Computer Systems for Al-programmers
baiCSAI3, Spring 2011
Lab Assignment: Code Optimization
Assigned: Week 8, Due: Week 10
Tuesday March 8, 10:00

Arnoud Visser A. Vi sser @va. nl)is the lead person for this assignment.
Eva Greiner will assist during class hours.

1 Introduction

This assignment deals with optimizing a naive piece of cadege processing and graphics offers many
examples of functions that can benefit from optimization.this lab, we will consider a single graphics
operation:l i ne, which draws a line with a certain angle over an image.

For this lab, we will consider an image to be represented agoadimensional matrix\/, where M; ;
denotes the value @f, j)th pixel of M. Pixel values are triples of red, green, and blue (RGB) \&al\ge

will only consider square images. L&t denote the number of rows (or columns) of an image. Rows and
columns are numbered, in C-style, frénto NV — 1.

2 Logistics

You may work in a group of up to two people in solving the proidefor this assignment. The only
“hand-in” will be electronic. Any clarifications and rewvigis to the assignment will be mailed to your
student.uva.nl adress.

3 Hand Out Instructions

Start by copyingoer f | ab- handout . t gz to a protected directory in which you plan to do your work.
Then give the command:ar zxvf perfl ab-handout .t gz. This will cause a number of files to be
unpacked into a directory. The primary C-file you will be nfgitig is | i ne- ver si ons. c. In this file
you can define multiple versions of the functionne() . To test the performance of a version, you register

this version to a benchmark-list ker nel . ¢, the second file that you have to modify. To be able to register
your versions of thé i ne() function, the name and description of each version has tmbek, which
you can define i i ne- ver si ons. h The main routine can be found @r i ver . ¢, which is a driver
program that allows you to evaluate the performance of yolutisns. Use the commarthke dri ver

to generate the driver code and run it with the commahdr i ver .

Looking at the fileker nel . ¢ you'll notice a C structuré eaminto which you should insert the requested
identifying information about the one or two individualsneprising your programming teano thisright
away so you don’t forget.

4 Implementation Overview

Data Structures
The core data structure deals with image representatigui. el is a struct as shown below:

t ypedef struct {
unsi gned short red; /+* R value =/
unsi gned short green; /* G value */
unsi gned short blue; [+ B value */
} pixel;

As can be seen, RGB values have 16-bit representationshitl@&lor”). An imagel is represented as a one-
dimensional array ofi xel s, where théi, j)th pixel isl [RI DX(i , j, n)] . Heren is the dimension of the image
matrix, andRl DX is a macro defined as follows:

#define RIDX(i,j,n) ((i)*=(n)+(j))

See the filedef s. h for this code.

Line

The following C function draws a line under an angle36f in destination imagest . The value used for this line is
the pixel with the maximum intensity in thex ¢ image.di mis the dimension of the image.

void naive_line(int dim pixel *src, pixel =dst) {

int x0 = 0;

int yO = floor (dim/ 3); /+ left endpoint =*/

int x1 =dim- 1;

int yl =ceil (dim- 1 - dim/ 3); /* right endpoint =*/

double dy = y1 - yO;
doubl e dx = x1 - xO;
doubl e slope = dy / dx;

double y = y0;
int x = x0;

for (; x <= x1; x++) {
dst[RIDX(x, (int)rint(y), dim] = *maxi nun(dim src);
y += sl ope;

}

Your task is to rewrite this code to make it run as fast as ptssising techniques like code motion, loop unrolling
and blocking.

See the fild i ne- ver si ons. ¢ for this code.

Perfor mance measures

Our main performance measuréd®PEor Cycles per Elementf a function takes” cycles to run for an image of size
N x N, the CPE value i€/N?. Table 1 summarizes the performance of the naive implertiensashown above
and compares it against an optimized implementation. Beeoce is shown for for 5 different values df. All
measurements were made on a Xeon server.

The ratio (speedup) of the optimized implementation oveasdine one will constitute scoreof your implementa-
tion. To summarize the overall effect over different valoésv, we will compute thegeometric meanof the results
for these 5 values. That is, if the measured speedup¥ fer {32, 64, 128,256,512} are Lo, Lg4, L12s, Lase, and
Ls12 then we compute the overall performance as

L = /L3y x Ley x Lo X Lasg X Ls1a

Assumptions

To make life easier, you can assume thais a multiple of 32. Your code must run correctly for all sucues ofV,
but we will measure its performance only for the 5 values showTable 1.

