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1 Introduction

The Cerberus team made its debut in RoboCup 2001 competition. This was the first
international team participating in the league as a result of the joint research effort of
Boğaziçi University (BU), Istanbul, Turkey and Technical University Sofia, Plovdiv
branch (TUSP), Plovdiv, Bulgaria. The team competed in Robocup 2001-2012 except
the year 2004. Since 2005, Boğaziçi University is maintaining the team. In 2005, despite
the fact that it was the only team competing with ERS-210s (not ERS210As), Cerberus
won the first place in the technical challenges. In Robocup 2008, a new league, named
the Standard Platform League (SPL), was introduced. In this league, the Nao humanoid
robots manufactured by Aldebaran Robotics [1] are used as the standard robot platform.

From the very beginning, Cerberus has chosen to develop all components of the
software to form the basis for a more general robotics research rather than to be used
for soccer only. Through the years, the members of the team have done many PhD and
MS Thesis studies related to SPL and published more than 40 papers in journals and
international conferences, including the RoboCup Symposia 1.

2 Cerberus Team

– Team Advisor: H. Levent Akın
– Senior Team Members: Barış Gökçe, Ergin Özkucur, Okan Aşık
– Team Members: Ahmet Erdem, Yusuf Tarık Günaydın

3 Controller Architecture

The overall architecture, shown in Figure 3, is in fact an instance of a classical sense-
plan-act paradigm. The process starts with reading sensory information including im-
ages from the camera, readings of the inertial sensors, and current positions of the body
joints. In the following sections, we explain the current state of our methods, but de-
tailed information can be found in [2].

In order to use the API of NaoQi, we have adapted the shared memory communica-
tion infrastructure and walk engine of the B-Human’s source code [3].

1 The full list of Cerberus publications are available here:
http://robot.cmpe.boun.edu.tr/∼cerberus/wiki/index.php?n=Publications.Publications



Fig. 1. The overall control architecture of the Cerberus robot soccer team.

4 Vision

4.1 Image Processing and Perception

The purpose of the perception module is to process the raw image and extract available
object features from it.

Color Quantization We utilize a Generalized Regression Neural Network (GRNN)
[4] for mapping the real color space to the pseudo-color space composed of a smaller
set of pseudo-colors, namely, white, green, yellow, blue, robot-blue, orange, red, and
“ignore”. In order to obtain the outputs of the trained GRNN in a time-efficient manner,
a look up table is constructed for all possible inputs.

Scanline Based Perception Framework Since the cameras of the Nao robots provide
higher resolution images and its processor is slow, it becomes infeasible to process each
pixel to find the objects of interests in the image due to computational efficiency and
real-time constraints. Therefore, scan lines are used to process the image in a sparse
manner, hence speeding up the entire process.

After processing scan lines, we construct regions for the objects of interest such as
goal bar, field lines, robots, and the ball. Objects are detected by processing previously
constructed regions. After detection, objects are projected to frame of the robot.

4.2 World Modeling and Short Term Observation Memory

The planning module requires perceptual information with less noise and in a more
complete manner. The world modeling module should reduce sensor noise and com-
plete the missing state information by predicting the state. This is a state prediction
problem and we use the most common approach in the literature, the Kalman Filter [5],
for solving this problem.



For any object, the observation is z = {d, θ}where d and θ are distance and bearing,
respectively, to the robot origin. For the stationary objects, the state is m = {d, θ} and
the state evolution model is m1

k+1 = I ×mk and zk = I ×mk where k is time and I
is the unit matrix.

For the dynamic objects, the observation is the same but the state is represented as
m = {d, θ, dd, dθ} where dd is the change in distance in one time step and dθ is the
change in bearing likewise.

In the update steps, odometry readings are used. The odometry reading is u =
{dx, dy, dθ} where dx and dy are displacements in egocentric coordinate frame and
dθ is the change in orientation. When an odometry reading is received, all the state
vectors of known objects are geometrically re-calculated and the associated uncertainty
is increased.

The most obvious effect of using a Kalman Filter is that the disadvantage of having
a limited field of view is reduced. As the robot pans its head, it can be aware of distinct
landmarks which are not in the same field of view at the same time.

