed software. During the project all found problem areas and followed procedures should be documented in such a way that following student groups can benefit from this project as much as possible. A complete set of installation, debugging and testing instructions should be developed of existing documentation enhanced with hands-on experience gained during the project.
Deliverables

Each team will deliver the following:

1. Tested and working software of the selected application.
2. Description of the selected area and detailed plan for development, including methods, time, milestones and people allocation.

3. Documentation of the developed application for users in future projects.
4. Clear, correct and working instructions on how to generate and use the software.

5. A report, indicating all investigated criteria and conclusions and suggestions for further development.

6. A presentation on the findings of the project team, also to be given to interested members of other project teams.
Development subjects

A number of subjects have been defined for which a small application needs to be developed. Students may select a subject from this list:

1. Motion Detection. To signal if and where in an image movement is detected. The amount of movement is to be measured and shown in the image in the form of a color code, indicating the amount of movement. Store a copy of the movement image in an external file.
2. People or object counting. Finding objects or people in a camera image and counting the number at any given time. An area is indicated in the image field which acts as a corridor. When crossed the number of objects is increased or decreased, depending on the direction of traffic.
3. Aggression Detection. Detecting certain amounts of movement in a certain region. When the movement seems violent, give a warning signal and indicate where and how long the movement has been going on. Store a copy of the first aggression image in an external file.
4. Object Recognition. Recognize an object in an image by its color code and size. Determine the position in the image by calculating the center of gravity.
5. Object Tracking. Recognize an object and track its position in an image. Report the path of the object in the image.
6. Hough Transform. Create a demo application of a Hough Transformation that allows lines and circles to be detected in an image. Extract these forms and report their shapes and positions.

7. Line Follower. Follow a found line in a moving image, allowing a robot to use the image data to follow a line.

8. Distance estimation. Use information from the image and measured properties of the camera and lens to estimate the distance of a known or unknown object in an image. Report its position and distance.

9. Particle filters. Use information in the image to detect pre-defined objects and use this information to determine a robot’s position.

Some of these areas overlap and could use features also developed by other teams. As much as possible code and solution sharing is recommended, resulting in more flexible software. Please be aware of not relying too much on work of another team, since this may result in not achieving the project goals.

Tasks to perform

The following tasks need to be performed. Each team may decide how these tasks are going to be divided. A planning with task assignments and milestone dates needs to be developed by each team, before the actual project tasks may start. A planning meeting will be schedule each week.

· Get sufficient machines to install and test the software, based on the planning and task assignments.

· Install the USB Camera and drivers.

· Download and install the software for Eclipse and JMF.

· Install the JavaCam software

· During installation make notes and a complete step-by-step instruction if these instructions are not available and make documentation that can be used by new team members or new student teams.

· Get familiar with the camera and set the JMF registry parameters.

· Set up a first simple demo program, to acquaint yourself with the system.
· Then select a subject, and make a detailed development plan.

· Setup a structure for your report and make each team member contribute to this report, based on the agreed planning.

· Then develop your demo application:

· Study the selected problem and literature on the subject

· Investigate possible solutions

· Study the Java Camera architecture

· Design subtasks that may be executed in parallel

· Contribute suggestions and new instructions for the JavaCam manual and software

· Get the software running and report as much as possible about the findings.

Suggested reading

The following documentation s suggested reading before the project starts:

· JavaCam manual.

· Proposal intelligent Camera.

· JavaCam progress reports.

· Intelligent Robotics. http://www.cs.utexas.edu/users/qr/robotics/argus/overview.html
· Embedding Data and Task Parallelism in Image Processing Applications. Christina Soviany. PhD Thesis 2003 TU Delft. (Only partly)
· A data and task parallel image processing environment. Christine Nicolescu, Pieter Jonker. TU Delft 2002
· Why linear arrays are better image processors. Pieter Jonker. TU Delft

PAGE
5