\ Test casd 1 2 3 4 5]
Method N 128 256 512 1024 1536 Geom. Mean
Optimized! i ne (CPE) 5.1 8.1 10.9 13.2 17.%
Baseling i ne (CPE) 1415.0 3540.0 8276.9 17895.0 33234
Speedup (naive/opt) 279.4 435.6 761.6 1356.7 18942 750.5

Table 1: CPE and Ratio for Optimized vs Baseline Impleméentat

5 Infrastructure

We have provided support code to help you test the correstfegour implementations and measure their perfor-
mance. This section describes how to use this infrastrectlihe exact details of each part of the assignment is
described in the following section.

Note: The only source files you will be modifying aker nel . ¢, |ine-versions.c, |ine-versions.h.

Versioning

You will be writing many versions of thei ne routine. To help you compare the performance of all the chffie
versions you've written, we provide a way of “registeringhttions.

For example, the fil&er nel . ¢ that we have provided you contains the following function:

voi d register_line_functions() {
add_line_function(& ine, LINE _DESCR);

}

This function contains one or more callsadd_l i ne_f uncti on. In the above example,

add_l i ne_f unct i on registers the functiohi ne along with a string.1 NE_LDESCRwhich is an ASCII description

of what the function does. See the filene- ver si ons. h to see how to create the string descriptions. This string
can be at most 256 characters long.

Driver

The source code you will write will be linked with object codhat we supply into @r i ver binary. To create this
binary, you will need to execute the command

make driver

You will need to re-make driver each time you change the c@ddest your implementations, you can then run the
command:

.ldriver

Thedri ver can be run in four different modes:

e Default modein which all versions of your implementation are run.

o Autograder modgin which only the main i ne() function are run. This is the mode we will run in when we
use the driver to grade your handin.

o File mode in which only versions that are mentioned in an input fileraire

e Dump modein which a one-line description of each version is dumpealtext file. You can then edit this text
file to keep only those versions that you'd like to test ushefile mode You can specify whether to quit after
dumping the file or if your implementations are to be run.

If run without any argumentsir i ver will run all of your versionsdefault modg The naive version provided to you
is very slow, and it will take several minutes to test. Youllike to test only versions of your own very soon. When
you made progress, copy and rename the function, to be satrevtbrwrite good working versions. Document your
progressin d abbook. t xt . Other modes and options can be specified by command-lineemngts tadr i ver , as
listed below:

- g : Runonly the final i ne() function @utograder modg
-f <funcfil e>: Execute only those versions specifieckinuncf i | e> (file modg.

-d <dunpfil e>: Dump the names of all versions to a dump file cakatlnpfi | e>, one lineto a version
(dump modg

-q : Quit after dumping version names to a dump file. To be usedmdaém with- d. For example, to quit
immediately after printing the dump file, typé dri ver -qd dunpfil e.

- h : Print the command line usage.

Team I nformation

Important: Before you start, you should fill in the structker nel s. ¢ with information about your team (group
name, team member names and email addresses). This infamrisgust like the one for the Data Lab.

6 Assignment Details

Some advice. Focus on optimizing the inner loop (the code that gets regidaexecuted in a loop) using the opti-
mization tricks covered in class. Look first at the algoritithen at the details. Look at the assembly code for the
I i ne details.

Coding Rules
You may write any code you want, as long as it satisfies theviatg:

e It must be in ANSI C. You may not use any embedded assemblygestatements.
e [t must not interfere with the time measurement mechanismo. Will also be penalized if your code prints any
extraneous information.

You can only modify code irkernel .c, line-versions.c, |ine-versions.h. You are allowed to
define macros, additional global variables, and other ghoies in these files.

Evaluation
The score for each will be based on the following:

e Correctness: You will get NO CREDIT for buggy code that caube driver to complain! This includes code
that correctly operates on the test sizes, but incorrectiymage matrices of other sizes. As mentioned earlier,
you may assume that the image dimension is a multiple of 32.

e CPE: You will get partial credit for your implementations lof ne if they are correct and achieve mean
speedups above 500x the baseline.

e Innovation: You will get extra credit for your achievemeassdocumented in tHeabbook. t xt .

7 Hand In Instructions

When you have completed the lab, you will hand in one fiearmane- ver si on- per f | ab. t gz, that contains
your solution. Here is how to hand in your solution:

e Make sure you have included your identifying informatiorihie team struct ikker nel . c.

e Make sure that théi ne() function correspond to your fastest implementation, as ithe only function
that will be tested when we use the driver to grade your assigmt.

e Remove any extraneous print statements.
e Decribe your achievements in the filabbook. t xt

e To handin yout ar file, type:
make handi n TEAMFt eammane

wheret eamrmarne is the team name defined in your team struct.

o After the handin, if you discover a mistake and want to sulanévised copy, type
make handi n TEAMEt eamrmanme VERSI ON=2

Keep incrementing the version number with each submission.

Good luck!