5 Self Localization

Cerberus employs vision based Monte Carlo Localization (MCL). In the MCL algo-
rithm, the belief state is represented by a particle set and each element represents a pos-
sible pose of the robot. We use MCL with a set of practical extensions (X-MCL) which
is detailed in [6]. Until recently, we used the output of the world modeling module as
input to the localization module. Namely the filtered landmarks are used as observations
for the localization module. However, we now filter unidentified observations.

This approach is inspired from FastSLAM [7] algorithm and Multi-Hypothesis
tracking [8]. In FastSLAM, each particle has its own world model (i.e. map). In Multi-
Hypothesis tracking, there are multiple Gaussians where each relies on a different data
association sequence and their numbers are limited by pruning.

To overcome the unified goal bar color problem, with the assumption that initial po-
sition of the robot is known, the model described above works with minimal change. In
the video attachment, we demonstrated a robot, which knows that it looks its own goal
at the beginning, can position itself correctly in the ready state. For the kidnapping sit-
uations, we plan to develop a binary hypothesis based approach. The methodology is as
follows. After kidnapping (or falling), the robot makes an assumption about side of the
first observed goal bar, and perform localization normally. After that it simultaneously
tries to validate this hypothesis based on robot observations, and incoming messages
from teammates.

6 Motion

For bipedal locomotion, we use two different walking engines. The first engine is de-
veloped in the lab [9, 10], we also use the omni-directional walking developed by Alde-
baran Robotics [1].

Our biped walking is defined in terms of parameters some of which are mentioned
above. Since balance is not guaranteed in the model and it is impossible to optimize



the model with the maximum speed analytically, we apply an optimization algorithm,
Evolutionary Strategies, to fine-tune the walking motion after determining a feasible
parameter set by hand. More details about this walking engine can be found in [9].

Because our walking engine was slower than most of the teams, we started to de-
velop another walking engine which is based-on the walking engine of the B-Human
[11].

In addition to walking engines, special actions are generated as static motion like;
get up front, get up back, kick to the left, right, forward and back, block to the left and
right.

7 Planner

The soccer domain is a continuous environment, but the robots operate in discrete time
steps. At each time step, the environment, and the robots’ own states change. The plan-
ner keeps track of those changes, and decides the new actions. The main aim of the
planner is to sufficiently model the environment and update its status. Additionally, the
planner should provide control inputs according to this model. Previously, we devel-
oped a market based planner and a Dec-POMDP based planner. Currently, we use finite
state machine based planner as explained in Section 7.1.

7.1 Finite State Controller based Planner

The Finite State Controller (FSC) based planner makes use of the formal model of
the problem. Therefore, at every planner step, the robot is in a particular state and we
want our robot to take the best action in that state. FSC is based on the conventional
Hierarchical Finite State Machine model, however, we changed some aspects to use
it in high-level robot planning. There are states which correspond to the environment
states. Transitions take place according to current environment observations. There are
also actions which will be taken when the robot is at a particular state. The robot can
execute many actions in a particular state and these actions may override each other
according to their priority. The most powerful part of this planner architecture is that
once we code particular transitions or actions, they can be reused in different behaviors.
We have developed a special tool called “FSC Designer” for this purpose [12].

7.2 Goalie Planner

The goalie has its own finite state machine controller to execute its behavior. General
structure of the goalie is composed of searching ball, tracking ball, blocking ball if it
is close enough and to localize itself during all of these behaviors. The localization
problem to return to the center of the goal is solved partially by using corners and
lines of the penalty area and odometry information. However, line and corner search
and alignment processes take too much time when considering the flow of the game.
The robot always have to check the ball of the position while localizing itself. As a
result, we have to consider more visual sensory input to increase localization accuracy
and decrease process time which has been planned as our direction in improving the
performance of the goalie behavior.



8 Conclusion and Future Works

In conclusion, we aim to compete in Robocup SPL 2013 to test our methods in a chal-
lenging competition environment. Currently, we try to solve multi-agent planning, and
kidnapping problem which are the top challenges of SPL. We research on the appli-
cation of Dec-POMDP methods for robot soccer [13]. For solving kidnapping prob-
lem, and in general localization problem, we work on methods which effectively merge
world models, and extraction and usage of dynamic landmark.
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