
Computer Systems for AI-programmers
baiCSAI3, Spring 2011

Lab Assignment: Code Optimization
Assigned: Week 8, Due: Week 10

Tuesday March 8, 10:00

Arnoud Visser (A.Visser@uva.nl) is the lead person for this assignment.
Eva Greiner will assist during class hours.

1 Introduction

This assignment deals with optimizing a naive piece of code.Image processing and graphics offers many
examples of functions that can benefit from optimization. Inthis lab, we will consider a single graphics
operation:line, which draws a line with a certain angle over an image.

For this lab, we will consider an image to be represented as a two-dimensional matrixM , whereMi,j

denotes the value of(i, j)th pixel of M . Pixel values are triples of red, green, and blue (RGB) values. We
will only consider square images. LetN denote the number of rows (or columns) of an image. Rows and
columns are numbered, in C-style, from0 to N − 1.

2 Logistics

You may work in a group of up to two people in solving the problems for this assignment. The only
“hand-in” will be electronic. Any clarifications and revisions to the assignment will be mailed to your
student.uva.nl adress.

3 Hand Out Instructions

Start by copyingperflab-handout.tgz to a protected directory in which you plan to do your work.
Then give the command:tar zxvf perflab-handout.tgz. This will cause a number of files to be
unpacked into a directory. The primary C-file you will be modifying is line-versions.c. In this file
you can define multiple versions of the functionline(). To test the performance of a version, you register

1



this version to a benchmark-list inkernel.c, the second file that you have to modify. To be able to register
your versions of theline() function, the name and description of each version has to be known, which
you can define inline-versions.h The main routine can be found indriver.c, which is a driver
program that allows you to evaluate the performance of your solutions. Use the commandmake driver
to generate the driver code and run it with the command./driver.

Looking at the filekernel.c you’ll notice a C structureteam into which you should insert the requested
identifying information about the one or two individuals comprising your programming team.Do this right
away so you don’t forget.

4 Implementation Overview

Data Structures

The core data structure deals with image representation. Apixel is a struct as shown below:

typedef struct {
unsigned short red; /* R value */
unsigned short green; /* G value */
unsigned short blue; /* B value */

} pixel;

As can be seen, RGB values have 16-bit representations (“16-bit color”). An imageI is represented as a one-
dimensional array ofpixels, where the(i, j)th pixel isI[RIDX(i,j,n)]. Heren is the dimension of the image
matrix, andRIDX is a macro defined as follows:

#define RIDX(i,j,n) ((i)*(n)+(j))

See the filedefs.h for this code.

Line

The following C function draws a line under an angle of30◦ in destination imagedst. The value used for this line is
the pixel with the maximum intensity in thesrc image.dim is the dimension of the image.

void naive_line(int dim, pixel *src, pixel *dst) {
int x0 = 0;
int y0 = floor (dim / 3); /* left endpoint */
int x1 = dim - 1;
int y1 = ceil (dim - 1 - dim / 3); /* right endpoint */

double dy = y1 - y0;
double dx = x1 - x0;
double slope = dy / dx;

double y = y0;
int x = x0;

2



for (; x <= x1; x++) {
dst[RIDX(x,(int )rint(y), dim)] = *maximum(dim, src);
y += slope;

}
}

Your task is to rewrite this code to make it run as fast as possible using techniques like code motion, loop unrolling
and blocking.

See the fileline-versions.c for this code.

Performance measures

Our main performance measure isCPEor Cycles per Element. If a function takesC cycles to run for an image of size
N × N , the CPE value isC/N2. Table 1 summarizes the performance of the naive implementations shown above
and compares it against an optimized implementation. Performance is shown for for 5 different values ofN . All
measurements were made on a Xeon server.

The ratio (speedup) of the optimized implementation over a Baseline one will constitute ascoreof your implementa-
tion. To summarize the overall effect over different valuesof N , we will compute thegeometric meanof the results
for these 5 values. That is, if the measured speedups forN = {32, 64, 128, 256, 512} areL32, L64, L128, L256, and
L512 then we compute the overall performance as

L = 5

√

L32 × L64 × L128 × L256 × L512

Assumptions

To make life easier, you can assume thatN is a multiple of 32. Your code must run correctly for all such values ofN ,
but we will measure its performance only for the 5 values shown in Table 1.

Test case 1 2 3 4 5

Method N 128 256 512 1024 1536 Geom. Mean
Optimizedline (CPE) 5.1 8.1 10.9 13.2 17.5
Baselineline (CPE) 1415.0 3540.0 8276.9 17895.0 33234
Speedup (naive/opt) 279.4 435.6 761.6 1356.7 1894.2 750.5

Table 1: CPE and Ratio for Optimized vs Baseline Implementations

5 Infrastructure

We have provided support code to help you test the correctness of your implementations and measure their perfor-
mance. This section describes how to use this infrastructure. The exact details of each part of the assignment is
described in the following section.

Note: The only source files you will be modifying arekernel.c, line-versions.c, line-versions.h.

3



Versioning

You will be writing many versions of theline routine. To help you compare the performance of all the different
versions you’ve written, we provide a way of “registering” functions.

For example, the filekernel.c that we have provided you contains the following function:

void register_line_functions() {
add_line_function(&line, LINE_DESCR);

}

This function contains one or more calls toadd line function. In the above example,
add line function registers the functionline along with a stringLINE DESCR which is an ASCII description
of what the function does. See the fileline-versions.h to see how to create the string descriptions. This string
can be at most 256 characters long.

Driver

The source code you will write will be linked with object codethat we supply into adriver binary. To create this
binary, you will need to execute the command

make driver

You will need to re-make driver each time you change the code.To test your implementations, you can then run the
command:

./driver

Thedriver can be run in four different modes:

• Default mode, in which all versions of your implementation are run.

• Autograder mode, in which only the mainline() function are run. This is the mode we will run in when we
use the driver to grade your handin.

• File mode, in which only versions that are mentioned in an input file arerun.

• Dump mode, in which a one-line description of each version is dumped toa text file. You can then edit this text
file to keep only those versions that you’d like to test using thefile mode. You can specify whether to quit after
dumping the file or if your implementations are to be run.

If run without any arguments,driverwill run all of your versions (default mode). The naive version provided to you
is very slow, and it will take several minutes to test. You will like to test only versions of your own very soon. When
you made progress, copy and rename the function, to be sure that overwrite good working versions. Document your
progress in alabbook.txt. Other modes and options can be specified by command-line arguments todriver, as
listed below:

-g : Run only the finalline() function (autograder mode).

-f <funcfile> : Execute only those versions specified in<funcfile> (file mode).

-d <dumpfile> : Dump the names of all versions to a dump file called<dumpfile>, one lineto a version
(dump mode).

4



-q : Quit after dumping version names to a dump file. To be used in tandem with-d. For example, to quit
immediately after printing the dump file, type./driver -qd dumpfile.

-h : Print the command line usage.

Team Information

Important: Before you start, you should fill in the struct inkernels.c with information about your team (group
name, team member names and email addresses). This information is just like the one for the Data Lab.

6 Assignment Details

Some advice. Focus on optimizing the inner loop (the code that gets repeatedly executed in a loop) using the opti-
mization tricks covered in class. Look first at the algorithm, then at the details. Look at the assembly code for the
line details.

Coding Rules

You may write any code you want, as long as it satisfies the following:

• It must be in ANSI C. You may not use any embedded assembly language statements.

• It must not interfere with the time measurement mechanism. You will also be penalized if your code prints any
extraneous information.

You can only modify code inkernel.c, line-versions.c, line-versions.h. You are allowed to
define macros, additional global variables, and other procedures in these files.

Evaluation

The score for each will be based on the following:

• Correctness: You will get NO CREDIT for buggy code that causes the driver to complain! This includes code
that correctly operates on the test sizes, but incorrectly on image matrices of other sizes. As mentioned earlier,
you may assume that the image dimension is a multiple of 32.

• CPE: You will get partial credit for your implementations ofline if they are correct and achieve mean
speedups above 500x the baseline.

• Innovation: You will get extra credit for your achievementsas documented in thelabbook.txt.

7 Hand In Instructions

When you have completed the lab, you will hand in one file,teamname-version-perflab.tgz, that contains
your solution. Here is how to hand in your solution:

• Make sure you have included your identifying information inthe team struct inkernel.c.

5



• Make sure that theline() function correspond to your fastest implementation, as this is the only function
that will be tested when we use the driver to grade your assignement.

• Remove any extraneous print statements.

• Decribe your achievements in the filelabbook.txt

• To handin yourtar file, type:

make handin TEAM=teamname

whereteamname is the team name defined in your team struct.

• After the handin, if you discover a mistake and want to submita revised copy, type

make handin TEAM=teamname VERSION=2

Keep incrementing the version number with each submission.

Good luck!

6


